Color changes of tissues and organs associated with disease

Jonathan Fox
jfox7@uwyo.edu

Introduction
• Acute observation is critical skill of physicians, veterinarians and animal caretakers
• Changes in tissue coloration is an important marker of disease
• Most common examples of tissue color changes that occur are related to hemoglobin
• Even with careful clinical observation specific alterations are usually detectable only when changes are moderate to severe [minor changes are only detectable by laboratory testing]

Lecture Outline
• Red blood cell synthesis
• Hemoglobin: synthesis and degradation
• Anemia and hemorrhage
• Jaundice
• Miscellaneous color changes
Erythropoiesis

Erythropoiesis = red cell synthesis

Erythropoiesis
- Occurs in bone marrow – multiple bones throughout the body
- Requires protein signal from kidney (erythropoietin) – promotes survival of red cell precursors
- Require significant amounts of iron and other molecular building blocks

Erythropoiesis

With differentiation towards erythrocyte (RBC)
- More hemoglobin is synthesized
- Nucleus shrinks and is finally removed
- Reticulocytes are released into the blood
- Reticulocytes mature into erythrocytes in about 24 hours
- Erythrocytes live about 4 months in circulation

Structure of hemoglobin

Hemoglobin

Heme
Pathway for synthesis of hemoglobin

Normal pathway for the degradation of hemoglobin

Anemia – An abnormality characterized by deficiency in the oxygen-carrying component of the blood

- Anemia
 - Decreased red blood cell concentration
 - Decreased hemoglobin concentration of red cells
 - Decreased size of red blood cells

- Consequences
 - Decreased oxygen carrying capacity of blood
 - Weakness, collapse, hypoxic organ damage
 - Some adaptation occurs to chronic anemia
Important causes of anemia in animals and man

• **Blood loss**
 – Internal hemorrhage
 – External hemorrhage

• **Decreased production of red cells or hemoglobin**
 – Chronic kidney disease – decreased erythropoietin
 – Iron deficiency
 – Bone marrow damage – many causes

• **Increased destruction of blood cells**
 – Autoimmune hemolytic anemia
 – Red cell protozoans e.g. Malaria, Babesia

External hemorrhage as a cause of anemia

– External trauma
– Gastrointestinal tract disease
– Acute – hemorrhagic shock
– Chronic – loss of protein and iron

Iron deficiency as a consequence of chronic external hemorrhage

• Iron loss due to hemorrhage
• Iron essential for hemoglobin synthesis
• Iron deficiency results in decreased hemoglobin content with erythrocytes
 – Anemia is hypochromic

• Questions
 – Do males and females have different iron requirements? Why? Why not?
 – How else may iron deficiency anemia occur?
Internal hemorrhage

- Hemorrhage into body cavities and tissues
- Usually acute, can be chronic

Hemoperitoneum
Hemorrhage resulting in a collapsed lung

Would you expect to see secondary iron deficiency with internal hemorrhage?

Hemoglobin degradation occurs locally in areas of contusion

- Early
 - Pink
 - Red
 - Purple

- Late
 - Yellow
 - Green

Hemoglobin – red

Biliverdin - green

Bilirubin - yellow

Resolution of a bruise

Hemoglobin ➔ **Globin (protein component)**

Heme

Iron

Biliverdin

Non-conjugated bilirubin

Conjugated bilirubin [conjugation occurs in liver]

Excretion by liver into bile [released into small intestine]

Degraded to stercobilin (mainly responsible for normal fecal color)
Icterus = jaundice

Hyperbilirubinemia = increased bilirubin in blood

Causes of elevated bilirubin = hyperbilirubinemia

- **Pre-hepatic** = increased degradation of hemoglobin
- **Hepatic** = Decreased conversion of non-conjugated to conjugated bilirubin
- **Post-hepatic** = Obstruction of flow of bile

Pathways to icterus I

Hemoglobin \rightarrow Globin (protein component)

Heme \rightarrow Iron \rightarrow Biliverdin \rightarrow Non-conjugated bilirubin \rightarrow Conjugated bilirubin (conjugation occurs in liver) \rightarrow Excretion by liver into bile (released into small intestine) \rightarrow Degraded to stercobilin (mainly responsible for normal fecal color)
Pathways to icterus II

Failure of bilirubin conjugation indicates liver disease (hepatocellular)
Failure of excretion indicates obstruction of bile flow
- Intra-hepatic = liver disease
- Extra-hepatic e.g. bile duct cancer

Porphyrsins in tissues – associated with disease or normal pigmentation in some species

Porphyrsins are colored intermediates in the pathway to heme synthesis e.g. Uroporphyrinogen. [Porphura is greek for purple].

Purple moorhen
Tear staining
Discolored teeth
Rat - chromodacryorrhea
Produced by Harderian gland next to eye

How do porphyrin levels accumulate in tissues? Consequences of defects of heme synthesis pathway

- Most porphyrsins are genetic in origin
- single gene inheritance
- autosomal dominant or recessive
- Manifestations vary according to gene involved
Consequences of porphyria
Porphyrins, at high levels, are toxic

- UV LIGHT
- Photosensitivity
- Elevated porphyrins
- Excretion in urine
- Damage to liver and nervous system

Other color changes in tissues
- Fat accumulation - pale swollen liver
- Melanoma – neoplasm of melanin producing cells

Example questions
- What is icterus?
- Why is icterus often present with hepatic disease?
- Where are aged red cells normally degraded?
- Provide two basic causes of iron deficiency anemia?
- Why is anemia often present in animals and people with chronic renal disease?
- Explain what is meant by the term ‘autosomal recessive disease’

8