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SUMMARY 

Maintaining biodiversity in the face of rapid and extensive anthropogenic habitat change is 
exacerbated when national policies, such as the current push for increased and diversified energy 
production, accelerate development beyond the capacity of wildlife managers to respond, thus 
forcing them to initiate conservation with inadequate information.  A priori species prioritization 
schemes help alleviate this problem, and while many such schemes have been proposed, all 
depend on gauging exposure of species to disturbance. Here, we apply a refined, quantitative 
method to estimate exposure for a wide range of species by calculating the weighted proximity of 
species’ distributions to current and projected energy development.  We also incorporate an 
objective assessment of uncertainty often lacking in multi-species assessments. This analysis can 
be used to assess whether site-specific impacts documented through local studies have the 
potential to translate into broader population impacts that could, in turn, affect wildlife 
management priorities. We identify a suite of species (e.g., pygmy rabbit, Wyoming pocket gopher, 
black-footed ferret, Great Plains toad) that are of concern in our focal landscape when considering 
conservation activities related to energy development.  The methods we employ are widely 
applicable, using data often available to local and regional management agencies and conservation 
groups. 

INTRODUCTION 

Habitat change from anthropogenic activates is rapid and extensive, and recognized as the 
foremost cause of wildlife decline and extinction worldwide (Koh et al. 2004, Vié et al. 2009).  
Maintaining biodiversity in the face of such change is exacerbated when national policies, such as 
the current push for increased and diversified energy production, accelerate development beyond 
the capacity of wildlife managers to respond, thus forcing them to rapidly prioritize which species 
receive attention.  This situation is exacerbated when there is a mismatch between the scales of 
development pressure and conservation management.  This is exemplified by energy 
development, where national and international demand is driving rapidly expanding energy 
production, particularly of ‘clean’ energy sources like natural gas and wind-power, resulting in 
rapid impacts to local wildlife populations, management of which falls within the purview of state 
agencies that are ill-equipped to deal with the magnitude of such rapidly increasing disturbance 
(Naugle 2011).  This situation often results in management focusing on species once they exhibit 
evident impacts and/or on politically important species, often on a case-by-case basis 
(Wainwright and Kope 1999, Vucetich et al. 2006, D'Elia and McCarthy 2010), when what is 
needed is an effective prioritization that identifies where populations are likely to decline but 
have not declined to a point where drastic intervention is necessary (Wilcove and Chen 1998, 
Drechsler et al. 2011).   

Species prioritization schemes abound (e.g., Metrick and Weitzman 1998, Miller et al. 2006, 
Joseph et al. 2009, AFWA 2011), but their effectiveness hinges upon accurate evaluation of threat, 
which in turn hinges upon accurate assessment of species-specific levels of habitat alteration that 
is the driving factor behind impact.  Unfortunately, the rapidity of change often results in a lack of 
quantitative and taxonomically complete assessments, even for fairly well-studied systems.  For 
instance, Wyoming’s State Wildlife Action Plan (SWAP) identified 279 species of greatest 
conservation need (SGCN), 235 (84%) of which were included due to lack of information 
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necessary for management, the largest component of which is lack of data on distributions (WGFD 
2005).  Considering the United States as a whole, over 12,000 SGCN have been designated under 
SWAP programs, with individual states listing 100 to 1,200 species, most of which lack the 
quantitative information necessary to inform more detailed assessments of habitat disturbance 
(AFWA 2011).   Thus, a critical first step in the prioritization process is quantifying the relative 
exposure of species’ habitats to development.   

Though spatial impact analysis is fairly well-developed in the realm of strategic environmental 
assessment (e.g., Geneletti 2013), it is less-often applied rigorously to species prioritization, 
particularly at state levels where much conservation is implemented.  Analyses that seek to 
quantify exposure to development typically occur for particular sites and/or few species (e.g., 
Johnson et al. 2005, Nielsen et al. 2008, Bennett et al. 2009, Sawyer et al. 2009, Wilson et al. 2011).  
Quantitative, multi-species, landscape scale assessments of exposure are still rare except at large 
scales, and often rely on indicator species or overlays of coarse species range data with broad 
blocks of proposed development (e.g., Landres et al. 1988, McDonald et al. 2009, De Cáceres et al. 
2010).  The increasingly sophisticated science of niche modeling can be used to refine exposure 
analyses, resulting in an effective tool for conservation planning (Sattler et al. 2007, Carroll 2010, 
Crawford and Hoagland 2010, Hu et al. 2010).  None-the-less few studies make full use of output 
from such models, generally simplifying analyses by binning results into binary output using 
standardized, but biologically arbitrary, thresholds (e.g., Carroll 2010, Yackulic et al. 2013).  
Further, recent syntheses of human impact studies have resulted a better understanding of effect 
distance functions that can be used in combined with the continuous output from such models to 
generate quantitative estimates of exposure to development (Copeland et al. 2009b, Benitez-
Lopez et al. 2010). 

Our objective in this study is to apply a refined, quantitative method to estimating exposure for a 
wide range of species that also includes an objective assessment of uncertainty that is often 
lacking in multi-species assessments.  We use geospatial estimates of habitat suitability in concert 
with impact distance functions and development footprints to achieve a refined estimate of 
exposure to disturbance for a large number of species across a landscape that is increasingly 
influenced by energy development activities.  Results of this analysis are used to assess whether 
site-specific impacts documented through local studies have the potential to translate into 
statewide population trends that could, in turn, impact wildlife management priorities.  The 
methods we employ are widely applicable using data often available to local and regional 
management agencies and conservation groups. 
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METHODS 

The following sections explain the main points of our analytical methods.  A complete, detailed 
accounting of methods can be found in Appendix A. 

FOCAL LANDSCAPE 

Our focal landscape is the state of Wyoming, where there are over 150, mostly poorly-understood 
SGCN (WGFD 2010b).  State and local resource management agencies in Wyoming are 
increasingly overburdened due to a rapidly expanding energy footprint representing 14% of U.S. 
domestic production (EIA 2011c).  We focus on petroleum (i.e., oil and natural gas) and wind-
power production, both of which alter large tracts of habitat in Wyoming and are rapidly 
expanding due to strong national support for increased U.S. production of ‘clean’ energy.  The 
number of oil and gas wells and wind turbines in Wyoming has increased drastically in recent 
years and continued increases of at least 130% and 615%, respectively, are predicted over the 
next 20 years (Fig. 1B).   

MAPPING DISTRIBUTIONS OF SPECIES AND DEVELOPMENT 

We constructed maps of current and projected petroleum (i.e., oil and natural gas) and wind 
power development in Wyoming by first estimating resource potential across the state.  For oil 
and gas potential, we improved a previously published forecast for the Intermountain West 
(Copeland et al. 2009a) by using higher-resolution data on bedrock geology and geologic faults as 
input variables and more detailed maps of producing and non-producing oil and gas wells as the 
binary response variable in a Random Forests model (Breiman 2001).  A similar model was 
generated for wind-power potential using maximum entropy methods (Phillips and Dudik 2008) 
with currently producing wind-turbines as the response variable and wind-resource potential in 
combination with topographic position variables as predictors.  The energy potential models were 
highly discriminative based on multiple metrics, all of which indicated stable and acceptable 
predictions.  The energy potential surfaces from these models were further adjusted to reflect 
spatially-explicit constraints to near-term development that could not be effectively captured in 
the modeling process (e.g., idiosyncratic legal constraints to development and facilitation of 
development from existing infrastructure).  Development maps were generated by seeding the 
landscape with wells and turbines according to the energy potential model at rates predicted by 
energy production forecasts for Wyoming (e.g., Stilwell and Chase 2007).   

For each SGCN (n = 156 species), we constructed a distribution model using documented 
occurrences as the response variable and statewide environmental layers representing climate, 
hydrology, land cover, substrate and terrain as predictor variables.  We used maximum entropy 
methods because they have been demonstrated to be accurate and robust under the given data 
structure, particularly when sample sizes are small (Hernandez et al. 2006, Graham et al. 2008, 
Wisz et al. 2008a, Franklin 2009, Elith et al. 2011, Renner and Warton 2013).  To avoid biases 
associated with opportunistically gathered data (e.g., Johnson and Gillingham 2008, Royle et al. 
2012), we used background data selected from the sample set rather than randomly-generated 
pseudo-absences (Phillips et al. 2009) and employed a randomized, multi-pass filter to select 
model sets that minimized spatial bias and maximized the quality of occurrences in the final 



Keinath and Kauffman 2014  7 

 

model.  Most analyses employing distribution modeling to assess impact use a binary expression 
of the models, because it is computationally simpler to overlay with development maps. This 
requires selecting a presence threshold for all species, for which there is no good universal rule 
(Yackulic et al. 2013), and which unnecessarily eliminates valuable information regarding spatial 
context of potential habitat contained in the continuous models.  Therefore, we used the 
continuous output of our distribution models, rescaled to sum to one over the entire state, so each 
location represented the relative likelihood of species presence relative to all other locations.      

 

For species distribution models the paucity of data and challenges of model specification make 
uncertainty a particularly important issue.  Moreover, quantifying uncertainty can itself be used to 
inform conservation planning (Beale and Lennon 2012), although such quantification is difficult 
and therefore seldom done.  We addressed this by validating our distribution models using 
several well-supported validation statistics that we used to develop an omnibus uncertainty index 
(UI) for each species, thus explicitly considering how uncertainty in our models might impact 
estimated exposure.  Components of UI included area under the receiver operating characteristic 

Figure 1. Changes through time in exposure to energy development for 156 Species of Greatest 

Conservation Need (SGCN) in Wyoming (A) relative to the cumulative number of oil and gas wells (B; 

solid line) and wind-power turbines (B; dashed line).  Several species mentioned in the text are 

highlighted in colors that match those in Fig. 2.  Data on energy infrastructure were compiled from 

sources listed in Appendix A. 
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curve based on withheld test data, predictive success based on 10-fold cross-validation, and the 
Boyce index (e.g., Hirzel et al. 2006), as well as quantitative assessments of input data quality and 
expert review of the final models.  UI ranges from an upper limit of one when the resulting 
exposure estimate is relatively uncertain, to a lower limit near zero when we are relatively 
confident in the exposure estimate. 

CALCULATING EXPOSURE TO DEVELOPMENT 

We used our development projections to generate disturbance footprint maps, for which 
maximum disturbance (Exposure Value; EV = 1.0) occurred at developed sites (i.e., wells and 
turbines) and decayed to zero according to published distance thresholds (Benitez-Lopez et al. 
2010).  Specifically, the un-weighted exposure value of cell i relative to disturbance d (EVdi) is a 
logarithmically decaying function of the distance of cell i to the nearest well pad or wind turbine 
(Di) according to the following equation: 

 ibDa

a

di
e

e
EV







1

1

 

(1) 

where and a and b are constants defining a logarithmic curve that decays from 1.0 to 0.01 at a 
defined distance (1 km in our primary analysis).  Species likely exhibit differential sensitivities to 
development, so decay curves of different radii may be appropriate for different taxa, but it is 
precisely this type of detailed response information that is lacking for most species, thus 
motivating this analysis.  Since any taxa-specific adjustments would be speculative, it makes more 
sense to evaluate all species equally and initiate targeted studies of species thereby identified as 
highly exposed in order to quantify sensitivity to specific disturbance, thus providing information 
necessary to modify the impact function.  Further, we investigated exposure shifts resulting the 
uniform application of different impact distance functions and found they introduced only slight 
variation in the final results (see Appendix A).     

Energy development footprints were multiplied by the continuous species distribution models, 
and the result was summed across Wyoming according to the following equation: 

 
i

siwi

i

siogiwsogss DMEVDMEVEIEIEI **  (2) 

where, DMsi is the value of the distribution model for species s in cell i, and subscripts og and w 
represent values for oil/gas and wind development, respectively.  Thus, EIs is the exposure index 
for species s, representing the proportion of the species’ potential distribution exposed to 
development weighted by the relative probability of species occurrence and by disturbance 
intensity.  EI is thus a direct measure of relative exposure to development that incorporates the 
best available data on where species occur, which is more informative than simple overlays of 
range maps or binary distribution maps with anticipated development areas. 



Keinath and Kauffman 2014  9 

 

RESULTS 

Our results demonstrate a clear ranking of species exposure to potential energy development 
(Figs. 1 and B2, Table C1).  This ranking holds even in the face of large variation in the species-
specific uncertainty, because species with the highest exposures tended to have highly 
discriminative models (Fig. 2).  The majority of species in our study showed sufficiently low 
exposure to current and future energy development that range-wide impacts are not likely even 
with substantial distributional uncertainty.  Generally speaking, montane obligates showed very 
low exposure (e.g., Fig. 2B: fisher, Es < 0.001), while species restricted to low and mid-elevation 
basin shrublands and grasslands showed higher exposure (e.g., Fig. 2C: Great Plains toad, Es = 
0.278).  Trajectories of exposure through time vary greatly among species, and we predict that 
several species will exhibit accelerated exposure in the future (e.g., Fig. 1A: black-footed ferret = 
613% increase over current levels; pygmy rabbit = 105%; Wyoming pocket gopher = 75%).   

Exposure to petroleum infrastructure will be much larger than to wind turbines (Fig. B2, Table 
C1), but petroleum and wind-energy footprints are largely non-overlapping (Figs. 3 and B3), 
resulting in spatially extensive disturbance from the combination of the two types of energy 
development.  Despite its comparatively small footprint, wind power represents more than half 
the calculated exposure to energy development for 14 species.  Of particular note, exposure of 
federally-listed back-footed ferret is driven largely by wind power (Fig. 3E: Eswind = 0.177, 
Espetroleum= 0.004), which leads to its ranking as the 6th most exposed species in our study. 
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Figure 2. Joint distribution of exposure index (EI) and uncertainty index (UI) for 156 SGCN in Wyoming.  

Higher EI values indicate greater exposure to development, while higher UI values indicate more 

uncertainty in the exposure estimate.  Each species is symbolized by its exposure rank (see Table C1), 

with several species mentioned in the text highlighted in colors matching those in Fig. 1.  Dashed lines 

delineate heuristic zones of concern discussed in the text (boundaries subjective). 
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Figure 3. Wyoming distribution maps for the six Species of Greatest Conservation Need (SGCN) 

highlighted in Figs. 1 and 2 superimposed on energy development projections for 2030.  Black shading 

represents the footprint from oil and gas development and blue represents the footprint from wind-power 

development.  Red shading represents the area of predicted occurrence for greater sage-grouse (A; 

EI=0.135), fisher (B; EI<0.001), Great Plains toad (C; EI=0.278), pygmy rabbit (D; EI=0.201), black-

footed ferret (E; EI=0.181), and Wyoming pocket gopher (F; EI=0.196).  The latter species is endemic to 

Wyoming, so the model represents its entire global distribution. Background is a topographic relief map 

of Wyoming with county boundaries for reference. 
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DISCUSSION 

At the most basic level, species with higher exposure to development should receive increased 
scrutiny when assessing conservation priorities, since a greater proportion of suitable habitat 
coincident to development indicates a correspondingly greater potential for population-level 
impacts (Naugle 2011).  Sixteen of Wyoming’s SGCN have EI values higher than greater sage-
grouse, which has extensively researched impacts from this development.  To our knowledge very 
few of these species are currently the focus of research or conservation relative to this exposure.  
We recognize that eventual decisions regarding conservation priorities will necessarily involve 
additional factors (e.g., cost, logistics, social concerns, political climate; Miller et al. 2006), but we 
believe that any species herein classified as High Exposure, and perhaps also Equivocal Exposure 
(Fig. 2), are worthy of increased scrutiny.  This is particularly true when species demonstrate 
biological sensitivities that suggest exposure is likely to translate into impacts (e.g., Cardillo et al. 
2005).  For example, pygmy rabbit is highly exposed and exhibits known biological sensitivity 
stemming from restrictive habitat specificity that has already resulted in placing one sub-species 
on the U. S. endangered species list due to habitat disturbance (USFWS 2010b).  Similar 
arguments can be made for other highly-exposed species in our analysis, notably Wyoming pocket 
gopher, black-footed ferret, and Great Plains toad (see Appendix A).   

Three additional factors that we are able to evaluate with quantitative exposure analysis suggest 
that a small set of Wyoming’s mammal species may be of particular concern. First, species with 
restricted distributions, and thus little capacity to spatially avoid development, are generally at 
higher risk from habitat alteration than others (e.g., Owens and Bennett 2000).  This raises 
concern for species like black-footed ferret and Wyoming pocket-gopher (Figs. 3E, F) relative to 
more widely distributed basin species (e.g., Fig. 3A).  In fact, the global distributions of these 
species are so restricted that conservation for the species as a whole hinges upon conservation in 
Wyoming.  Second, large projected increases in exposure over current levels suggests that 
proactive conservation could have a greater potential to effect change, because efforts enacted 
now could avert impacts rather than mitigating damage to already impacted populations (Wilcove 
and Chen 1998, Drechsler et al. 2011).  Pygmy rabbit and black-footed ferret are notable in this 
regard, because they are predicted to experience large increases in exposure (Fig. 1).  Also, 
together with black-tailed prairie dog, these two species exemplify a third factor of concern, 
namely that projected exposure is concentrated in areas predicted as most suitable (i.e., areas that 
are more likely to be occupied), which suggests a greater potential for impact (e.g., Fig. B4).   

The use of umbrella species has long been a dominant approach to multi-species conservation 
despite ambiguous scientific support (e.g., Ozaki et al. 2006, Branton and Richardson 2011).  This 
is true of our focal landscape, where the role of greater sage-grouse as a purported umbrella 
species (Rowland et al. 2006) has contributed to intense conservation attention, culminating in an 
executive order in Wyoming to restrict new energy development in areas identified as ‘core’ sage-
grouse habitat (Fig. B5).  Our exposure analysis shows that complete cessation of future 
development in core areas would reduce predicted exposure of the 25 most-exposed species by 
an average of only 7% (Fig. B6).  None-the-less, our analysis suggests the sage-grouse core area 
strategy can substantially mitigate impacts for a few species. Notably, 30% of exposure for the 
federally-endangered black-footed ferret, which is not generally viewed as falling under the sage-
grouse umbrella, can be averted by precluding wind turbines in a relatively small area identified 
as core sage-grouse habitat.  Similarly, anticipated exposure of pygmy rabbit to oil and gas 
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development can be reduced by up to 20% with strict conservation of large-stature sagebrush in 
sage-grouse core areas.  For other species sage-grouse core areas will not mitigate exposure to 
energy development, but could offset exposure by providing a refuge if a large proportion of those 
species’ undeveloped habitats are coincident with sage-grouse core areas.  In this context, limiting 
development in core areas may be effective for species like pygmy rabbit and black footed-ferret, 
which have close to half their distribution within core areas (Fig. B6), though further analysis is 
required to assess whether or not these areas are effected by other development pressures.  In 
contrast, species like Wyoming pocket gopher and Great Plains toad have sufficiently small 
portions of their distribution within sage-grouse core areas that they are unlikely to benefit from 
core area policies.   

A benefit of our comprehensive, quantitative approach to examining exposure is that it does not 
focus solely on species with plentiful data and political support, but assesses all species on the 
same scale and explicitly identifies deficiencies, thus allowing a more transparent assessment of 
risk.  Relative uncertainty in exposure estimates is useful in this context and should be considered 
when assessing potential conservation targets and identifying next steps.  Based on relative levels 
of exposure and uncertainty, we view species as falling into one of three heuristic categories; low 
exposure, high exposure, or equivocal exposure (Fig. 2).  Most species in our study clearly have 
low exposure to energy development, even in the face of large distribution uncertainty, and thus 
are not urgent candidates for energy-related research or conservation.  Species with large 
exposure values in combination with relatively low uncertainty in the exposure estimate (e.g., 
Great Plains toad, pygmy rabbit, Wyoming pocket gopher, greater sage-grouse) fall into the high 
exposure category and are logical targets of immediate conservation attention and/or intensive 
research to quantify and mechanistically understand local impacts that could translate into 
population-level effects (e.g., Walker et al. 2007, Arnett et al. 2008, Gilbert and Chalfoun 2011).  
Finally, species with sufficiently large uncertainties relative to exposure could be considered 
equivocal, because there is a distinct concern that the exposure estimate hinges upon our inability 
to accurately map their distribution (e.g., black-footed ferret).  Next steps for these equivocal 
exposure species would logically involve resolving distributional uncertainties through additional 
field survey efforts before conducting more rigorous studies of local impacts.  However, in these 
cases it must be recognized that, if the present level of exposure is already of a magnitude that 
declines have occurred, future distribution mapping efforts could be confounded by those 
declines. 

Rapid expansion of anthropogenic development is a global concern, but impacts to wildlife are 
initially felt at local and regional levels, and it is at these geographic scales where management is 
typically implemented.  Precautionary wildlife management suggests that we use available, 
though sometimes imperfect, information to prioritize conservation efforts so we can minimize 
the potential for costly, reactionary responses once impacts have reached obviously critical levels.  
Formal, quantitative exposure analysis, which we demonstrate here, can facilitate proactive 
conservation planning for the many understudied species for which wildlife managers are 
responsible.  It is important to stress, however, that we do not suggest basing long-term policies 
solely on this analysis.  Rather results from quantitative exposure analysis serve to better inform 
conservation prioritization schemes and impact assessments.  Once exposure analysis has helped 
reduced the list of species of greatest concern to a manageable level, the logical next step is to 
identify areas for immediate protection while conducting targeted research to understand the 
biological vulnerability of individual taxa, reduce uncertainties, and inform the design of 
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appropriate long-term conservation strategies. While our work has focused on energy 
development in Wyoming habitats, the approach we outlined could be easily employed to gauge 
threat exposure in other settings. In particular, while we have focused on energy development, 
spatial development models for agriculture, forest loss, or urban expansion could similarly be 
used to predict exposure to other threats, and thus to better inform how scarce conservation 
resources should be best used. 
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APPENDIX A.  DETAILED PRESENTATION OF MATERIALS, 
METHODS AND SPECIES SENSITIVITY 

ENERGY DEVELOPMENT MODELS 

We mapped current and potential energy development in Wyoming.  Current development was 
obtained from the Wyoming Oil and Gas Conservation Commission (WOGCC 2010) and the U. S. 
Geological Survey (O'Donnell and Fancher 2010)   Potential development was based on available, 
detailed industry projections, which we mapped through a two-step process wherein we first 
created models of resource potential based on current information and adjusted the output of 
these models based on near-term, site-specific development indicators.  These near-term 
indicators of development where not related to resource potential, but rather influenced the 
probability and/or rate at which areas identified as having resources would be developed.  The 
final maps of energy development potential were expressed as continuous raster datasets 
covering all of Wyoming at a cell size of 1-km2.  Cell values in these maps ranged from 0 (no 
potential for energy development in the next 20 years) to 1 (nearly certain development in the 
next 20 years).  These maps were used to generate energy buildout scenarios wherein 
infrastructure was placed on the landscape according to published trend assessments, as 
discussed below.   

ANALYTICAL APPROACH AND DATA SOURCES: OIL AND GAS.   

To estimate spatially-explicit oil and gas resource potential across Wyoming, we refined a 
previously published forecast for the Intermountain West (Copeland et al. 2009b) by using more 
detailed maps of producing and non-producing oil and gas wells as our binary response variable 
(WOGCC 2010) and higher resolution data on bedrock geology and distance from geologic faults 
for predictor variables (Love et al. 2010).  In total, nine topographic, geological and geophysical 
variables were used to predict development.  These variables and sources were: aeromagnetic, 
gravimetric, isostatic gravity and Bouguer gravity anomalies (Phillips et al. 1993), detailed 
bedrock geology and Euclidean distance from geologic faults from the Wyoming State Geological 
Survey (Reed and Bush 2007, Love et al. 2010), 30 meter elevation data downloaded from the 
USGS National Atlas (http://nationalatlas.gov), generalized geologic data for the Coterminous 
United States downloaded from the National Atlas (http://nationalatlas.gov) and bedrock depth 
(Copeland et al. 2009a).  Model-fitting was based on the nonparametric Random Forests method, 
which uses an iterative bootstrap with replacement (64% of data per bootstrap replicate) to 
construct an ensemble of ‘‘weak learners’’ (Classfication and Regression Trees (CARTs) based on 
random subsamples of the data).  Thus, we made predictions through a majority vote across the 
ensemble, rather than the rule-set of a traditional CART model, resulting in both binary and 
continuous, probabilistic outputs. The derivation of a probabilistic output from a classification-
based model was introduced by Evans and Cushman (Evans and Cushman 2009) as an extension 
of the original Breiman (Breiman 2001) algorithm. We used a further modified version of the 
Random Forests model allowing for bootstrapping subsets within the model, thus improving 
model fit (Evans and Cushman 2009).  The final oil and gas potential model assigned each 1-km2 
grid cell in Wyoming a potential score ranging from 0 (no development) to 1 (certain 
development).   

http://nationalatlas.gov/
http://nationalatlas.gov/
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Output from the predictive model was adjusted to reflect factors preventing near-term 
development, primarily legal constraints, by setting the probability of cells where such 
restrictions occur to zero. Areas with a score of zero included BLM lands designated as “no surface 
occupancy”, withdrawals (formal lands actions that set aside, withhold, or reserve federal land by 
statute or administrative order for public purposes), Wilderness Study Areas, Nature Conservancy 
Preserves, US Fish and Wildlife Service Refuges, and Wyoming Game & Fish Habitat Management 
Areas.  Seasonal and timing stipulations (e.g., limiting surface activity in ungulate wintering 
grounds during the winter months) were not included, because these data are not consistently 
available across Wyoming and it is unclear how much development is actually restricted by them. 

We created a buildout scenario of the Wyoming landscape by placing oil and gas wells according 
to the energy potential model described above.  Wells were placed sequentially, beginning in 
areas with high potential values and minimum restrictions and continuing until projected levels of 
development were reached.  The number of wells placed on the landscape was drawn from 20-
year reasonable and Foreseeable Development Scenarios (RFDS) developed for the resource 
management plans of each Wyoming BLM field office (Stilwell and Crockett 2004, Braun 2006, 
Stilwell and Crockett 2006, Stilwell and Chase 2007).  RFDS reports are based on best-available 
data on petroleum deposits, extraction technologies and energy markets, and have historically 
been conservative estimates of future development.  There are currently over 40,000 active oil 
and gas wells in Wyoming, and RFDS reports suggest an increase of roughly 130% by 2030.  RFDS 
reports do not explicitly project annual development rates, which will vary due to short-term 
market fluctuations, so we assumed a linearly increasing function over the length of our study.  In 
specific locations, wells were placed up to densities allowed by current stipulations with existing 
wells included in all density calculations. 

ANALYTICAL APPROACH AND DATA SOURCES: WIND POWER.   

To estimate wind-power potential across Wyoming, we used wind turbine locations as a response 
variable (O'Donnell and Fancher 2010) to fit a predictive model using maximum entropy methods 
(Phillips et al. 2006, Phillips and Dudik 2008), implemented with Maxent® software version 3.3.3e 
(http://www.cs.princeton.edu /schapire/maxent/).  We used Maxent® because our response 
variable consisted solely of presence data (i.e., locations of active wind turbines), and Maxent® has 
consistently been shown to be accurate and robust when using presence-only records, 
particularly with small sample sizes (Hernandez et al. 2006, Phillips and Dudik 2008, Wisz et al. 
2008b, Franklin 2009).  Predictor variables included the average wind resource potential at 50-m 
height (National Renewable Energy Laboratory 2008), percent slope derived from the National 
Elevation Dataset (Gesch et al. 2009), and topographic position using a 150-cell neighborhood 
(Majka et al. 2007).  We assigned a value of zero to cells with output values occurring below the 
logistic threshold of 0.314, chosen to maximize training sensitivity plus specificity, and rescaled 
remaining values to range from 0 to 1. 

The wind-power potential estimated with Maxent® represented the quality of wind resources 
across the state, but did not indicate where these widespread resources would have the highest 
likelihood of development. Therefore, we created an adjusted model using development 
indicators that reflect where development is most likely to occur. These short-term development 
indicators included density of existing meteorological towers (WGFD 2010a), distance to 
proposed electrical transmission lines with a capacity of at least 230 kV (Ventyx Energy 2010), 
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proposed wind farm boundaries (Wyoming Department of Environmental Quality 2011), current 
land tenure (Bureau of Land Management 2005), and legal and operational constraints.  
Adjustments to the base wind potential model for each of these factors were handled sequentially 
as follows: 

1. Wind farms that have already been proposed are highly likely to be developed in the near 
term, so locations within proposed boundaries were adjusted to increase the modeled 
value.  Specifically, areas within proposed farms in Sweetwater and Unita Counties, which 
have already entered planning stages, were assigned a value of 2, and areas within all 
other proposed farms were assigned a value of 1.  The resulting surface was then rescaled 
to range from 0-1. 

2. Meteorological towers represent locations where developers are currently evaluating 
wind resources on the ground and indicate site-specific interest in development.  Further, 
near-term development is more likely to be located near new transmission lines since 
existing lines are currently at capacity.  We calculated the kernel density of meteorological 
towers using a 15-k search radius and the natural logarithm of distance to proposed 
electrical transmission lines and then scaled both surfaces from 0 to 1.  These surfaces 
were added to the previously adjusted wind resource raster and the resulting raster was 
rescaled from 0 to 1. 

3. Most current development has occurred on privately-owned and state trust lands, largely 
because they have fewer permitting restrictions than other, predominantly federally-
owned, lands.  We assigned each ownership category an adjustment factor from 0 (no 
development allowed) to 1 (no development restrictions) and applied the values as a 
multiplier to the previously-adjusted wind resource raster.  Privately-owned lands were 
assigned an adjustment factor of 1, state lands a factor of 0.8 and federal lands a factor of 
0.5.  Following this adjustment, the resulting raster was rescaled to range from 0 to 1. 

4. The final adjustment was to assign a value of zero to all areas where development was 
precluded by legal or operational constraints.  Legal constraints that preclude 
development included wilderness areas, wildlife refuges, conservation easements, lands 
managed by the Bureau of Land Management that have “No Surface Occupancy” 
stipulations (Pocewicz et al. 2009), land within airport runway air space, (Federal Aviation 
Administration 2010), and urban areas (Wyoming Department of Revenue 2011).  
Operational constraints precluding development included mountainous areas above 2743-
m, open water, and potential raster cells falling within clusters of less than 5 cells, since 
commercial wind-power development in Wyoming generally occurs as extensive farms 
rather than small, isolated patches. 

After all adjustments were made, we took the square root of the resulting raster to normalize the 
data distribution and spatially smoothed it to match the resolution of oil and gas potential model, 
which was developed using 1-km2 cells.  The smoothing function was a simple average that 
calculated the arithmetic mean value of all 100-m cells within each 1-km2 block.  Thus, the final 
wind potential surface assigned each 1-km2 grid cell in Wyoming a potential score ranging from 0 
(no potential for wind-power development) to 1 (certain wind-power development). 
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We created a buildout scenario for wind-power development by placing turbines across the 
Wyoming landscape according to the wind development potential model described above.  The 
magnitude of the buildout was based on existing projections that Wyoming can expect an 
additional 11.42 GW of installed capacity in the next 20 years (USDOE 2008), resulting in 4569 
new turbines, assuming 2.5 MW per turbine, which is the current industry standard for Wyoming.  
Turbines were placed on the landscape by randomly selecting a raster cell from the set of cells 
with the highest wind development potential and randomly placing an initial turbine in the 
northern half of that cell. Additional turbines were successively placed 300 m south of the initial 
turbine until the cell boundary or limit of 3 turbines per 1-km cell was reached. This placement 
reflects the current, typical distance between 2.5-MW turbines and simulates the tendency for 
wind-farms in Wyoming to be oriented along north-south ridges to optimally capture prevailing 
westerly winds.  To further reflect the fact that wind turbines generally cluster into farms 
extending over several sections (to take advantage of common infrastructure such as high-
capacity transmission lines), we marginally increased the wind potential of the cells immediately 
north and south of a development by adding an adjustment factor (0.05) that best approximated 
typical wind farm size.  Typical size was based on 17 wind facilities completed in Wyoming since 
2008 that have turbines of similar size to those being projected; 75% of these facilities had 
between 15 and 66 turbines, with a median of 38 turbines. As for the oil and gas projections, we 
assumed the number of new wind turbines to increase linearly over the length of our study. 

ENERGY MODEL VALIDATION 

We validated the Random Forests model of oil and natural gas development using out-of-bag 
(OOB) testing techniques to produce standard error statistics including ROC AUC (Hanley and 
McNeil 1982b), Cohen’s kappa (Cohen 1960), OOB error and overall classification success.  AUC 
was 0.83, Cohen’s kappa was 0.62, OOB error was 22.4%, and overall classification success was 
82.5%.  Additionally, we used the Boyce Index (Boyce et al. 2002, Hirzel et al. 2006, Petitpierre et 
al. 2012) to test the model against producing wells constructed in Wyoming since we generated 
the model (N = 6,240), which indicated a highly discriminative model (Boyce Index = 0.99; P < 
0.001).  Finally, we ran additional statistics on the error distribution, and found that the median 
absolute deviation (MAD) from the median error variance, where errors converge in the model, 
was small (0.004).  Thus, all validation statistics indicated a stable and acceptable model of oil and 
gas development. 

We validated the primary maximum entropy model of wind-power development using ROC AUC 
(Hanley and McNeil 1982b) and the Boyce Index (Boyce et al. 2002, Hirzel et al. 2006, Petitpierre 
et al. 2012), using 67% of the data to train the model (643 turbines in 32 wind farms) and 33% to 
test the model (319 turbines in 8 wind farms).  To account for the fact that turbines within wind 
farms are not independent, we include all turbines within individual wind farms as either training 
or test data (Veloz 2009).  Given the narrow temporal span of wind-power development, we used 
data from all available years to build the primary model, rather than using the most recent years 
for validation.  However, to further assess the modeling approach, we fit a hind-casting model 
where turbines from wind farms constructed prior to and including 2008 were used as training 
data (502 turbines, 17 farms) and turbines from wind farms constructed post-2008 were used as 
test data (460 turbines, 11 farms).  The hind-casting model had test AUC of 0.86 and a Boyce Index 
of 0.85 (P = 0.002), while the primary model had test AUC of 0.91 and a Boyce Index of 0.89 (P < 
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0.001).  Thus, as with oil and gas development, all validation statistics indicated a stable and 
acceptable model. 

SPECIES DISTRIBUTION MODELS 

DATA SOURCES 

We compiled occurrence records for all of Wyoming’s terrestrial vertebrate SGCN (WGFD 2005, 
2010b), resulting in a dataset of roughly 270,000 records of 156 species.  Records were compiled 
between 2007 and 2010 from a variety of sources.  Major sources included the Biotics database of 
the Wyoming Natural Diversity Database (http://uwadmnweb.uwyo.edu/wyndd/), the Wildlife 
Observation System (WOS) of the Wyoming Game and Fish Department (see WGFD 2005), the 
North American Breeding Bird Survey (http://www.pwrc.usgs.gov/bbs/), the Integrated 
Monitoring in Bird Conservation Regions program 
(http://www.rmbo.org/v3/OurWork/Science/-BirdPopulationMonitoring/ 
IntegratedMonitoringinBCRsIMBCR.aspx), specimen records from museums across the country 
(notably the National Museum of Natural History, University of Kansas Natural History Museum, 
and the University of Michigan Museum of Zoology), and unpublished data sets from local 
biologists. 

Individual occurrences varied greatly in their quality, and were not of equal value for constructing 
distribution models.  To minimize model uncertainty due to occurrence data quality, we scored 
each record for three key criteria (date of occurrence, accuracy of location, and veracity of 
identification) and added these to compute an occurrence quality score for each record (Table 
A1).  High-quality occurrences (i.e., those that were recent, accurately located and positively 
identified) could achieve a maximum score of 12, while poor-quality occurrences (i.e., those that 
were old, poorly located, and with little documentation) received a minimum score of 0.  These 
scores were used to filter data prior to distribution modeling and to assess the overall quality of 
the available data for each model. 

Environmental data used in modeling was drawn from a set of 73 variables falling within five 
major categories: climate, hydrology, land cover, substrate and terrain.  In addition, some species-
specific variables (e.g., distance to permanent snowfields, distance to cliffs) were used as 
appropriate.  Detailed information regarding all variables is available online (Keinath et al. 2010), 
while the major variables are briefly discussed below. 

Climate variables were generated by applying the BIOCLIM algorithms (Nix 1986) to DAYMET 
climate data (Thornton et al. 1997, Thornton and Running 1999, Thornton et al. 2000).  This was 
done by running ARC/INFO AMLs, written by Robert Hijmans (available at http://worldclim.org) 
on 18-year DAYMET averages (available at http://www.daymet.org/ climateSummary.jsp).  
Hydrology layers were derived from the National Hydrography Dataset (Simley and Carswell 
2009), and comprised metrics representing proximity to water features (e.g., lakes, reservoirs, 
streams) and degrees of permanence (i.e., ephemeral, intermittent, or perennial).   

General land cover variables used in modeling included forest, shrub, herbaceous, and bare 
ground cover data from the LANDFIRE dataset (Rollins and Frame 2006).  Many of the specific 
vegetation indices that influence individual species’ distributions (e.g., percent conifer forest 

http://uwadmnweb.uwyo.edu/wyndd/
http://www.pwrc.usgs.gov/bbs/
http://www.rmbo.org/v3/OurWork/Science/-BirdPopulationMonitoring/%20IntegratedMonitoringinBCRsIMBCR.aspx
http://www.rmbo.org/v3/OurWork/Science/-BirdPopulationMonitoring/%20IntegratedMonitoringinBCRsIMBCR.aspx
http://worldclim.org/
http://www.daymet.org/%20climateSummary.jsp
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cover, percent deciduous forest cover) were not available in any one dataset, requiring the 
production of synthetic variables that typically incorporated values from LANDFIRE data (Rollins 
and Frame 2006), GAP Land Cover (Comer et al. 2003, National Gap Analysis Program 2010), 
and/or the USGS Sagebrush dataset (Homer et al. 2012).  We created these synthetic indices by 
first assigning each GAP ecological system a score relative to the desired feature (e.g., dominance 
of conifer trees in each ecological system) and combining that score with the LANDFIRE estimate 
of canopy cover to come up with an index for each category that ranged from 0 (e.g., low canopy 
cover in a system that has a very small conifer component) to 1 (complete canopy cover in an 
ecological system dominated by conifers).  Landscape pattern of land cover was assessed by 
computing contagion using Fragstats (O'Neill et al. 1988, Turner 1989, Li and Reynolds 1993, 
McGarigal and Marks 1994) based on a 4-category landscape classification (barren/developed, 
herbaceous, shrub-dominated, tree-dominated).   

Common substrate variables (e.g., soil texture, depth to shallowest restrictive layer) were derived 
from STATSGO data as expressed in the Natural Resource Conservation Service's Soil Data Viewer 
5.1 (Natural Resource Conservation Service 2006).  Terrain variables (e.g., elevation, slope, 
ruggedness) were derived from the National Elevation Dataset (Gesch et al. 2009) using 
previously published algorithms (Beers et al. 1966, Gessler et al. 1995, Jenness 2006, Sappington 
et al. 2007).   

ANALYTICAL APPROACH 

We created species distribution models using documented occurrences of Wyoming’s Species of 
Greatest Conservation Need (SGCN) as the response variable and statewide environmental layers 
as predictor variables.  Models were generated using a maximum entropy approach, as it has 
consistently shown to be among the most accurate and robust algorithms for constructing 
distribution models from opportunistically collected data, particularly when sample sizes are 
small and processes driving distribution are complex (Graham and Elith 2005, Elith et al. 2006, 
Hernandez et al. 2006, Hijmans and Graham 2006, Phillips and Dudik 2008, Wisz et al. 2008a).  
We used Maxent® (Phillips 2009) to implement the maximum entropy algorithm and ArcGIS® 
(ESRI 2011) to spatially project distribution maps onto the Wyoming landscape.  For each species, 
a set of 5-7 predictor variables was selected to construct the distribution model based on 
knowledge of the species biology and evaluation of variable importance measures from 
exploratory models using all relevant variables.   

To avoid biases associated with opportunistically gathered data (Jimenez-Valverde and Lobo 
2006, Graham et al. 2008, Johnson and Gillingham 2008, Veloz 2009), we used target-group 
background data (i.e., background data selected from the entire sample set rather than randomly-
generated pseudo-absences) for model building (Phillips et al. 2009) and employed a randomized, 
multi-pass filter to construct model sets that minimized spatial bias while maximizing the quality 
of occurrences in the final model set.  To implement this filtering procedure, we first thinned 
dense clusters of occurrences resulting from oversampling by removing those occurrences with 
lower point quality scores that were within 1,600 meters of other, higher-quality occurrences.  
Where equal quality occurrences occurred within 1,600 meters, we randomly selected which 
occurrence to remove.  We constructed a final model set by drawing from the remaining 
occurrences with geographic stratification based on 12-digit hydrologic units.  This was 
accomplished by selecting the highest quality point from each occupied hydrologic unit, then 
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adding the next-highest quality occurrence from each hydrologic unit to our selection and 
repeating this until additional occurrences were selected from less than 20% of the previously 
selected hydrologic units.  This guarded against model bias by preventing occurrences from 
clustering in a small subset of the species’ range.  In other words, it helped assure an even 
distribution of occurrences across the modeled area, even when sampling was not evenly 
distributed.  We created distribution models for all species with final model sets of 5 or more 
documented occurrence locations, since MaxEnt® has been shown to generate reasonable 
distribution models with occurrence sets of this size (Hernandez et al. 2006), though these models 
were penalized heavily when assessing model uncertainty (see Uncertainty Assessment below), to 
acknowledge the possibility that sampling biases are likely with such low sample sizes. 

It should be noted that there has been a recent criticism pointing out that modelers have over-
reached in their interpretation when using algorithms like Maxent® and that other estimators are 
preferable when assumptions of detection probability are constant, sampling of space is truly 
random and ecological inference is a primary goal (Royle et al. 2012).  This concern does not 
apply to this study, as our cross-taxonomic data are opportunistic in nature, we are primarily 
interested in spatial accuracy of prediction rather than ecological interpretation, and our 
application does not interpret results as truly probabilistic in nature.  Further, our use of the 
Boyce index (Boyce et al. 2002) to evaluate model quality implicitly tests model output relative to 
the key characteristic underlying this criticism; namely it insures that higher model values are 
indeed indicative of greater likelihood of species presence.  Under the real-world situations of this 
study, Maxent® has repeatedly been shown to produce robust predictions that are useful when 
applied with appropriate attention to caveats, as we have done here. 

SPECIES MODEL VALIDATION 

Model performance was evaluated using several metrics, including the area under the receiver 
operating characteristic curve based on withheld test data (ROC AUC; Hanley and McNeil 1982a, 
Liu et al. 2005), predictive success based on 10-fold cross-validation, expert review, and the Boyce 
index (Boyce et al. 2002, Hirzel et al. 2006, Petitpierre et al. 2012).  The latter measures how 
model predictions differ from random across the prediction gradient and is thus particularly 
useful for presence-only data.  For each species, we calculated the quantitative evaluation metrics 
for each of the cross validation models.   

Distribution models varied widely in quality (Table C2), with poor models typically resulting from 
lack of suitable species occurrence data (i.e., small sample sizes) and/or lack of appropriate 
statewide predictor variables.  Improvement of these models requires precisely the large-scale 
biological field effort that prohibits effective management and makes this study necessary, as 
discussed in the main article and the above section discussing the scope of this research.  It is 
valuable for management to see the best available estimate of exposure for all species, clearly 
presented with model qualities that can be used to assess confidence in species-specific results 
and identify where those results could most benefit from improving understanding of species 
distribution.  We have thus incorporated validation statistics into an overall assessment of 
uncertainty (see below). 
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CALCULATING EXPOSURE 

EXPOSURE INDEX 

We used the development build-out scenarios (described above) to generate energy footprints for 
Wyoming, wherein maximal disturbance occurs at well and turbine sites and decays to a 
negligible amount with increasing distance.  Changes in the population abundance and density of 
wildlife have regularly been found at and beyond 1 kilometer from human infrastructure, with 
some extending out to 5 kilometers (Benitez-Lopez et al. 2010), although individual studies have 
shown shorter and longer distances (e.g., Nellemann and Cameron 1996, Ingelfinger and 
Anderson 2004, Bayne et al. 2008).  Additionally, impact distance functions for terrestrial 
vertebrates seem to approximately follow logarithmic decay (Madsen 1985, Benitez-Lopez et al. 
2010).  Therefore, we chose 1 kilometer as a conservative impact distance and created an 
exposure function that logarithmically decayed to 1% of maximal exposure at that distance 
(Equation A1), where EVdi is the un-weighted exposure value of cell i relative to disturbance d, Di 

is the distance of cell i to the nearest well pad or wind turbine, and a and b are constants defining 
a logarithmic decay curve that decays from 1.0 to 0.01 at a defined distance (in our case 1 
kilometer; a = -4.564348 and b = 0.009169935). Alternative decay functions where considered, as 
discussed below. 

We applied this impact decay function to well and turbine locations in our build-out maps, 
resulting in two continuous, statewide surfaces (one for oil and gas and one for wind power) that 
had values ranging from 0 (negligible exposure far from the nearest well or turbine) to 1 
(complete exposure under a well pad or turbine).   

 ibDa
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1

 

(Equation A1) 

To evaluate cumulative exposure for each of the 156 species in our study, we first re-scaled each 
species distribution model to sum to one over the entire state, then multiplied it by each exposure 
surface and summed the resulting raster across the study area (Equation A2), where DMsi is the 
value of the distribution model for species s in cell i, and subscripts og and w represent values for 
oil/gas and wind development, respectively.  This yielded the weighted average proportion of 
each species’ habitat exposed to development, which we have termed the Exposure Index (EI).  EI 
ranges from a lower limit of zero, representing complete separation of a species habitat from 
energy development, to a theoretical upper limit of one for complete development of all available 
habitat.  In practice, over large landscapes the upper limit will never be reached, since it would 
mean that every available pixel of habitat, however marginal, falls near a well pad or wind turbine.  
Exposure levels can be conceptualized by considering the density of wells or turbines needed to 
reach specific EI values in an idealized, uniform landscape where all habitat is equal (Figure B1). 
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It is worth noting that species will likely exhibit differential sensitivities to development, so decay 
curves of different radii may be appropriate for different taxa.  However, it is precisely this type of 
detailed response information that is lacking and thus makes the present analysis useful.  Since 
any taxa-specific adjustments would largely be speculative, it makes more sense to evaluate all 
species equally (as shown above) and initiate targeted studies of species thereby identified as 
highly exposed in order to quantify sensitivity to specific disturbance, thus providing information 
necessary to modify the impact function.  None-the-less, to evaluate the effect of changing the 
width of the exposure function we also conducted analyses using narrow (200 meter) and wide (5 
kilometer) effect distances, chosen to represent a reasonable range derived from the literature 
(Benitez-Lopez et al. 2010).  Analyses using all three exposure functions resulted in similar 
rankings (Spearman rank correlation: rs ≥ 0.963 and P < 0.001 for all tests), and although there 
were some relative rank shifts among species (Fig. S7), they did not alter any of the main 
conclusions presented in this study.  Moreover, rank shifts did not generally move species 
between categories of concern; species that ranked high using the 1 kilometer effect distance also 
ranked high using the others.  For example, the 10 most highly exposed species remained largely 
the same with all effect distances.  The robustness of our analyses to these different effect 
distances is partially due to the large-scale clumping of energy resources (Figure B3), while the 
spacing of individual disturbance events (e.g., well pads and wind turbines) are typically highly 
regular within these clumps at scales on the order of roughly 0.5-2 kilometers (Figure B1), 
resulting in relatively little effect on ranks from altering impact distances. 

Relative shifts within the highly-exposed group did, however, present additional reasons to be 
concerned for some species.  For example, Pygmy Rabbit (the 4th most exposed species in the main 
analysis) was the most exposed species when we used the narrow exposure curve, while Black 
Footed Ferret (the 6th most exposed species in the main analysis) was the second most-exposed 
species when we used the wider exposure curve.  Wyoming Pocket Gopher (the 5th most exposed 
species in the main analysis) ranked more highly when either the narrow or wide curve was used. 

UNCERTAINTY ASSESSMENT 

Map-based analyses are often misleading, in part because they appear to be (and are sometimes 
presented as) definitive, error-free projections of reality, despite the fact that uncertainty exists in 
the underlying data.  This does a disservice to decision makers.  However, presenting uncertainty 
in a form that allows incorporation into decision-making is difficult and therefore seldom done 
(Beale and Lennon 2012).  This is especially the case when projections are derived from highly 
complex models based on multi-faceted data, in which simple estimation of error structures are 
not possible. We explicitly addressed uncertainty from the two main components of our exposure 
analysis; species distributions and energy development maps.   
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SPECIES DISTRIBUTIONS 

There are a plethora of validation techniques for species distribution models, each with particular 
strengths and weaknesses, leading experts to suggest that multiple methods be used to assess any 
given model. Nonetheless, there is little guidance on how to synthesize information across such 
metrics (Franklin 2009, Carvalho et al. 2011).  On the whole, models that validate well using 
multiple metrics are more robust, and therefore have less uncertainty.  To assess uncertainty in 
our distribution models, we therefore derived an uncertainty index (UI) that placed several well-
supported validation statistics on a 0 to 1 scale and combined them using a simple weighted 
average (Equation A 3),  

𝑈𝐼 =
(

𝑁𝑆 + 𝑂𝑄𝑆
2

) ∗ 0.75 + (
𝐴𝑈𝐶𝑆 + 𝑂𝑅 + 𝐸𝑅𝑆 + 𝐵𝐼𝑆

4
) + 𝐸𝐶

2.75
 Equation A 3 

where the individual statistics are as follows: 

 NS (Number of occurrences Score):  More occurrences, or a larger sample size, lead to 
more robust models and thus reduce uncertainty.  NS values of 0 reflect species 
with more than 100 occurrences; NS values of 0.25 reflect species with between 
50 and 100 occurrences; NS values of 0.5 reflect species with between 20 and 
50 occurrences; and NS values of 1.0 reflect species with less than 20 
occurrences.  

 

 OQS (Occurrence Quality Score):  All occurrences were scored based on their quality, 
as noted in the text and Table A1.  These data were used to calculate average 
occurrence quality for the each model set.  The resulting values were rescaled 
to range from 1 (very poor quality dataset) to 0 (very high quality dataset). 

 

 AUCS (Area Under the Curve Score):  We calculated the ROC AUC for each cross 
validation model based on a holdout dataset (Bradley 1997, Fielding and Bell 
1997).  A value of 0.5 indicates model performance no better than chance, 
values below 0.5 indicate counter prediction, and values above 0.5 indicate 
increasingly strong classification to an upper limit of 1.  AUCS is simply one 
minus AUC, so values closer to 1 indicate a poorer model fit and thus a more 
uncertain model. 

 

 OR (Omission Rate):  OR is simply the average omission error based on holdout 
datasets (i.e., the proportion of test data miss-classified using the optimal 
binary threshold) for each cross validation model.  Omission rates closer to 1 
indicate higher uncertainty in a model. 

 

 ERS (Expert Review Score):  We scored the final model for each species using a 
simple categorical system reflecting how well local biologists felt it represented 
the species’ true distribution in Wyoming.  “High Quality” models were deemed 
to represent the species distribution well (ERS = 0).  “Medium Quality” models 
represented the species distribution fairly well, but with minor errors of 
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omission or commission (ERS = 0.5).  “Low Quality” models were deemed to be 
either questionable or beyond our ability to accurately assess (ERS = 1). 

 BIS (Boyce Index Score):  The Boyce index is essentially a spearman rank correlation 
coefficient (rs) that varies between -1 (counter prediction) and 1 (positive 
prediction), with values statistically close to zero indicating that the model does 
not differ from a random model (Boyce et al. 2002).  No model in this study had 
a negative Boyce Index.  The Boyce Index Score is simply 1 minus the Boyce 
index, so values closer to 1 indicate a poorer model fit and thus a more 
uncertain model. 

 

 EC (Exposure Change):  We calculated an Exposure Index for each cross validation 
model of each species, calculated the range of resulting values and divided the 
range by the minimum value.  The resulting fraction ranges from near zero 
(very little variation in Exposure Index) to numbers greater than 1 (range of the 
Exposure Index was more than 100% of the minimum value).  Values greater 
than 1 were given a value of 1. 

 

The first two components (number of occurrences and occurrence quality) were given slightly 
less weight than the others, because they are indirect measures of model quality.  A model 
constructed using a small or low-quality sample is likely to be more uncertain, but is not 
definitively poor.  It is nonetheless useful to incorporate them in addition to true validation 
statistics, because a model built on a small sample is more likely to be uncertain even if it validates 
well.  For instance, a small sample size could indicate under-sampling of the environment for the 
species in question, and additional survey effort could place the species in substantially different 
environments.  

ENERGY DEVELOPMENT 

For several reasons, we did not generate uncertainty indices for our energy development 
projections that would parallel those for our species distribution models.  Foremost among these 
is that model fit for both oil and gas and wind-power were very good based on all metrics, giving 
us high confidence that they are reasonable approximations of potential energy resources in 
Wyoming relative to the scale of analyses in this study, namely statewide calculations of species 
impacts.  Uncertainty is further reduced by our use of a two-step process (discussed above) where 
outputs from these models were adjusted to reflect known, near-term indicators of development 
(e.g., proximity to existing transmission infrastructure and surface exclusions such as wilderness 
area restrictions).  These adjustments increase our confidence in the near-term spatial accuracy of 
the final buildout scenarios and further insures that our projections of the spatial pattern of 
energy development will be robust in the near future (i.e., 10-20 years), with higher uncertainty 
over time horizons beyond the scope of this study. 

The most prominent sources of mid and long-term uncertainty are the advent of new technologies 
that allow development of resources not captured in currently developed sites and fluctuations in 
national and international energy markets.  There is no practical way to objectively assess the 
former, as it is extremely difficult to predict advancements in technology that will ultimately 
become economically viable for industrial-scale operations.  Regarding markets, the pace and 
magnitude of development was carefully assessed in the reports that we used to create both 
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buildout maps.  Moreover, given the consistently increasing demand for energy both globally and 
domestically, it is highly likely that most currently-identified petroleum resources will eventually 
be developed, and that wind-power will continue to be one of the most developed sources of 
renewable energy in the coming decades (Copeland et al. 2009a, EIA 2011a, b, 2012).  Since we 
have good models of where currently extractable resources exist and what near-term factors 
influence their development, the biggest uncertainty over the time frame of this study is not 
where development will occur, but how quickly it will cover areas of predicted potential. 

To evaluate how uncertainty in the rate and extent of currently feasible development on our 
estimates, we created unrestrained buildout scenarios for both energy models.  For oil and gas, 
the unrestrained scenario used the Random Forests binary classification (noted above) to place 
wells at the allowable density in every cell with anticipated petroleum potential, resulting in 
nearly triple the number of wells from the anticipated scenario (Figure B3).  For the wind-power 
unrestrained scenario, fewer development projections exist and it is not clear that all, or even 
most, potential areas will be eventually be developed.  Therefore, rather than completely develop 
the resource we doubled the number of new turbines relative to the anticipated scenario (i.e., 
9,138 turbines).  Using these unrestrained scenarios to calculate exposure did not substantially 
alter results, as demonstrated by comparing the resulting species ranks to those from the 
anticipated scenario.  As one would expect, the magnitude of exposures increased substantially 
(Figure B8) and resulted in some relative rank shifts among species (Figure B9), but these 
differences did not significantly alter the rankings (Spearman rank correlation: rs = 0.977, P < 
0.001) and thus did not alter any of the main conclusions presented in this study.  In general, 
those species deemed at risk when analyzing the anticipated scenario were also deemed at risk in 
the unrestrained scenario, though the level of concern for some species increases with more 
development (e.g., Great Basin Spadefoot is the 16th most exposed species in the anticipated 
scenario, but becomes the 5th most exposed species in the unrestrained scenario). 

Since large-scale, commercial development of the nation’s wind-power is relatively new, we view 
the spatial pattern of its near-term expansion as somewhat more uncertain than that for 
petroleum resources.  Fortunately, in the short-term wind power will undoubtedly have a much 
smaller footprint than that of oil and natural gas and as such will contribute much less to overall 
exposure for the vast majority of species (Figure B2).  The only species for which wind-power 
development has the potential to substantially impact species viability over the course of this 
study is Black-Footed Ferret, which is the sixth most exposed species in this study due largely to 
wind-power development concentrated in the Shirley Basin of central Wyoming.  We therefore 
assessed the variation in the exposure of Black-Footed Ferret caused by spatial uncertainty in 
wind-power buildout.  This was accomplished by creating 10 wind-power potential models from 
subsets of the full dataset and assessing exposures resulting from each.  This yielded a range of EI 
values from 0.169 to 0.177 (mean 0.172, standard deviation 0.002).  Comparing these values to 
the anticipated EI values of other species (Table C1), this level of variation could shift the rank of 
Black-footed Ferret between the 6th and 9th most exposed species, which does not alter 
conclusions for Black-footed Ferret and is thus not expected to substantially change conclusions 
for other species in this study. 
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SPECIES SENSITIVITY 

Much academic effort has been spent investigating the role of species-specific biological 
sensitivity to disturbance as a contributing factor to species decline, endangerment and 
extinction.  Many studies have conducted global-scale assessments of particular taxonomic groups 
using surrogates of species endangerment (e.g., IUCN Red List scores) as a measure of sensitivity 
(e.g., Cardillo et al. 2005, Purvis et al. 2005, Davidson et al. 2009).  Many others evaluated 
sensitivities for small components of local biota under specific habitat degradation scenarios (e.g., 
Pimm et al. 1988, Laurance 1991, Rottenborn 1999).   The results of such studies are mixed and, 
moreover, must be interpreted within the scope of the individual analyses, making broad 
generalizations or application to other environments, such as assessing conservation priorities for 
a unique local fauna, difficult.   

Despite these problems, a few broad themes emerge from this collection of literature that can 
provide hints regarding whether a given species might be more or less sensitive to disturbance 
than those co-occurring in a given landscape.  In particular, species having one or more of the 
following traits may be particularly susceptible to disturbance.  There are many other, often 
highly specific, traits that have been investigated, but this represents a concise accounting of those 
that are most broadly applicable across taxa.  Each trait is presented with a selected set of 
pertinent references: 

1. high degree specialization in one or more aspects of ecology, such as habitat use or diet 
(Wang et al. , Laurance 1991, Newmark 1991, Foufopoulos and Ives 1999, Manne et al. 
1999, Rottenborn 1999, Owens and Bennett 2000, Purvis et al. 2000, Sekercioglu et al. 
2002, Fisher et al. 2003, Blumstein 2006, Prugh et al. 2008), 

2. low reproductive capacity (Newmark 1995, Owens and Bennett 2000, Purvis et al. 2000, 
Polishchuk 2002), 

3. highly restricted geographic range or distribution (Gaston and Blackburn 1995, Manne et 
al. 1999, Mace and Balmford 2000, Brashares 2003, Fisher et al. 2003, Jones et al. 2003, 
Cardillo et al. 2005, Davidson et al. 2009), 

4. large area requirements, or low intrinsic population densities (Wang et al. , Pimm et al. 
1988, Newmark 1991, Tracy and George 1992, Harcourt 1998, Purvis et al. 2000, OGrady 
et al. 2004), 

5. larger body size within an otherwise similar taxonomic group, usually as a surrogate for 
other traits such as reproductive capacity, population density or dispersal ability (Pimm et 
al. 1988, Robinson et al. 1992, Gaston and Blackburn 1995, Purvis et al. 2000, Cardillo and 
Bromham 2001, Johnson et al. 2002, Fisher et al. 2003, Cardillo et al. 2005, Okie and 
Brown 2009).  
 

It stands to reason that taxa that are highly exposed to development will be more likely to be 
adversely impacted if they exhibit one or more of these traits.  This is true of several species we 
identified as being highly exposed in our analysis. It is therefore likely that the level of exposure 
identified could result in population declines for any of these species.  As such, managers should 
be concerned regarding the population viability of these species within energy developments in 
our study area.  Brief notes regarding the sensitivities for species mentioned in the main article 
follow.  
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Great Plains Toad (Anaxyrus cognatus):  Almost no research has investigated the biological 
sensitivity of A. cognatus, so no literature is available that directly assesses the issue.  
However, amphibians are widely recognized as sensitive to environmental perturbations, 
particularly water quality, due to a restrictive life history that ties them to both aquatic 
and terrestrial habitats at different life stages and limits their dispersal capabilities.  This 
has led to their being considered indicators of ecosystem health (e.g., Welsh and Ollivier 
1998), though their effectiveness as sentinel species is debated (Kerby et al. 2010).  
Considering the case presented in this study, exposure is largely due to coal bed natural 
gas development, a primary concern of which is the degradation of surface water quality 
(Ganjegunte et al. 2005, Jackson and Reddy 2007, Orem et al. 2007).  Regarding A. 
cognatus in general, some have suggested populations have become more scattered and 
isolated compared to historical conditions, suggesting range-wide sensitivity, but this not 
conclusive due to lack of consistent surveys (Lannoo 2005). 

Pygmy Rabbit (Brachylagus idahoensis):  Pygmy rabbit has very specific habitat requirements, 
being restricted to one structural stage of one vegetation type; tall stands of sagebrush 
(Artemesia tridentata) (Heady and Laundré 2005, Burak 2006, Larrucea 2007).  
Modification of habitat has resulted in the extirpation of the species from other parts of its 
range, leading to listing of one subspecies as Endangered under the U. S. Endangered 
Species Act (USFWS 2003, Siegel Thines et al. 2004) and a failed petition to list the rest of 
the species (USFWS 2010c).  Preliminary data from surveys in Wyoming’s Green River 
Basin suggest pygmy rabbit density may be negatively correlated with the density of 
natural gas wells on the landscape (Germaine and Ignizio 2012). In addition, future habitat 
shifts from climate change could exacerbate the impact of local disturbances (Larrucea 
and Brussard 2008).  Moreover, disturbance of sagebrush ecosystems has been extensive 
over the past several decades leading to concern over the conservation status of 
sagebrush obligate species in the face of additional habitat changes  (Knick and 
Rotenberry 2000, Knick et al. 2003, Dobkin and Sauder 2004, Welch 2005). 

Wyoming Pocket Gopher (Thomomys clusius):  Wyoming Pocket Gopher has an extremely 
narrow geographic range, with its entire global distribution restricted to portions of two 
counties in central Wyoming (Keinath and Beauvais 2006).  Within this area, it is further 
restricted to a narrow range of habitats, primarily saline basins characterized by 
Gardner’s saltbush, to which it may be limited through competition with the much more 
common northern pocket gopher (Thomomys talpoides) (Keinath et al. In Review).  Though 
demographics and population densities are largely unknown, it appears to occur in 
disjunct patches and very low densities across its range, and it is absent from many 
locations where it was previously known to occur (Griscom et al. 2010).  In combination 
with extensive oil and natural gas development across its limited range, these concerns led 
to a petition to list Wyoming pocket gopher under the U.S. Endangered Species Act, though 
it was denied listing due primarily a general lack of information on the species (USFWS 
2010a). 

Black-Footed Ferret (Mustela nigripes):  As one of the first federally recognized endangered 
species in the United States (USFWS 1967), extensive research has been conducted 
regarding the black-footed ferret that clearly distinguishes it as a species sensitive to 
disturbance.  None of this research pertains directly to energy development, primarily 
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because the ferret was functionally extinct before the advent of extensive energy 
development.  Black-Footed Ferret has highly restricted habitat use and diet 
specialization, only occurring in large colonies of prairie dogs that also represent its 
primary prey (Biggins et al. 2005).  The species has gone through near extirpation, where 
populations declined to such an extent that it caused a genetic bottleneck potentially 
limiting future fitness of the species (Wisely et al. 2002).  The original decline and 
difficulty with subsequent recovery is further due in part to the loss of prairie dog colonies 
resulting from extensive grassland conversion, poisoning, and disease. Additionally, both 
ferrets and prairie dogs are susceptible to sylvatic plague, which can result in large-scale 
population crashes that could push already stressed populations to near extinction 
(Barnes 1993).  Currently, the wild distribution of the Black-Footed Ferret is very limited, 
consisting of less than 20 reintroductions sites in the central Rocky Mountains, most of 
which are not considered viable and self-sustaining such that the global population is so 
limited that functional loss of any site would be detrimental to the species as a whole 
(Jachowski and Lockhart 2009). 

Greater Sage Grouse (Centrocercus urophasianus):  Sage Grouse is one of a few species that has 
undergone extensive research assessing impacts from energy development, and this has 
resulted in substantial evidence linking it to population declines (Naugle et al. 2011).  
Additionally, Sage Grouse is restricted to one habitat type; sagebrush. It can  be found in a 
fairly broad structural range of sagebrush stands, but a specific combination of factors are 
necessary for successful breeding and recruitment, including the use of leks for mating, 
which are limited in the environment. 
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A.  Spatial Precision of Occurrence Record 

Score Definition Example 

4 Location uncertainty ≤ 30 meters Location via GPS 

3 Location uncertainty > 30 meters and ≤ 100 m Location via 7.5’ quad map 

2 Location uncertainty > 100 meters and ≤ 300 ms Location via 100k quad map 

1 Location uncertainty > 300 meters and ≤ 600 m Location via large-scale map or 
detailed written directions 

0 Location uncertainty > 600 meters and < ~3,000 
m 

Location via landscape 
description (e.g., Rock Creek 5 
miles south of Laramie Peak). 

U Record is unusable; uncertainty > ~3,000 m Old museum specimen located 
only by reference to a county. 

B.  Age of Occurrence Record 

Score Calendar Year 
of Observation 

Definition 

4 ≥ 2000 Observation made within roughly 10 years of model creation 

3 1990 - 1999 Observation made within roughly 20 years of model creation 

2 1980 - 1989 Observation made within roughly 30 years of model creation 

1 1960 - 1979 Observation made within roughly 50 years of model creation 

0 ≤ 1959 Observation made within roughly 100 years of model creation 

U Historic Record is unusable, because the record is over 100 years old, the 
species is known to be extirpated from the area in question, or 
the habitat has changed drastically since its collection.   

C.  Taxonomic Certainty of Occurrence Record 

Score Category Definition 

4 Confirmed 
Identification 

Adequate information exists within the occurrence record to 
consider it a valid observation of the species in question 

2 Questionable 
Identification 

Information within the occurrence record is insufficient to 
confirm correct identification of the species (e.g., no supporting 
documentation or observer credentials), but neither is there any 
reason to assume that the record is in error. 

0 Possible Miss-
identification 

There is reason to believe that the observation could be 
erroneous (e.g., extra-limital observation by amateur biologists 
of species that are easily misidentified) 

U Misidentification Record is unusable.  Information in the occurrence record 
suggests it is misidentified 

 

  

Table A1. Occurrence quality scoring system used to evaluate records based on spatial precision 

(A), age of record (B), and taxonomic certainty of identification (C).  Unusable records were 

removed from the dataset. 
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APPENDIX B:  ADDITIONAL FIGURES PRESENTING EXPOSURE 
VALUES FOR ALL SPECIES, THE RESULTS OF SENSITIVITY 
ANALYSES, AND FOOTPRINT MAPS 

 

Figure B1.  Examples of Exposure Index (EI) values presented with equivalent densities of structures 

(wells or turbines), average inter-structure distances, and remotely sensed images of approximately 

equivalent areas of Wyoming’s landscape (B-F).  Approximate well locations shown as red dots.  

Equivalent well distances and densities were calculated assuming a 1-kilometer footprint and uniform 

well spacing across a landscape where all habitat is identical.  Locations of images are shown on a 

county map of Wyoming (A). 
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Figure B2.  Projected 2030 total Exposure Index (EI) for 156 Wyoming Species of Greatest 

Conservation Need (SGCN) examined in this study.  Ordinate shows individual species (codes provided 

in Table C1) ordered by their exposure rank using the 1-kilometer exposure curve. Grey portions of bars 

represent the proportion of EI due to wind-power development; white portions represent EI due to oil 

and gas development, error bars represent range in total estimated EI obtained by using all cross-

validation models. Panels A-D show different subsets of the 156 species analyzed. 
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Figure B3.  Energy footprint maps of Wyoming showing the 2030 predicted exposure surface for oil and 

gas wells and wind-power turbines under anticipated (A) and unrestrained (B) scenarios. Data are 

displayed over a shaded topographic relief map with county boundaries for reference. 
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Figure B4.  Distribution of exposure relative to modeled habitat for several Wyoming Species of 

Greatest Conservation Need (SGCN) with high Exposure Indices from energy development (Figure 1 

and Table A1).  Horizontal axis shows quantiles of habitat above a binary threshold maximizing test 

success, where the 100% quantile represents habitat most similar to sites of known occupation.  Vertical 

axis shows the proportion of habitat falling within 1 kilometer of an oil or natural gas well or wind-power 

turbine based on 2030 projections.  Colors reflect those in Figures 1 and 2 of the main article.  

Conservation action for species having exposure caused by intensive development in areas highly-

similar to occupied habitat (e.g., Pygmy Rabbit or Black-footed Ferret) will likely be different than for 

species where exposure is due to larger portions of their distribution overlapping less-intense 

development (e.g., Wyoming Pocket Gopher or Great Plains Toad).  In particular, the former might 

benefit greatly from site-specific conservation action (e.g., conservation easements or retirement of 

mineral rights) targeted toward core areas of distribution, similar to the approach taken for Sage Grouse.  

In contrast, the latter might require more broad-scale mitigation in the form of development stipulations 

(e.g., avoiding key habitat features wherever development occurs). 

Figure B5.  Map of Greater Sage Grouse ‘core areas’ (green shading) as defined by Wyoming 

Executive Order 2011-5.  Also displayed are the 2030 predicted exposure surface for oil and gas wells 

and wind-power turbines, a shaded topographic relief map, and county boundaries. 
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Figure B6.  Fraction of the total 2030 Exposure Index (EI; green) and distribution model values (gray) 

falling within core areas of Greater Sage-Grouse.  Bars represent the 25 most-exposed species in our 

study.  Box plots represent a synthesis of all 156 species.  Note that these values are best-case figures 

that assume a complete cessation of all development in core areas.  The actual core area policy limits 

certain types of development but does not prohibit them 
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Figure B7.  Range in exposure ranks resulting from using different exposure functions to quantify 

exposure to disturbance.  Abscissa shows the exposure rank, with 1 being the most exposed to 

development.  Ordinate shows individual species (see Table C1 for codes) ordered by their exposure 

rank using the 1-kilometer exposure curve (solid circles). Grey bars span the range of possible ranks 

when further considering the narrow curve (200 meters; open circles) and the wide curve (5 kilometers; 

open squares).  Panels A-D show different subsets of the 156 species analyzed. 
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Figure B8.  Projected 2030 total Exposure Index (EI) for 156 Wyoming Species of Greatest 

Conservation Need (SGCN) examined in this study under the anticipated (hollow bars) and unrestrained 

(gray squares) buildout scenarios.  Ordinate shows individual species (codes provided in Table C1) 

ordered by their exposure rank under the anticipated scenario.  Dotted lines represent the difference in 

EI between the scenarios.  Panels A-D show subsets of the 156 species analyzed. 
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Figure B9.  Range in exposure rank resulting from magnitude of buildout.  Abscissa shows the 

exposure rank under the anticipated scenario (hollow circles) and unrestrained scenario (solid squares), 

where a rank of 1 is the most exposed to development.  Ordinate shows individual species (see Table 

C1 for codes) ordered by their exposure under the anticipated scenario (see Figure B2). Dotted lines 

represent the difference in rank between the scenarios.  Panels A-D show different subsets of the 156 

species analyzed. 
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APPENDIX C:  TABLES PROVIDING EXPOSURE AND UNCERTAINTY 
VALUES FOR ALL SPECIES. 

Exp. 

Rank 
Species 

Species 

Code 

Total EI 

1950 

Total EI 

1980 

Total EI 

2010 

2030 Projected EI Percent 

Change  

2010 to 

2030 
Total 

Oil & 

Gas 
Wind 

1 
Great Plains Toad 

(Anaxyrus cognatus) 
GPTO 0.005 0.036 0.182 0.278 0.277 <0.001 53% 

2 

Rocky Mountain Toad 

(Anaxyrus woodhousii 

woodhousii) 

RMTO 0.006 0.030 0.143 0.210 0.209 <0.001 47% 

3 
Black-tailed Prairie Dog 

(Cynomys ludovicianus) 
BTPD 0.005 0.034 0.136 0.205 0.201 0.004 51% 

4 
Pygmy Rabbit 

(Brachylagus idahoensis) 
PYRA 0.003 0.025 0.098 0.201 0.198 0.004 105% 

5 
Wyoming Pocket Gopher 

(Thomomys clusius) 
WPGO 0.002 0.024 0.112 0.196 0.188 0.009 75% 

6 
Black-footed Ferret 

(Mustela nigripes) 
BFFE <0.001 0.002 0.025 0.181 0.004 0.177 613% 

7 
Silky Pocket Mouse 

(Perognathus flavus) 
SPMO 0.003 0.055 0.127 0.178 0.172 0.006 40% 

8 
Plains Gartersnake 

(Thamnophis radix) 
PLGA 0.004 0.023 0.119 0.174 0.173 0.002 47% 

9 
Western Painted Turtle 

(Chrysemys picta bellii) 
WPTU 0.006 0.024 0.112 0.165 0.163 0.001 48% 

10 
Upland Sandpiper 

(Bartramia longicauda) 
UPSA 0.003 0.025 0.105 0.158 0.154 0.004 50% 

11 
Plains Spadefoot 

(Spea bombifrons) 
SLSP 0.006 0.027 0.103 0.155 0.152 0.003 51% 

12 
Chestnut-collared Longspur 

(Calcarius ornatus) 
CCLS 0.003 0.024 0.096 0.151 0.131 0.021 58% 

13 
Plains Hog-nosed Snake 

(Heterodon nasicus) 
PHNS 0.006 0.025 0.100 0.150 0.147 0.003 51% 

14 

Eastern Yellow-bellied Racer 

(Coluber constrictor 

flaviventris) 

EYBR 0.006 0.025 0.096 0.146 0.144 0.002 52% 

15 
Grasshopper Sparrow 

(Ammodramus savannarum) 
GRSP 0.004 0.023 0.091 0.141 0.136 0.004 55% 

16 
Great Basin Spadefoot 

(Spea intermontana) 
GBSP 0.002 0.020 0.083 0.136 0.135 <0.001 64% 

Table C1.  Exposure Index (EI) values for all 156 Wyoming Species of Greatest Conservation 

Need (SGCN) listed in order of decreasing 2030 total EI. 
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Exp. 

Rank 
Species 

Species 

Code 

Total EI 

1950 

Total EI 

1980 

Total EI 

2010 

2030 Projected EI Percent 

Change  

2010 to 

2030 
Total 

Oil & 

Gas 
Wind 

17 
Greater Sage-Grouse 

(Centrocercus urophasianus) 
GSGR 0.004 0.022 0.080 0.135 0.125 0.010 69% 

18 
Lark Bunting 

(Calamospiza melanocorys) 
LABU 0.004 0.021 0.081 0.134 0.125 0.009 64% 

19 
Short-eared Owl 

(Asio flammeus) 
SEOW 0.005 0.022 0.083 0.133 0.128 0.004 59% 

20 
Mountain Plover 

(Charadrius montanus) 
MOPL 0.003 0.018 0.074 0.133 0.119 0.014 80% 

21 
Bullsnake 

(Pituophis catenifer sayi) 
BULL 0.006 0.024 0.084 0.132 0.128 0.004 56% 

22 
Least Weasel 

(Mustela nivalis) 
LEWE 0.002 0.003 0.074 0.130 0.130 <0.001 75% 

23 
Western Spiny Softshell 

(Apalone spinifera hartwegi) 
WSSS 0.005 0.020 0.087 0.126 0.123 0.003 46% 

24 
Bald Eagle; winter 

(Haliaeetus leucocephalus) 
BEWI 0.004 0.020 0.077 0.125 0.119 0.005 62% 

25 
Ferruginous Hawk 

(Buteo regalis) 
FEHA 0.003 0.018 0.069 0.123 0.112 0.011 78% 

26 
Burrowing Owl 

(Athene cunicularia) 
BUOW 0.003 0.019 0.072 0.123 0.115 0.008 70% 

27 
Abert's Squirrel 

(Sciurus aberti) 
ABSQ <0.001 <0.001 <0.001 0.115 <0.001 0.115 >1000% 

28 
Great Basin Pocket Mouse 

(Perognathus parvus) 
GBPM 0.002 0.016 0.079 0.115 0.111 0.004 46% 

29 
Sage Thrasher 

(Oreoscoptes montanus) 
SATH 0.004 0.017 0.062 0.113 0.102 0.011 83% 

30 
Sage Sparrow 

(Amphispiza belli) 
SASP 0.003 0.016 0.059 0.112 0.103 0.009 92% 

31 
Brewer's Sparrow 

(Spizella breweri) 
BRSP 0.003 0.017 0.062 0.110 0.101 0.009 77% 

32 
Long-billed Curlew 

(Numenius americanus) 
LBCU 0.004 0.020 0.062 0.109 0.103 0.006 75% 

33 
Olive-backed Pocket Mouse 

(Perognathus fasciatus) 
OBPM 0.004 0.017 0.063 0.108 0.097 0.011 71% 

34 
Boreal Chorus Frog 

(Pseudacris maculata) 
BCFR 0.004 0.018 0.063 0.107 0.102 0.005 70% 

35 
Prairie Vole 

(Microtus ochrogaster) 
PRVO 0.004 0.020 0.068 0.106 0.101 0.005 55% 
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Exp. 

Rank 
Species 

Species 

Code 

Total EI 

1950 

Total EI 

1980 

Total EI 

2010 

2030 Projected EI Percent 

Change  

2010 to 

2030 
Total 

Oil & 

Gas 
Wind 

36 

Northern Sagebrush Lizard 

(Sceloporus graciosus 

graciosus) 

NSBL 0.004 0.015 0.064 0.105 0.102 0.003 64% 

37 
Great Blue Heron 

(Ardea herodias) 
GBHE 0.004 0.017 0.064 0.105 0.099 0.005 63% 

38 
Bobolink 

(Dolichonyx oryzivorus) 
BOBO 0.002 0.011 0.059 0.100 0.096 0.004 70% 

39 
Greater Short-horned Lizard 

(Phrynosoma hernandesi) 
GSHO 0.003 0.015 0.048 0.099 0.090 0.009 105% 

40 
Virginia Rail 

(Rallus limicola) 
VIRA 0.003 0.015 0.056 0.099 0.089 0.009 78% 

41 
McCown's Longspur 

(Calcarius mccownii) 
MCLO 0.003 0.015 0.055 0.095 0.072 0.022 71% 

42 
Redhead 

(Aythya americana) 
REHE 0.005 0.019 0.055 0.094 0.086 0.008 71% 

43 
Prairie Rattlesnake 

(Crotalus viridis) 
PRRS 0.004 0.015 0.053 0.094 0.079 0.015 78% 

44 
Swainson's Hawk 

(Buteo swainsoni) 
SWHA 0.003 0.014 0.051 0.093 0.082 0.011 84% 

45 
White-tailed Prairie Dog 

(Cynomys leucurus) 
WTPD 0.004 0.014 0.044 0.092 0.079 0.012 106% 

46 
Uinta Ground Squirrel 

(Spermophilus armatus) 
UGSQ 0.001 0.010 0.033 0.090 0.087 0.003 176% 

47 
White-faced Ibis 

(Plegadis chihi) 
WFIB 0.004 0.016 0.047 0.090 0.080 0.009 90% 

48 
Black Tern 

(Chlidonias niger) 
BLTE 0.004 0.015 0.047 0.089 0.080 0.009 91% 

49 
Sagebrush Vole 

(Lemmiscus curtatus) 
SBVO 0.003 0.013 0.047 0.089 0.074 0.015 87% 

50 
Dickcissel 

(Spiza americana) 
DICK 0.002 0.010 0.056 0.089 0.087 0.001 59% 

51 

Pale Milksnake 

(Lampropeltis triangulum 

multistriata) 

PAMS 0.018 0.040 0.062 0.087 0.083 0.004 40% 

52 
Merlin 

(Falco columbarius) 
MERL 0.003 0.013 0.052 0.086 0.081 0.005 64% 

53 
Yellow-billed Cuckoo 

(Coccyzus americanus) 
YBCC 0.002 0.002 0.029 0.081 0.081 <0.001 180% 

54 
Western Grebe 

(Aechmophorus occidentalis) 
WEGR 0.004 0.014 0.044 0.078 0.075 0.004 79% 
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55 
Wandering Gartersnake 

(Thamnophis elegans vagrans) 
WAGS 0.003 0.010 0.041 0.076 0.068 0.008 85% 

56 
Ash-throated Flycatcher 

(Myiarchus cinerascens) 
ATFC 0.002 0.011 0.048 0.075 0.069 0.006 56% 

57 
Northern Leopard Frog 

(Lithobates pipiens) 
NLFR 0.004 0.014 0.045 0.074 0.069 0.005 67% 

58 
Canvasback 

(Aythya valisineria) 
CABA 0.004 0.013 0.041 0.074 0.060 0.014 82% 

59 
Wyoming Ground Squirrel 

(Spermophilus elegans) 
WGSQ 0.002 0.008 0.028 0.073 0.049 0.025 163% 

60 
American Bittern 

(Botaurus lentiginosus) 
AMBI 0.003 0.012 0.037 0.071 0.064 0.007 93% 

61 
Idaho Pocket Gopher 

(Thomomys idahoensis) 
IPGO <0.001 0.004 0.026 0.071 0.041 0.030 173% 

62 
Swift Fox 

(Vulpes velox) 
SWFO 0.002 0.011 0.040 0.071 0.049 0.022 78% 

63 
Willow Flycatcher 

(Empidonax traillii) 
WIFC 0.002 0.010 0.039 0.069 0.065 0.004 79% 

64 
Western Small-footed Myotis 

(Myotis ciliolabrum) 
SFBA 0.005 0.016 0.041 0.069 0.065 0.004 67% 

65 
American White Pelican 

(Pelecanus erythrorhynchos) 
AWPE 0.003 0.010 0.036 0.067 0.055 0.012 86% 

66 
Bald Eagle; summer 

(Haliaeetus leucocephalus) 
BESU 0.002 0.010 0.035 0.066 0.061 0.005 87% 

67 
Forster's Tern 

(Sterna forsteri) 
FOTE 0.003 0.011 0.027 0.065 0.055 0.011 142% 

68 
Snowy Egret 

(Egretta thula) 
SNEG 0.002 0.007 0.019 0.064 0.043 0.021 241% 

69 
Greater Sandhill Crane 

(Grus canadensis) 
GSHC 0.002 0.011 0.033 0.063 0.059 0.005 89% 

70 
Lesser Scaup 

(Aythya affinis) 
LESC 0.002 0.009 0.032 0.060 0.050 0.010 89% 

71 
Tiger Salamander 

(Ambystoma mavortium) 
TISA 0.002 0.010 0.031 0.059 0.055 0.005 91% 

72 
River Otter 

(Lontra canadensis) 
RIOT 0.001 0.008 0.025 0.059 0.055 0.003 138% 

73 
Plains Harvest Mouse 

(Reithrodontomys montanus) 
PLHM 0.002 0.013 0.044 0.058 0.054 0.005 34% 

74 
Yellow-pine Chipmunk 

(Neotamias amoenus) 
YPCH <0.001 0.006 0.014 0.058 0.058 <0.001 301% 
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75 
Big Brown Bat 

(Eptesicus fuscus) 
BBBA 0.003 0.013 0.033 0.058 0.052 0.005 75% 

76 
Plains Pocket Mouse 

(Perognathus flavescens) 
PPMO <0.001 0.008 0.031 0.053 0.038 0.014 71% 

77 
Pallid Bat 

(Antrozous pallidus) 
PABA 0.005 0.017 0.034 0.052 0.050 0.003 56% 

78 
Little Brown Myotis 

(Myotis lucifugus) 
LBBA 0.004 0.013 0.029 0.052 0.045 0.007 82% 

79 
Moose 

(Alces alces) 
MOOS 0.001 0.007 0.021 0.050 0.047 0.003 140% 

80 
Clark's Grebe 

(Aechmophorus clarkii) 
CLGR 0.003 0.007 0.023 0.047 0.043 0.004 107% 

81 
Red-sided Gartersnake 

(Thamnophis sirtalis parietalis) 
RSGS 0.004 0.011 0.030 0.047 0.045 0.002 55% 

82 
Eastern Red Bat 

(Lasiurus borealis) 
ERBA 0.002 0.013 0.028 0.047 0.032 0.015 67% 

83 
Lewis' Woodpecker 

(Melanerpes lewis) 
LEWO 0.002 0.009 0.027 0.046 0.042 0.004 73% 

84 
Western Scrub-Jay 

(Aphelocoma californica) 
WESJ 0.001 0.006 0.022 0.041 0.035 0.006 86% 

85 
Franklin’s Gull 

(Larus pipixcan) 
FRGU 0.002 0.006 0.022 0.041 0.036 0.005 85% 

86 
Peregrine Falcon 

(Falco peregrinus) 
PEFA 0.002 0.007 0.021 0.041 0.036 0.004 96% 

87 
Bushtit 

(Psaltriparus minimus) 
BUSH 0.002 0.010 0.033 0.041 0.035 0.005 23% 

88 

Columbian Sharp-tailed Grouse 

(Tympanuchus phasianellus 

columbianus) 

CSTG 0.002 0.004 0.024 0.037 0.036 0.002 56% 

89 
Long-legged Myotis 

(Myotis volans) 
LLBA 0.002 0.008 0.021 0.035 0.032 0.003 68% 

90 
Dwarf Shrew 

(Sorex nanus) 
DWSH 0.001 0.005 0.018 0.035 0.029 0.005 89% 

91 
Wyoming Toad 

(Anaxyrus baxteri) 
WYTO 0.007 0.008 0.011 0.034 0.009 0.026 216% 

92 

Great Basin Gophersnake 

(Pituophis catenifer 

deserticola) 

GBGS 0.001 0.008 0.024 0.033 0.029 0.004 36% 

93 
Ringtail 

(Bassariscus astutus) 
RING 0.003 0.009 0.024 0.032 0.022 0.010 34% 
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94 
Black-crowned Night-Heron 

(Nycticorax nycticorax) 
BCNH 0.002 0.005 0.014 0.031 0.018 0.013 130% 

95 
Juniper Titmouse 

(Baeolophus ridgwayi) 
JUTI <0.001 0.004 0.011 0.031 0.018 0.012 179% 

96 
Caspian Tern 

(Sterna caspia) 
CATE <0.001 0.003 0.007 0.029 0.028 0.001 313% 

97 
Vagrant Shrew 

(Sorex vagrans) 
VASH 0.001 0.004 0.015 0.028 0.026 0.003 86% 

98 
Plateau Fence Lizard 

(Sceloporus tristichus) 
PFLI <0.001 0.005 0.018 0.027 0.022 0.006 57% 

99 
Long-eared Myotis 

(Myotis evotis) 
LEBA 0.001 0.006 0.013 0.026 0.023 0.003 101% 

100 
Canyon Mouse 

(Peromyscus crinitus) 
CAMO <0.001 0.005 0.013 0.023 0.015 0.008 74% 

101 

Bear Lodge Meadow Jumping 

Mouse 

(Zapus hudsonius campestris) 

BMJM <0.001 0.002 0.014 0.023 0.023 <0.001 61% 

102 
Silver-haired Bat 

(Lasionycteris noctivagans) 
SHBA 0.002 0.005 0.010 0.021 0.016 0.005 115% 

103 

Preble's Meadow Jumping 

Mouse 

(Zapus hudsonius preblei) 

PMJM <0.001 0.002 0.003 0.021 0.003 0.018 534% 

104 
Cliff Chipmunk 

(Neotamias dorsalis) 
CLCH 0.001 0.006 0.017 0.020 0.016 0.005 18% 

105 
Plains Pocket Gopher 

(Geomys bursarius) 
PPGO 0.001 0.007 0.013 0.020 0.016 0.004 49% 

106 
Scott's Oriole 

(Icterus parisorum) 
SCOR 0.001 0.006 0.017 0.020 0.018 0.001 16% 

107 
Townsend's Big-eared Bat 

(Corynorhinus townsendii) 
TBEB 0.003 0.008 0.012 0.019 0.017 0.002 59% 

108 
Midget Faded Rattlesnake 

(Crotalus oreganus concolor) 
MFRS <0.001 0.004 0.015 0.019 0.017 0.001 27% 

109 
Barrow's Goldeneye 

(Bucephala islandica) 
BAGO 0.001 0.005 0.009 0.019 0.018 <0.001 97% 

110 
Trumpeter Swan 

(Cygnus buccinator) 
TRSW <0.001 <0.001 0.005 0.017 0.017 <0.001 246% 

111 
Unita Chipmunk 

(Neotamias umbrinus) 
UNCH <0.001 0.003 0.006 0.016 0.012 0.004 173% 

112 
Great Plains Earless Lizard 

(Holbrookia maculata) 
GPEL <0.001 0.002 0.008 0.015 0.007 0.008 82% 
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113 
Northern Many-lined Skink 

(Eumeces multivirgatus) 
NMLS <0.001 0.001 0.006 0.015 0.006 0.008 128% 

114 
Northern Tree Lizard 

(Urosaurus ornatus wrighti) 
NTLI 0.001 0.005 0.012 0.015 0.012 0.003 26% 

115 
Spotted Ground Squirrel 

(Spermophilus spilosoma) 
SGSQ <0.001 0.001 0.003 0.013 0.003 0.010 358% 

116 
Water Shrew 

(Sorex palustris) 
WASH <0.001 0.002 0.005 0.013 0.008 0.005 158% 

117 
Hispid Pocket Mouse 

(Chaetodipus hispidus) 
HPMO <0.001 0.003 0.006 0.013 0.007 0.006 98% 

118 
Rubber Boa 

(Charina bottae) 
RUBO <0.001 0.003 0.005 0.012 0.012 <0.001 154% 

119 
Prairie Lizard 

(Sceloporus consobrinus) 
PRLI <0.001 <0.001 0.003 0.012 0.003 0.010 328% 

120 
Hoary Bat 

(Lasiurus cinereus) 
HOBA 0.002 0.005 0.007 0.011 0.010 0.001 56% 

121 
Boreal Toad 

(Anaxyrus boreas boreas) 
BOTO <0.001 0.002 0.004 0.011 0.011 <0.001 198% 

122 
Pygmy Shrew 

(Sorex hoyi) 
PYSH <0.001 0.001 0.003 0.011 0.001 0.010 290% 

123 

Prairie Racerunner 

(Aspidoscelis sexlineatus 

viridis) 

PRRR <0.001 <0.001 <0.001 0.010 <0.001 0.009 >1000% 

124 
Northern Goshawk 

(Accipiter gentilis) 
NOGO <0.001 0.002 0.004 0.009 0.007 0.002 106% 

125 
Common Loon 

(Gavia immer) 
COLO <0.001 0.001 0.003 0.008 0.007 0.001 151% 

126 
Pygmy Nuthatch 

(Sitta pygmaea) 
PYNU <0.001 0.001 0.004 0.008 0.006 0.002 80% 

127 
Fringed Myotis 

(Myotis thysanodes) 
FRBA 0.001 0.003 0.004 0.007 0.006 <0.001 47% 

128 
Spotted Bat 

(Euderma maculatum) 
SPBA <0.001 0.004 0.006 0.007 0.007 <0.001 18% 

129 
Western Heather Vole 

(Phenacomys intermedius) 
WHVO <0.001 <0.001 0.005 0.006 0.005 0.001 16% 

130 
Black Rosy-Finch 

(Leucosticte atrata) 
BRFI <0.001 0.002 0.003 0.006 0.005 0.001 91% 

131 
Smooth Green Snake 

(Opheodrys vernalis) 
SGSN <0.001 <0.001 0.001 0.006 0.001 0.005 446% 
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132 
Canada Lynx 

(Lynx canadensis) 
CALY <0.001 0.001 0.002 0.005 0.005 <0.001 122% 

133 
Northern Pygmy-Owl 

(Glaucidium gnoma) 
NPOW <0.001 <0.001 0.001 0.004 0.004 <0.001 215% 

134 
Water Vole 

(Microtus richardsoni) 
WAVO <0.001 <0.001 0.002 0.004 0.004 <0.001 93% 

135 
American Pika 

(Ochotona princeps) 
AMPI <0.001 0.001 0.002 0.004 0.004 <0.001 60% 

136 
Northern Flying Squirrel 

(Glaucomys sabrinus) 
NFSQ <0.001 <0.001 0.002 0.003 0.003 <0.001 103% 

137 
Bighorn Sheep 

(Ovis canadensis) 
BISH <0.001 0.002 0.002 0.003 0.003 <0.001 42% 

138 
Preble's Shrew 

(Sorex preblei) 
PRSH <0.001 0.001 0.003 0.003 0.003 <0.001 11% 

139 
Columbia Spotted Frog 

(Rana luteiventris) 
CSFR <0.001 <0.001 <0.001 0.003 0.003 <0.001 592% 

140 
Boreal Owl 

(Aegolius funereus) 
BOOW <0.001 <0.001 0.001 0.002 0.002 <0.001 87% 

141 
Grizzly Bear 

(Ursus arctos) 
GRBE <0.001 <0.001 0.001 0.002 0.002 <0.001 63% 

142 
Pinyon Mouse 

(Peromyscus truei) 
PIMO <0.001 <0.001 0.001 0.001 <0.001 <0.001 27% 

143 
Great Gray Owl 

(Strix nebulosa) 
GGOW <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 212% 

144 
Marten 

(Martes americana) 
MART <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 53% 

145 
Black-backed Woodpecker 

(Picoides arcticus) 
BBWP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 22% 

146 

American Three-toed 

Woodpecker 

(Picoides dorsalis) 

ATTW <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 80% 

147 
American Bullfrog 

(Lithobates catesbieanus) 
AMBU <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 >1000% 

148 
Wolverine 

(Gulo gulo) 
WOLV <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 215% 

149 
Wood Frog 

(Lithobates sylvaticus) 
WOFR <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 157% 

150 

Black Hills Redbelly Snake 

(Storeria occipitomaculata 

pahasapae) 

BHRS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 10% 



Keinath and Kauffman 2014  58 

 

Exp. 

Rank 
Species 

Species 

Code 

Total EI 

1950 

Total EI 

1980 

Total EI 

2010 

2030 Projected EI Percent 

Change  

2010 to 

2030 
Total 

Oil & 

Gas 
Wind 

151 
Harlequin Duck 

(Histrionicus histrionicus) 
HADU <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 31% 

152 
Valley Gartersnake 

(Thamnophis sirtalis fitchi) 
VAGS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 113% 

153 
Hayden's Shrew 

(Sorex haydeni) 
HASH <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 184% 

154 
Northern Myotis 

(Myotis septentrionalis) 
NOBA <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1% 

155 
Fisher 

(Martes pennanti) 
FISH <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0% 

156 
Brown-capped Rosy Finch 

(Leucosticte australis) 
BCRF <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 >1000% 
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TISA 228 (0) 
9.55 ± 2.94 

(0.31) 

0.71 ± 0.04 

(0.29) 
0.35 ± 0.12 Low (1) 

0.85 ± 0.11 

(0.15) 
0.03 0.21 

BOTO 256 (0) 
8.97 ± 3 

(0.38) 

0.91 ± 0.02 

(0.09) 
0.03 ± 0.03 High (0) 

0.76 ± 0.13 

(0.24) 
0.2 0.16 

GPTO 20 (0.5) 
9.65 ± 2.83 

(0.29) 

0.95 ± 0.05 

(0.05) 
0.15 ± 0.24 

Medium 

(0.5) 
na (1) 0.09 0.29 

RMTO 106 (0) 
10.36 ± 2.87 

(0.21) 

0.91 ± 0.03 

(0.09) 
0.14 ± 0.1 

Medium 

(0.5) 

0.82 ± 0.27 

(0.18) 
0.16 0.17 

WYTO 10 (1) 
6.1 ± 2.56 

(0.74) 

0.99 ± 0.02 

(0.01) 
0.2 ± 0.42 

Medium 

(0.5) 
na (1) 0.12 0.43 

BCFR 97 (0.25) 
7.88 ± 2.78 

(0.52) 

0.7 ± 0.06 

(0.3) 
0.42 ± 0.19 Low (1) 

0.62 ± 0.32 

(0.38) 
0.1 0.33 

SLSP 37 (0.5) 
7.84 ± 2.73 

(0.52) 

0.77 ± 0.09 

(0.23) 
0.29 ± 0.15 Low (1) na (1) 0.07 0.39 

GBSP 27 (0.5) 
7.96 ± 2.36 

(0.5) 

0.88 ± 0.07 

(0.12) 
0.12 ± 0.19 

Medium 

(0.5) 
na (1) 0.04 0.31 

Table C2.  Factors used to assess distribution model quality and hence uncertainty for all 156 

species in this study.  Species codes are given in Table C1.  Values following ‘±’ are standard 

deviations.  Numbers in parenthesis indicate the transformation of each value into an 

uncertainty score on a scale of 0 (low uncertainty) to 1 (high uncertainty), where such 

transformation was necessary.  Factor definitions and explanation of how they were used to 

generate the uncertainty index (UI) are discussed in Appendix A.   
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AMBU 3 (1) 
4.67 ± 0.58 

(0.92) 

0.3 ± 0.48 

(0.7) 
0.67 ± 0.58 Low (1) na (1) 1 0.93 

NLFR 225 (0) 
9.8 ± 2.84 

(0.28) 

0.81 ± 0.06 

(0.19) 
0.29 ± 0.13 

Medium 

(0.5) 

0.96 ± 0.07 

(0.04) 
0.1 0.17 

WOFR 62 (0.25) 
10.32 ± 2.02 

(0.21) 

0.98 ± 0.02 

(0.02) 
0.05 ± 0.08 

Medium 

(0.5) 

0.78 ± 0.23 

(0.22) 
0.99 0.49 

CSFR 291 (0) 
10.33 ± 2.26 

(0.21) 

0.94 ± 0.01 

(0.06) 
0.02 ± 0.01 

Medium 

(0.5) 

0.67 ± 0.3 

(0.33) 
0.48 0.29 

COLO 98 (0.25) 
6.42 ± 2.21 

(0.7) 

0.95 ± 0.02 

(0.05) 
0.13 ± 0.14 

Medium 

(0.5) 

0.66 ± 0.37 

(0.34) 
0.26 0.32 

WEGR 144 (0) 
5.29 ± 1.38 

(0.84) 

0.87 ± 0.03 

(0.13) 
0.2 ± 0.1 Low (1) 

0.82 ± 0.13 

(0.18) 
0.16 0.31 

CLGR 29 (0.5) 
6.45 ± 2.13 

(0.69) 

0.88 ± 0.12 

(0.12) 
0.28 ± 0.31 Low (1) na (1) 0.24 0.47 

AWPE 430 (0) 
6.41 ± 1.89 

(0.7) 

0.82 ± 0.04 

(0.18) 
0.22 ± 0.06 

Medium 

(0.5) 

0.93 ± 0.13 

(0.07) 
0.17 0.24 

AMBI 60 (0.25) 
5.45 ± 1.68 

(0.82) 

0.65 ± 0.12 

(0.35) 
0.47 ± 0.23 

Medium 

(0.5) 

0.75 ± 0.27 

(0.25) 
0.17 0.35 

GBHE 847 (0) 
5.65 ± 1.32 

(0.79) 

0.69 ± 0.02 

(0.31) 
0.33 ± 0.04 

Medium 

(0.5) 

0.97 ± 0.05 

(0.03) 
0.04 0.23 

SNEG 43 (0.5) 
5.3 ± 1.47 

(0.84) 

0.91 ± 0.04 

(0.09) 
0.17 ± 0.17 

Medium 

(0.5) 

0.95 ± 0.07 

(0.05) 
0.16 0.31 

BCNH 76 (0.25) 
5.93 ± 1.8 

(0.76) 

0.88 ± 0.06 

(0.12) 
0.12 ± 0.1 

Medium 

(0.5) 

0.67 ± 0.38 

(0.33) 
0.11 0.27 

WFIB 89 (0.25) 
5.97 ± 2.03 

(0.75) 

0.74 ± 0.06 

(0.26) 
0.36 ± 0.19 

Medium 

(0.5) 

0.9 ± 0.12 

(0.1) 
0.1 0.28 

TRSW 165 (0) 
6.67 ± 2.06 

(0.67) 

0.95 ± 0.01 

(0.05) 
0.09 ± 0.09 

Medium 

(0.5) 

0.34 ± 0.13 

(0.66) 
0.34 0.33 

CABA 62 (0.25) 
5.66 ± 1.33 

(0.79) 

0.73 ± 0.09 

(0.27) 
0.36 ± 0.25 Low (1) 

0.63 ± 0.32 

(0.37) 
0.14 0.37 

REHE 99 (0.25) 
5.69 ± 1.72 

(0.79) 

0.76 ± 0.06 

(0.24) 
0.18 ± 0.1 

Medium 

(0.5) 

0.73 ± 0.28 

(0.27) 
0.11 0.29 

LESC 102 (0) 
5.43 ± 1.35 

(0.82) 

0.64 ± 0.1 

(0.36) 
0.36 ± 0.15 Low (1) 

0.43 ± 0.37 

(0.57) 
0.1 0.35 

HADU 47 (0.5) 
6.45 ± 2.06 

(0.69) 

0.94 ± 0.06 

(0.06) 
0.14 ± 0.19 

Medium 

(0.5) 

0.56 ± 0.45 

(0.44) 
0.86 0.58 

BAGO 61 (0.25) 
5.46 ± 1.4 

(0.82) 

0.87 ± 0.04 

(0.13) 
0.23 ± 0.21 

Medium 

(0.5) 

0.5 ± 0.34 

(0.5) 
0.24 0.36 

BESU 353 (0) 
6.36 ± 1.93 

(0.71) 

0.72 ± 0.04 

(0.28) 
0.34 ± 0.13 High (0) 

0.92 ± 0.09 

(0.08) 
0.08 0.19 

BEWI 2794 (0) 
5.49 ± 1.53 

(0.81) 

0.69 ± 0.01 

(0.31) 
0.32 ± 0.04 

Medium 

(0.5) 

0.9 ± 0.08 

(0.1) 
0.02 0.23 

NOGO 421 (0) 
6.58 ± 2.41 

(0.68) 

0.89 ± 0.02 

(0.11) 
0.17 ± 0.06 High (0) 

0.92 ± 0.1 

(0.08) 
0.09 0.16 
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SWHA 861 (0) 
5.64 ± 1.6 

(0.8) 

0.69 ± 0.02 

(0.31) 
0.35 ± 0.09 

Medium 

(0.5) 

0.94 ± 0.05 

(0.06) 
0.02 0.23 

FEHA 1443 (0) 
6.12 ± 1.92 

(0.74) 

0.74 ± 0.02 

(0.26) 
0.24 ± 0.1 

Medium 

(0.5) 
1 ± 0 (0) 0.02 0.2 

MERL 182 (0) 
6.35 ± 2.28 

(0.71) 

0.63 ± 0.07 

(0.37) 
0.64 ± 0.15 

Medium 

(0.5) 

0.6 ± 0.29 

(0.4) 
0.05 0.29 

PEFA 181 (0) 
7.39 ± 2.58 

(0.58) 

0.68 ± 0.05 

(0.32) 
0.37 ± 0.1 

Medium 

(0.5) 

0.81 ± 0.17 

(0.19) 
0.12 0.25 

GSGR 1610 (0) 
7.87 ± 1.48 

(0.52) 

0.86 ± 0.01 

(0.14) 
0.09 ± 0.03 

Medium 

(0.5) 

0.88 ± 0.14 

(0.12) 
0.03 0.16 

CSTG 40 (0.5) 
8.38 ± 2.82 

(0.45) 

0.98 ± 0.03 

(0.02) 
0.13 ± 0.18 High (0) 

0.98 ± 0.06 

(0.02) 
0.42 0.3 

VIRA 16 (1) 
6.31 ± 1.54 

(0.71) 

0.76 ± 0.16 

(0.24) 
0.45 ± 0.37 Low (1) 1 ± 0 (0) 0.07 0.41 

GSHC 1181 (0) 
6.54 ± 1.88 

(0.68) 

0.75 ± 0.02 

(0.25) 
0.25 ± 0.03 Low (1) 

0.97 ± 0.05 

(0.03) 
0.1 0.27 

MOPL 302 (0) 
8.63 ± 2.91 

(0.42) 

0.81 ± 0.04 

(0.19) 
0.23 ± 0.12 High (0) 

0.9 ± 0.12 

(0.1) 
0.05 0.12 

UPSA 120 (0) 
6.08 ± 1.66 

(0.74) 

0.92 ± 0.02 

(0.08) 
0.11 ± 0.14 

Medium 

(0.5) 

0.78 ± 0.24 

(0.22) 
0.6 0.4 

LBCU 341 (0) 
6.17 ± 1.77 

(0.73) 

0.74 ± 0.05 

(0.26) 
0.35 ± 0.09 

Medium 

(0.5) 
1 ± 0 (0) 0.06 0.22 

FRGU 33 (0.5) 
4.97 ± 1.33 

(0.88) 

0.86 ± 0.08 

(0.14) 
0.29 ± 0.3 

Medium 

(0.5) 
na (1) 0.51 0.55 

CATE 33 (0.5) 
5.91 ± 2.1 

(0.76) 

0.92 ± 0.07 

(0.08) 
0.17 ± 0.22 

Medium 

(0.5) 
na (1) 0.54 0.53 

FOTE 35 (0.5) 
6.51 ± 2.13 

(0.69) 

0.85 ± 0.13 

(0.15) 
0.28 ± 0.27 

Medium 

(0.5) 
na (1) 0.15 0.39 

BLTE 42 (0.5) 
5.33 ± 1.48 

(0.83) 

0.83 ± 0.1 

(0.17) 
0.17 ± 0.19 Low (1) 

0.93 ± 0.09 

(0.07) 
0.06 0.33 

YBCC 19 (1) 
6.79 ± 2.18 

(0.65) 

0.94 ± 0.04 

(0.06) 
0.25 ± 0.35 Low (1) na (1) 0.3 0.55 

NPOW 11 (1) 
7 ± 1.41 

(0.63) 

0.95 ± 0.05 

(0.05) 
0.1 ± 0.32 

Medium 

(0.5) 
na (1) 1 0.74 

BUOW 655 (0) 
6.9 ± 2.41 

(0.64) 

0.78 ± 0.02 

(0.22) 
0.22 ± 0.05 High (0) 

0.93 ± 0.07 

(0.07) 
0.03 0.14 

GGOW 55 (0.25) 
6.07 ± 1.74 

(0.74) 

0.92 ± 0.05 

(0.08) 
0.11 ± 0.16 High (0) 

0.54 ± 0.3 

(0.46) 
0.31 0.31 

SEOW 142 (0) 
6.26 ± 1.81 

(0.72) 

0.73 ± 0.05 

(0.27) 
0.35 ± 0.1 

Medium 

(0.5) 

0.74 ± 0.25 

(0.26) 
0.04 0.24 

BOOW 58 (0.25) 
9.36 ± 1.98 

(0.33) 

0.94 ± 0.03 

(0.06) 
0.05 ± 0.11 High (0) 

0.43 ± 0.37 

(0.57) 
0.35 0.27 

LEWO 118 (0) 
5.84 ± 1.55 

(0.77) 

0.88 ± 0.06 

(0.12) 
0.24 ± 0.12 

Medium 

(0.5) 

0.85 ± 0.16 

(0.15) 
0.17 0.26 
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BBWP 11 (1) 
7.73 ± 2.69 

(0.53) 

0.95 ± 0.07 

(0.05) 
0.1 ± 0.32 

Medium 

(0.5) 
na (1) 0.33 0.48 

ATTW 110 (0) 
9.94 ± 2.72 

(0.26) 

0.95 ± 0.02 

(0.05) 
0.09 ± 0.14 High (0) 

0.75 ± 0.31 

(0.25) 
0.26 0.16 

WIFC 95 (0.25) 
6.24 ± 1.91 

(0.72) 

0.68 ± 0.08 

(0.32) 
0.45 ± 0.18 Low (1) 

0.59 ± 0.24 

(0.41) 
0.08 0.36 

ATFC 60 (0.25) 
6.55 ± 2.73 

(0.68) 

0.9 ± 0.04 

(0.1) 
0.18 ± 0.17 

Medium 

(0.5) 

0.82 ± 0.16 

(0.18) 
0.12 0.26 

WESJ 26 (0.5) 
7.42 ± 2.8 

(0.57) 

0.97 ± 0.04 

(0.03) 
0.12 ± 0.19 

Medium 

(0.5) 
na (1) 0.25 0.39 

JUTI 31 (0.5) 
8.48 ± 3.03 

(0.44) 

0.97 ± 0.03 

(0.03) 
0.15 ± 0.25 

Medium 

(0.5) 
na (1) 0.29 0.39 

BUSH 24 (0.5) 
8.33 ± 3.67 

(0.46) 

0.91 ± 0.07 

(0.09) 
0.1 ± 0.21 

Medium 

(0.5) 
na (1) 0.1 0.32 

PYNU 35 (0.5) 
6.63 ± 2.66 

(0.67) 

0.94 ± 0.07 

(0.06) 
0.13 ± 0.19 

Medium 

(0.5) 
na (1) 0.81 0.61 

SATH 635 (0) 
8.95 ± 2.5 

(0.38) 

0.69 ± 0.03 

(0.31) 
0.19 ± 0.07 High (0) 

0.69 ± 0.24 

(0.31) 
0.03 0.14 

DICK 24 (0.5) 
7.67 ± 2.32 

(0.54) 

0.95 ± 0.05 

(0.05) 
0 ± 0 

Medium 

(0.5) 
na (1) 0.43 0.44 

BRSP 1372 (0) 
8.8 ± 2.54 

(0.4) 

0.65 ± 0.02 

(0.35) 
0.26 ± 0.05 High (0) 

0.82 ± 0.2 

(0.18) 
0.02 0.13 

SASP 631 (0) 
8.21 ± 2.83 

(0.47) 

0.78 ± 0.02 

(0.22) 
0.19 ± 0.06 High (0) 

0.88 ± 0.13 

(0.12) 
0.02 0.12 

LABU 407 (0) 
6.02 ± 1.5 

(0.75) 

0.71 ± 0.02 

(0.29) 
0.28 ± 0.14 High (0) 

0.71 ± 0.28 

(0.29) 
0.04 0.19 

GRSP 261 (0) 
7.79 ± 1.75 

(0.53) 

0.82 ± 0.03 

(0.18) 
0.26 ± 0.06 High (0) 

0.82 ± 0.28 

(0.18) 
0.08 0.16 

MCLO 152 (0) 
8.24 ± 2.63 

(0.47) 

0.9 ± 0.03 

(0.1) 
0.17 ± 0.11 High (0) 

0.84 ± 0.15 

(0.16) 
0.15 0.16 

CCLS 90 (0.25) 
7.38 ± 2.31 

(0.58) 

0.89 ± 0.05 

(0.11) 
0.22 ± 0.19 High (0) 

0.9 ± 0.09 

(0.1) 
0.17 0.21 

BOBO 46 (0.5) 
6.72 ± 1.8 

(0.66) 

0.83 ± 0.11 

(0.17) 
0.27 ± 0.23 

Medium 

(0.5) 

0.84 ± 0.22 

(0.16) 
0.33 0.38 

SCOR 9 (1) 
6.56 ± 3.21 

(0.68) 

0.88 ± 0.31 

(0.12) 
0.22 ± 0.44 

Medium 

(0.5) 
na (1) 0.37 0.53 

BRFI 7 (1) 
7.86 ± 2.19 

(0.52) 

0.65 ± 0.46 

(0.35) 
0.29 ± 0.49 Low (1) na (1) 1 0.81 

BCRF 2 (1) 
9 ± 2.83 

(0.38) 

0.15 ± 0.34 

(0.85) 
0.5 ± 0.71 Low (1) na (1) 0 0.49 

PRSH 3 (1) 
4.33 ± 3.51 

(0.96) 

0.3 ± 0.48 

(0.7) 
1 ± 0 Low (1) na (1) 0.72 0.86 

VASH 22 (0.5) 
4.86 ± 1.04 

(0.89) 

0.82 ± 0.18 

(0.18) 
0.33 ± 0.33 Low (1) na (1) 0.45 0.58 
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DWSH 15 (1) 
5.8 ± 1.7 

(0.78) 

0.75 ± 0.27 

(0.25) 
0.5 ± 0.47 

Medium 

(0.5) 
na (1) 0.59 0.66 

WASH 23 (0.5) 
5.22 ± 1.31 

(0.85) 

0.85 ± 0.07 

(0.15) 
0.18 ± 0.24 

Medium 

(0.5) 
na (1) 0.14 0.4 

PYSH 5 (1) 
5.8 ± 1.64 

(0.78) 

0.5 ± 0.52 

(0.5) 
0.2 ± 0.45 Low (1) na (1) 0.07 0.51 

HASH 14 (1) 
6.21 ± 2.26 

(0.72) 

0.97 ± 0.04 

(0.03) 
0.05 ± 0.16 

Medium 

(0.5) 
na (1) 1 0.74 

LBBA 119 (0) 
7.18 ± 3.54 

(0.6) 

0.75 ± 0.05 

(0.25) 
0.29 ± 0.14 

Medium 

(0.5) 

0.78 ± 0.16 

(0.22) 
0.13 0.24 

LEBA 60 (0.25) 
7.55 ± 3.15 

(0.56) 

0.8 ± 0.1 

(0.2) 
0.28 ± 0.24 

Medium 

(0.5) 

0.69 ± 0.33 

(0.31) 
0.2 0.3 

FRBA 24 (0.5) 
10.25 ± 2.36 

(0.22) 

0.94 ± 0.03 

(0.06) 
0.12 ± 0.19 

Medium 

(0.5) 
na (1) 0.31 0.36 

LLBA 80 (0.25) 
8.51 ± 3.26 

(0.44) 

0.8 ± 0.11 

(0.2) 
0.35 ± 0.23 

Medium 

(0.5) 

0.82 ± 0.23 

(0.18) 
1 0.57 

SFBA 66 (0.25) 
7.39 ± 2.58 

(0.58) 

0.8 ± 0.08 

(0.2) 
0.32 ± 0.18 

Medium 

(0.5) 

0.75 ± 0.31 

(0.25) 
1 0.59 

NOBA 3 (1) 
8.67 ± 2.89 

(0.42) 

0.28 ± 0.45 

(0.72) 
0 ± 0 Low (1) na (1) 1 0.8 

SHBA 63 (0.25) 
7.92 ± 3.57 

(0.51) 

0.8 ± 0.08 

(0.2) 
0.27 ± 0.17 

Medium 

(0.5) 

0.88 ± 0.18 

(0.12) 
0.21 0.28 

BBBA 83 (0.25) 
6.94 ± 3.37 

(0.63) 

0.74 ± 0.07 

(0.26) 
0.26 ± 0.15 

Medium 

(0.5) 

0.67 ± 0.32 

(0.33) 
0.15 0.3 

ERBA 5 (1) 
5.4 ± 1.67 

(0.83) 

0.37 ± 0.41 

(0.63) 
0 ± 0 Low (1) na (1) 0.44 0.65 

HOBA 63 (0.25) 
8.81 ± 3.23 

(0.4) 

0.83 ± 0.06 

(0.17) 
0.24 ± 0.08 

Medium 

(0.5) 

0.82 ± 0.26 

(0.18) 
0.44 0.35 

SPBA 14 (1) 
9.57 ± 2.14 

(0.3) 

0.98 ± 0.03 

(0.02) 
0.2 ± 0.42 

Medium 

(0.5) 
na (1) 0.35 0.46 

TBEB 50 (0.25) 
7.92 ± 1.95 

(0.51) 

0.9 ± 0.1 

(0.1) 
0.16 ± 0.16 

Medium 

(0.5) 

0.84 ± 0.22 

(0.16) 
0.47 0.36 

PABA 16 (1) 
7.38 ± 2.5 

(0.58) 

0.79 ± 0.24 

(0.21) 
0.3 ± 0.48 

Medium 

(0.5) 
na (1) 0.35 0.52 

AMPI 170 (0) 
6.08 ± 1.97 

(0.74) 

0.96 ± 0.02 

(0.04) 
0.11 ± 0.08 High (0) 

0.65 ± 0.25 

(0.35) 
0.26 0.24 

PYRA 278 (0) 
10.39 ± 2.4 

(0.2) 

0.93 ± 0.01 

(0.07) 
0.09 ± 0.07 High (0) 

0.86 ± 0.14 

(0.14) 
0.07 0.08 

YPCH 12 (1) 
4.25 ± 2.22 

(0.97) 

0.89 ± 0.09 

(0.11) 
0.35 ± 0.47 

Medium 

(0.5) 
na (1) 0.56 0.65 

CLCH 8 (1) 
6.25 ± 1.39 

(0.72) 

0.79 ± 0.42 

(0.21) 
0.13 ± 0.35 Low (1) na (1) 0.06 0.47 

UNCH 16 (1) 
4.25 ± 2.27 

(0.97) 

0.84 ± 0.16 

(0.16) 
0.06 ± 0.02 

Medium 

(0.5) 
na (1) 0.2 0.5 
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UGSQ 67 (0.25) 
6.88 ± 3.14 

(0.64) 

0.88 ± 0.03 

(0.12) 
0.2 ± 0.1 Low (1) 

0.47 ± 0.3 

(0.53) 
0.26 0.39 

SGSQ 13 (1) 
5.46 ± 2.07 

(0.82) 

0.91 ± 0.18 

(0.09) 
0.45 ± 0.38 

Medium 

(0.5) 
na (1) 0.17 0.49 

WGSQ 268 (0) 
6.13 ± 2.16 

(0.73) 

0.82 ± 0.04 

(0.18) 
0.17 ± 0.1 Low (1) 

0.48 ± 0.34 

(0.52) 
0.09 0.3 

BTPD 1132 (0) 12 ± 0 (0) 
0.88 ± 0.01 

(0.12) 
0.03 ± 0.01 High (0) 

0.18 ± 0.18 

(0.82) 
0.03 0.1 

WTPD 1175 (0) 
6.1 ± 2.05 

(0.74) 

0.8 ± 0.01 

(0.2) 
0.06 ± 0.03 High (0) 

0.07 ± 0.09 

(0.93) 
0.03 0.22 

ABSQ 4 (1) 
5.25 ± 1.5 

(0.84) 

0.4 ± 0.52 

(0.6) 
0.25 ± 0.5 

Medium 

(0.5) 
na (1) 0 0.47 

NFSQ 21 (0.5) 
5.57 ± 1.5 

(0.8) 

0.92 ± 0.06 

(0.08) 
0.27 ± 0.44 

Medium 

(0.5) 
na (1) 0.48 0.52 

WPGO 15 (1) 
8.47 ± 3.52 

(0.44) 

0.97 ± 0.04 

(0.03) 
0.2 ± 0.42 

Medium 

(0.5) 
na (1) 0.14 0.41 

IPGO 27 (0.5) 
4.52 ± 1.16 

(0.94) 

0.97 ± 0.04 

(0.03) 
0.1 ± 0.22 

Medium 

(0.5) 
na (1) 0.17 0.41 

PPGO 3 (1) 5 ± 1 (0.88) 
0.28 ± 0.46 

(0.72) 
0.33 ± 0.58 Low (1) na (1) 0.41 0.68 

OBPM 28 (0.5) 
5.89 ± 2.13 

(0.76) 

0.67 ± 0.13 

(0.33) 
0.47 ± 0.36 

Medium 

(0.5) 
na (1) 0.09 0.41 

PPMO 11 (1) 
7.91 ± 2.21 

(0.51) 

0.91 ± 0.1 

(0.09) 
0.15 ± 0.34 

Medium 

(0.5) 
na (1) 0.36 0.5 

SPMO 3 (1) 
4.67 ± 0.58 

(0.92) 

0.99 ± 0.01 

(0.01) 
0.67 ± 0.58 Low (1) na (1) 0.02 0.51 

GBPM 17 (1) 
6.18 ± 2.48 

(0.73) 

0.93 ± 0.05 

(0.07) 
0.1 ± 0.21 

Medium 

(0.5) 
na (1) 0.07 0.41 

HPMO 10 (1) 
5.4 ± 2.22 

(0.83) 

0.98 ± 0.02 

(0.02) 
0.3 ± 0.48 

Medium 

(0.5) 
na (1) 0.25 0.51 

PLHM 7 (1) 
6.43 ± 3.1 

(0.7) 

0.65 ± 0.45 

(0.35) 
0.43 ± 0.53 Low (1) na (1) 0.33 0.6 

CAMO 3 (1) 
4.67 ± 1.15 

(0.92) 

0.3 ± 0.48 

(0.7) 
0.67 ± 0.58 Low (1) na (1) 0.49 0.74 

PIMO 2 (1) 4 ± 0 (1) 
0.1 ± 0.21 

(0.9) 
0 ± 0 Low (1) na (1) 0 0.54 

WHVO 7 (1) 
5.29 ± 0.76 

(0.84) 

0.69 ± 0.47 

(0.31) 
0.14 ± 0.38 Low (1) na (1) 0.51 0.66 

PRVO 24 (0.5) 
5.75 ± 1.39 

(0.78) 

0.78 ± 0.12 

(0.22) 
0.32 ± 0.34 

Medium 

(0.5) 
na (1) 0.1 0.4 

WAVO 77 (0.25) 
6.06 ± 2.36 

(0.74) 

0.94 ± 0.02 

(0.06) 
0.14 ± 0.14 

Medium 

(0.5) 

0.75 ± 0.21 

(0.25) 
0.49 0.4 

SBVO 31 (0.5) 
5.71 ± 2.42 

(0.79) 

0.76 ± 0.1 

(0.24) 
0.33 ± 0.27 

Medium 

(0.5) 
na (1) 0.14 0.41 
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PMJM 48 (0.5) 
10.44 ± 2.4 

(0.2) 

0.98 ± 0.01 

(0.02) 
0.04 ± 0.08 High (0) 

0.83 ± 0.28 

(0.17) 
0.04 0.13 

BMJM 20 (0.5) 
6.05 ± 3.53 

(0.74) 

0.98 ± 0.03 

(0.02) 
0.1 ± 0.21 

Medium 

(0.5) 
na (1) 1 0.68 

SWFO 223 (0) 
6.64 ± 1.68 

(0.67) 

0.94 ± 0.02 

(0.06) 
0.13 ± 0.06 High (0) 

0.88 ± 0.13 

(0.12) 
0.1 0.16 

GRBE 639 (0) 
7.07 ± 1.22 

(0.62) 

0.94 ± 0 

(0.06) 
0.04 ± 0.03 High (0) 

0.64 ± 0.31 

(0.36) 
0.16 0.18 

RING 7 (1) 
7.14 ± 2.04 

(0.61) 

0.63 ± 0.44 

(0.37) 
0.29 ± 0.49 Low (1) na (1) 0.04 0.47 

MART 202 (0) 
6.4 ± 1.8 

(0.7) 

0.94 ± 0.01 

(0.06) 
0.07 ± 0.05 High (0) 

0.76 ± 0.19 

(0.24) 
0.11 0.17 

FISH 14 (1) 
4.93 ± 2.56 

(0.88) 

0.91 ± 0.09 

(0.09) 
0.2 ± 0.42 

Medium 

(0.5) 
na (1) 0.18 0.48 

LEWE 9 (1) 
6.22 ± 2.33 

(0.72) 

0.99 ± 0.01 

(0.01) 
0.11 ± 0.33 

Medium 

(0.5) 
na (1) 0.45 0.54 

BFFE 4 (1) 
5.25 ± 2.5 

(0.84) 

0.38 ± 0.49 

(0.62) 
0.5 ± 0.58 Low (1) na (1) 0 0.54 

WOLV 192 (0) 
6.16 ± 2.5 

(0.73) 

0.92 ± 0.03 

(0.08) 
0.12 ± 0.08 High (0) 

0.06 ± 0.66 

(0.94) 
0.46 0.37 

RIOT 202 (0) 
6.46 ± 2.5 

(0.69) 

0.86 ± 0.04 

(0.14) 
0.24 ± 0.09 

Medium 

(0.5) 

0.99 ± 0.03 

(0.01) 
0.19 0.24 

CALY 232 (0) 
5.84 ± 1.54 

(0.77) 

0.93 ± 0.03 

(0.07) 
0.1 ± 0.09 High (0) 

0.69 ± 0.33 

(0.31) 
0.31 0.26 

MOOS 4930 (0) 
6.73 ± 1.44 

(0.66) 

0.64 ± 0.01 

(0.36) 
0.18 ± 0.02 High (0) 

0.97 ± 0.05 

(0.03) 
0.05 0.16 

BISH 1716 (0) 
6.76 ± 1.47 

(0.66) 

0.8 ± 0.02 

(0.2) 
0.24 ± 0.03 High (0) 

0.98 ± 0.04 

(0.02) 
0.12 0.17 

WPTU 21 (0.5) 
9.43 ± 2.48 

(0.32) 

0.93 ± 0.06 

(0.07) 
0.2 ± 0.35 Low (1) na (1) 0.12 0.36 

WSSS 19 (1) 
7.42 ± 2.67 

(0.57) 

0.85 ± 0.16 

(0.15) 
0.25 ± 0.35 Low (1) na (1) 0.22 0.51 

GPEL 7 (1) 
5.43 ± 1.4 

(0.82) 

0.69 ± 0.47 

(0.31) 
0.43 ± 0.53 Low (1) na (1) 0.23 0.58 

GSHO 148 (0) 
8.11 ± 2.47 

(0.49) 

0.81 ± 0.05 

(0.19) 
0.19 ± 0.13 High (0) na (1) 0.05 0.21 

NSBL 112 (0) 
9.54 ± 3 

(0.31) 

0.86 ± 0.05 

(0.14) 
0.19 ± 0.13 

Medium 

(0.5) 

0.79 ± 0.17 

(0.21) 
0.09 0.17 

PFLI 34 (0.5) 
7.26 ± 3.6 

(0.59) 

0.92 ± 0.04 

(0.08) 
0.29 ± 0.23 Low (1) na (1) 0.11 0.4 

PRLI 3 (1) 
7 ± 1.73 

(0.63) 

0.3 ± 0.48 

(0.7) 
0.33 ± 0.58 Low (1) na (1) 0.53 0.69 

NTLI 13 (1) 
7.62 ± 3.25 

(0.55) 

0.99 ± 0.01 

(0.01) 
0.05 ± 0.16 

Medium 

(0.5) 
na (1) 0.23 0.44 
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NMLS 6 (1) 
4.17 ± 0.41 

(0.98) 

0.97 ± 0.5 

(0.03) 
0.5 ± 0.55 Low (1) na (1) 0.19 0.57 

PRRR 4 (1) 4.5 ± 1 (0.94) 
0.4 ± 0.51 

(0.6) 
0.5 ± 0.58 Low (1) na (1) 0.08 0.57 

RUBO 51 (0.25) 
6.9 ± 2.09 

(0.64) 

0.9 ± 0.04 

(0.1) 
0.25 ± 0.2 

Medium 

(0.5) 

0.86 ± 0.15 

(0.14) 
0.25 0.3 

EYBR 60 (0.25) 
7.63 ± 3.2 

(0.55) 

0.86 ± 0.06 

(0.14) 
0.13 ± 0.15 

Medium 

(0.5) 

0.79 ± 0.2 

(0.21) 
0.2 0.27 

PHNS 22 (0.5) 
7.32 ± 3.05 

(0.59) 

0.83 ± 0.13 

(0.17) 
0 ± 0 

Medium 

(0.5) 
na (1) 0.15 0.35 

PAMS 19 (1) 
6.26 ± 1.79 

(0.72) 

0.9 ± 0.1 

(0.1) 
0.3 ± 0.26 Low (1) na (1) 0.26 0.55 

GBGS 15 (1) 
6.93 ± 2.79 

(0.63) 

0.94 ± 0.05 

(0.06) 
0.1 ± 0.21 

Medium 

(0.5) 
na (1) 0.11 0.42 

BULL 145 (0) 
8.67 ± 2.82 

(0.42) 

0.82 ± 0.03 

(0.18) 
0.21 ± 0.1 

Medium 

(0.5) 

0.88 ± 0.09 

(0.12) 
0.08 0.18 

BHRS 8 (1) 
7.75 ± 3.06 

(0.53) 

0.78 ± 0.41 

(0.22) 
0.13 ± 0.35 Low (1) na (1) 1 0.79 

WAGS 129 (0) 
8.19 ± 3.08 

(0.48) 

0.7 ± 0.08 

(0.3) 
0.36 ± 0.14 Low (1) 

0.77 ± 0.28 

(0.23) 
0.11 0.28 

PLGA 18 (1) 
6.5 ± 2.92 

(0.69) 

0.8 ± 0.2 

(0.2) 
0.35 ± 0.41 

Medium 

(0.5) 
na (1) 0.08 0.44 

RSGS 32 (0.5) 
7.78 ± 1.91 

(0.53) 

0.85 ± 0.07 

(0.15) 
0.27 ± 0.22 

Medium 

(0.5) 
na (1) 0.26 0.41 

VAGS 2 (1) 
9 ± 1.41 

(0.38) 

0.1 ± 0.21 

(0.9) 
0 ± 0 Low (1) na (1) 0 0.45 

SGSN 24 (0.5) 
7.5 ± 2.99 

(0.56) 

0.92 ± 0.16 

(0.08) 
0.13 ± 0.32 

Medium 

(0.5) 
na (1) 0.17 0.36 

PRRS 281 (0) 
6.88 ± 2.07 

(0.64) 

0.78 ± 0.03 

(0.22) 
0.36 ± 0.1 

Medium 

(0.5) 

0.82 ± 0.11 

(0.18) 
0.07 0.23 

MFRS 35 (0.5) 
9.6 ± 3.28 

(0.3) 

0.97 ± 0.03 

(0.03) 
0.03 ± 0.11 

Medium 

(0.5) 
na (1) 0.17 0.31 

 




