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ABSTRACT  

In Wyoming, the Bureau of Land Management (BLM) is responsible for managing Threatened, 
Endangered, and sensitive (TES) plant species. A critical aspect of managing TES plants is having a 
good understanding of their distribution on the landscape. The Wyoming Natural Diversity 
Database, Rocky Mountain Herbarium, and others have conducted botanical surveys and 
inventories for years, resulting in a large number of presence records for many rare plants in the 
state. However, some areas of the state have not been as thoroughly surveyed, leading to gaps in the 
available presence data for species. Predictive distribution modeling is becoming increasingly 
common as a method for filling in these types of survey gaps, providing a more complete picture of 
a species’ potential distribution. We produced predictive distribution models for 47 TES plant 
species in Wyoming. The resulting models are not a substitute for field surveys, but they can be 
used to inform field surveys or to provide a “first-pass” filter for evaluating potential management 
actions.  
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INTRODUCTION  

In Wyoming, the Bureau of Land Management (BLM) manages Special Status Species that include 
those plant species designated by BLM as sensitive1, as well as Threatened and Endangered plant 
species recognized under the Endangered Species Act. One key to effective resource management is 
understanding the geographic distribution of the resource in question. The Wyoming Natural 
Diversity Database (WYNDD; University of Wyoming) maintains plant distribution data 
representing a synthesis of known distribution of Wyoming plant species of concern2, including all 
TES species and other native species whose viability is in question in the state. The WYNDD 
database integrates available documentation including the collection data of the Rocky Mountain 
Herbarium (RM) and the robust plant survey data of WYNDD botanists, and other work by 
botanists statewide. These data have all been digitized to reflect any accompanying information 
available on location precision and geographic extent. They have been integrated to reflect spatial 
discreteness or overlap and accrual of information over time, such that records separated by some 
distance are inferred to represent separate populations. We refer to a spatially discrete record as an 
element occurrence records, i.e., a working approximations of a population. Throughout this report, 
the word “record” with no other qualifier refers to population-level data as processed and stored in 
the WYNDD database.  

Nearly any set of records will provide an incomplete picture of a species’ distribution, since they do 
not indicate whether a species may be present in unsurveyed areas. A key problem is that negative 
data (i.e., locations where a species was surveyed for but not found) are rarely archived in a 
database, unlike presence records. Thus, it is often unclear whether the blank areas on maps 
showing presence records represent unoccupied areas, or are simply areas that were never 
surveyed for the species. Likewise, it is sometimes unclear whether clusters of records reflect areas 
of high suitability for a species, or are merely the product of uneven or spatially-biased sampling 
effort resulting from constraints such as study areas limits or private land accessibility.  

Distribution modeling has become a common method for assessing potential distribution in these 
blank areas with a prediction of suitability for occupancy by a species3-7. Deductive distribution 
models use expert knowledge to create a rule set that predicts suitability for occupancy based on 
important environmental characteristics of the landscape (e.g., land cover type). Inductive 
distribution models use statistical or machine learning methods to identify relationships between 
points of known presence or absence and the underlying environmental gradients, and model these 
relationships to allow the prediction of the species’ distribution across the study area8.  

WYNDD previously modeled the potential distribution of TES plants species for BLM Wyoming, 
using a combination of deductive and inductive methods3. Inductive models were generated using 
Classification and Regression Trees (CART)9 to model available presence and inferred absence 
locations based on underlying characteristics of topography, climate, substrate, and land cover. 
Deductive models were generated for species with insufficient presence data (i.e., fewer than eight 
presence locations available), and were created by the “range/intersection” method. The 
range/intersection method identified ranges or values for continuous or categorical environmental 
characteristics, respectively, based on observed values at presence locations, and then mapped the 
intersection of these “ranges” of suitable values as areas of predicted presence.  

Although these models have proven useful tools for informing land management, planning, and 
field work in the state of Wyoming, the presence data were based on single centroids to represent 
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each record, and the negative data were based on RM thesis collection sites and a single centroid for 
the collection area of one or more sections. Since that time, all “centroid point” records have been 
converted either to polygons or to points buffered to indicate the degree of mapping uncertainty. In 
addition, many additional status reports entailing field surveys by WYNDD and additional floristic 
theses completed at RM have resulted in major expansions of distribution data for some species, as 
well as additions and deletions to the species of concern list.  

Further, extensive research and application of species distribution modeling during the past 10-15 
years have led to new insights, methods, and datasets that can be used to improve models. A 
number of new statistical and machine learning procedures have been developed for, or newly 
applied to, the problem of distribution modeling, including a number of methods that use 
randomization10, regularization11, cross-validation5, and other techniques to improve models for 
species with limited presence data. Such methods were not computationally practical when the 
2003 modeling work was underway, but are now possible due to faster computers and more 
efficient algorithms. Likewise, the library of available spatial layers representing environmental 
attributes for Wyoming continues to grow, allowing modelers to more closely match the 
biologically-relevant factors influencing species distributions. Finally, WYNDD and many other 
researchers have gained experience in distribution modeling that translates into new approaches 
that can help address previous shortcomings in modeling theory and data. 

This project used inductive modeling with a commonly applied algorithm to generate predictive 
distribution models for 47 TES plant species in Wyoming. While distribution models, like all 
models, are subject to error, they offer a useful representation of a species’ potential distribution 
that complements existing presence records. The resulting models can be used to guide surveys for 
new populations, or to assess potential overlap between modeled distributions and planned 
management activities or disturbances. All modeling input and output data, summary statistics, and 
methods are presented in this report, and are available as digital products from WYNDD. 
Suggestions are also given for how these models can be used, as well as for data collection and 
consolidation priorities for the future that could enhance the next generation of models for 
Wyoming’s priority plant species. 

METHODS  

OVERVIEW  

Presence data used to model the target species were derived from downloads of WYNDD’s 
observation database (Biotics).  Presence data for all plant species of concern, obtained from the 
same database, were used as background, or pseudo-absence data to allow for contrasting 
environmental conditions at sampled locations versus those where each species was recorded. 
These training presence and background data were evaluated against GIS layers representing a 
suite of biologically-relevant environmental gradients using Random Forest12. Random Forest is a 
machine-learning algorithm that builds upon CART models with a more computationally-intensive 
randomization algorithm that can boost performance dramatically over CART procedures. Random 
Forest was chosen over other approaches because it has been shown to perform well with 
relatively small sample sizes, and can automatically model interaction terms, non-linear responses, 
and categorical variables12. The resulting models were “projected” onto the environmental gradient 
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data to produce maps showing predicted distribution for the target species. Model training, 
evaluation, and assessment were carried out using methods commonly employed in distribution 
modeling. 

PRESENCE DATA COLLECTION AND PROCESSING  

Threatened, Endangered and sensitive (TES) species represent 40 of the modeled species 
represented in this project, they are the only plant species in Wyoming with any federal status, and 
these TES species have all been the focus of one or more systematic WYNDD surveys.  Each survey 
project sought to expand known distribution using some combination of remote sensing, GIS work 
with predictor layers, field reconnaissance, and extensive field work. As such, they have relatively 
robust presence data. 

WYNDD’s Biotics database was the source of all occurrence data used in building models, and 
provided approximately 3,000 observation records of the target species. The number of 
observation records available by species varied dramatically, from over 226 records for Beaver Rim 
phlox to just 2 total records for Winward’s goldenweed (Table 1). Since species may substantially 
shift their distributions over time in response to changes in climate and land use patterns, relating 
historical records to the environmental gradients might not produce a model that accurately 
predicts current distribution. Thus, records representing observations from before 1970 were 
excluded. Likewise, occurrence records with a mapping precision higher (i.e., worse) than 1200 
meters were also excluded. This distance is commonly applied to the many plant records that have 
been located to section. Excluding less precise records reduces the possibility that a poorly-mapped 
point location will reduce model quality, by falsely indicating presence in an unsuitable setting. 

Although species distribution modeling is typically based solely on points representing a 
documented observation for the target species, and values for the associated cells in GIS rasters 
representing the environmental predictors at that single, specific location, plant records from 
WYNDD’s database comprise two basic and distinct types of representations, both referred to as 
“source features.” First, WYNDD’s database contains points of documented presence with an 
uncertainty buffer applied, resulting in a circular feature. All records that have collection data as 
their most detailed source of information are mapped as points.  

Second, WYNDD maintains mapped polygons of occupied habitat, originating from boundaries 
drawn in GIS based on field notes and/or GPS data. Records that have survey data as their most 
detailed source of information are usually mapped as polygons, unless the entire source feature fits 
within an area of 20 m radius. These two different source feature types required different 
processing methods in order to relate the records to specific environmental gradient values (Figure 
1). For buffered presence points, the centroid of each circular feature was used, as this minimized 
the potential spatial error in a point’s location. For each mapped polygon of occupied habitat, a grid 
of points was generated at 30 m spacing within each polygon, aligned with the centroids of the 30 m 
raster cells used to represent environmental predictors. By creating multiple, gridded points to 
represent each habitat polygon rather than using a single polygon centroid, more information was 
available from each polygon. Although using all gridded points in a model would represent a form 
of pseudoreplication13, iterative resampling (explained further in the “Model Generation” section, 
below) allowed the use of more of the information available in the gridded points while preventing 
pseudoreplication issues.  



2016 7 

 

Figure 1. Polygon source features representing occupied habitat, as in the case of the elongate shape 
represented by a red polygon in the lower left, were sub-sampled using gridded points spaced at 30 m, 
shown here as blue dots. Source features representing buffered points were sub-sampled using a single 
centroid for the circular feature, as shown in the circular feature and corresponding centroid on the 
right. These two sets of points were combined to generate the presence points used in modeling. 

Table 1. Presence location data by species. Totals indicate the number of presence locations for the 
species derived from WYNDD records. Modeling presence points indicate the number of presence 
locations used for model training after filtering for record age and precision. 
 

Common Name Scientific Name 
Federal 
Status 

Total 
Presence 

Points 

Modeling 
Presence 

Points 

Absaroka beardtongue Penstemon absarokensis Sensitive 136 134 

Barneby's clover Trifolium barnebyi Sensitive 18 18 

Beaver Rim phlox Phlox pungens Sensitive 226 225 

Big Piney milkvetch Astragalus drabelliformis No status 117 107 

Blowout penstemon Penstemon haydenii Endangered 28 28 

Cary's beardtongue Penstemon caryi 
Formerly 
sensitive 

109 100 

Cedar Mountain Easter-daisy Townsendia microcephala Sensitive 12 12 

Cedar Rim thistle Cirsium aridum Sensitive 40 29 
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Common Name Scientific Name 
Federal 
Status 

Total 
Presence 

Points 

Modeling 
Presence 

Points 

Colorado butterfly plant 
Gaura neomexicana var. 
coloradensis 

Threatened 74 42 

Desert yellowhead Yermo xanthocephalus Threatened 18 18 

Devil's Gate Twinpod Physaria eburniflora No status 52 48 

Dorn's Twinpod Physaria dornii Sensitive 56 54 

Dubois milkvetch 
Astragalus gilviflorus var. 
purpureus 

Sensitive 86 42 

Entire-leaved peppergrass Lepidium integrifolium Sensitive 23 23 

Evert's waferparsnip Cymopterus evertii Sensitive 43 37 

Fremont bladderpod Lesquerella fremontii Sensitive 99 94 

Gibbens' beardtongue Penstemon gibbensii Sensitive 30 30 

Green river greenthread Thelesperma caespitosum Sensitive 13 13 

Hyattville milkvetch 
Astragalus jejunus var. 
articulatus 

Sensitive 13 13 

Laramie columbine Aquilegia laramiensis Sensitive 81 81 

Laramie false sagebrush Sphaeromeria simplex Sensitive 146 146 

Large-fruited bladderpod Lesquerella macrocarpa Sensitive 34 34 

Long-awned alkali wild-rye 
Elymus simplex var. 
luxurians 

Sensitive 221 220 

Many-stemmed spider-flower Cleome multicaulis Sensitive 9 9 

Meadow milkvetch Astragalus diversifolius Sensitive 16 16 

Meadow pussytoes Antennaria arcuata Sensitive 92 92 

Nelson's milkvetch Astragalus nelsonianus 
Formerly 
sensitive 

87 75 

Opal phlox Phlox opalensis No status 108 100 

Owl Creek miner's candle Cryptantha subcapitata Sensitive 18 16 

Ownbey's thistle Cirsium ownbeyi Sensitive 59 58 

Pale blue-eye-grass Sisyrinchium pallidum 
Formerly 
sensitive 

41 40 

Payson beardtongue Penstemon paysoniorum No status 59 47 

Persistent sepal yellowcress Rorippa calycina Sensitive 111 109 

Porter's sagebrush Artemisia porteri Sensitive 164 164 
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Common Name Scientific Name 
Federal 
Status 

Total 
Presence 

Points 

Modeling 
Presence 

Points 

Precocious milkvetch Astragalus proimanthus Sensitive 26 26 

Prostrate bladderpod Lesquerella prostrata Sensitive 27 27 

Rocky Mountain twinpod 
Physaria saximontana var. 
saximontana 
 

Sensitive 94 88 

Shoshonea Shoshonea pulvinata Sensitive 52 51 

Sidesaddle bladderpod 
Lesquerella arenosa var. 
argillosa 

Sensitive 23 21 

Small rockcress Boechera pusilla 
Candidate 

(was 
Sensitive) 

8 8 

Stemless beardtongue Penstemon acaulis Sensitive 54 54 

Trelease's racemose 
milkvetch 

Astragalus racemosus var. 
treleasei 

Sensitive 35 32 

Tufted Twinpod Physaria condensata Sensitive 95 90 

Uinta greenthread Thelesperma pubescens Sensitive 51 51 

Ute ladies' tresses Spiranthes diluvialis Threatened 28 28 

Ward's goldenweed Oonopsis wardii No status 55 47 

Williams' waferparsnip Cymopterus williamsii Sensitive 64 64 

Woolly Twinpod Physaria lanata No status 52 46 

Wyoming tansymustard Descurainia torulosa Sensitive 37 30 

 

NEGATIVE DATA COLLECTION AND PROCESSING  

True absence data for a given species are seldom available, since researchers typically do not 
explicitly record locations where they surveyed for a species but failed to find it. Even when 
negative results from surveys are recorded, they seldom are databased in any way that makes them 
readily accessible in numbers sufficient for distribution modeling. Survey routes have routinely 
been recorded in field notes, but such negative data have not routinely been digitized and 
databased. 

Moreover, it is often unclear whether a survey that did not record a species truly represents an 
unoccupied location; it is possible, instead, that the surveyor simply failed to detect the species, for 
a variety of reasons14. For example, many plant species cannot be found or identified with certainty 
outside of a discrete phenological window (e.g., Ute ladies-tresses), and some species are cryptic or 
at least small and easily-overlooked (e.g., Cedar Mountain Easter-daisy). A few species have the 
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capacity to remain alive belowground through the growing season so that individual plants, if not 
their populations, are dormant for all survey purposes (e.g., Ute ladies-tresses). 

Given the typical lack of reliable absence data, methods have been developed to generate “pseudo-
absence” or “background” data points15, 16. Such methods use background data in order to 
distinguish between the environmental gradients present in areas that are used by a species versus 
those that are available to the species. One method for creating a background dataset that is 
commonly used with the Maxent algorithm for distribution modeling, for example, is to select a 
large number (e.g., 10,000) of random points from the modeling area to represent the gradients 
available to a species17. However, this approach assumes that the presence dataset that will be 
contrasted to the random points is itself a product of random or exhaustive sampling.  

Botanical initiatives of recent decades, including the pioneering studies of Robert Dorn and the 
floristic inventories of RM, have aimed for systematic approaches to botanical survey coverage 
across the state. WYNDD surveys have addressed the need for detailed information on the rarest 
species. However, these survey initiatives have had discrete scopes and logistical constraints, and 
nearly all were focused on public lands, so gaps remain in coverage of rare plant presence records.  

If sampling bias is not accounted for, a presence-only modeling approach which uses randomized 
background points may produce a model that predicts sampling effort better than it predicts a 
species’ true distribution18. These types of broader-scale sampling biases were addressed in this 
project by using a target background group approach16, rather than the default method of selecting 
random background points or some other means of generating background data. This approach 
attempts to mirror spatial sampling bias in the presence data for a species by selecting background 
data – often records for related species – that derive from surveys exhibiting similar spatial biases. 
Matching the biases in the presence data for a target species with similar biases in the background 
data helps to factor out systemic sampling bias in modeling, resulting in a model that more 
accurately reflects a species’ distribution. Further, since most of the rare plant presence points used 
in this modeling project derive from WYNDD botanical surveys, it is reasonable to assume that, had 
a species been present at any surveyed site, it would have been recorded. Thus, to generate 
background data for modeling a given species, locations from WYNDD’s database for all other 
species of concern or potential concern were used. Rather than use the gridded points generated for 
all species, a centroid was generated for the source features representing all plant species of 
concern or potential concern in Wyoming, to avoid skewing the background dataset to the largest 
source features. Highly imbalanced sets can result in models that emphasize correct classification of 
the majority class – absence, in the case of the plant models – over correct classification of the 
minority class (presences). Thus, a down-sampling approach was also used to balance the number 
of presence and absence points used in modeling (see the “Model Generation” section below, for 
details).  

For two BLM sensitive species, Meadow Milkvetch and Meadow Pussytoes, preliminary models 
generated as part of this project were used to select additional sampling targets for a separate BLM 
project that involved testing early rounds of the potential distribution models in 2014 field work, as 
well as revisiting imprecisely mapped populations, and identifying potential habitat using 
photointerpretation19. Field work resulted in approximately 10 new presence points based on 
photointerpretation, better mapping of several previously documented locations, and 
approximately 82 locations where surveys were conducted but the species were not found. The 
source features resulting from these new presence locations, and the surveyed, negative locations 
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were added to the presence and pseudo-absence sets, respectively, for subsequent modeling. New 
records of a third BLM sensitive species, Multi-stemmed spider-flower, were also documented, and 
presence points were generated from results that were added for revising its model as well. The 
field work also pointed to the need for adding wetland layers for modeling the potential 
distribution of these wetland species. 

ENVIRONMENTAL DATA ORGANIZATION AND PROCESSING  

The predictor data used to build distribution models represent environmental characteristics or 
gradients identified as important in influencing species distributions, and are typically stored as 
raster datasets in a Geographical Information Systems (GIS) platform. Modelers commonly include 
predictor layers describing gradients related to climate, vegetation, elevation, and soils, but for 
selected species, more specific predictors representing other characteristics of landscape pattern, 
hydrology, interspecific interactions, or disturbance may be important in limiting distribution8. 

The linkages between a species’ distribution and these predictor layers may be direct, as in the case 
of a grassland plant species that occurs only in locations with no forest canopy cover. However, 
predictor layers used in building distribution models are often more indirectly related to 
distribution. For example, a plant species’ distribution may be limited to areas with a particular soil 
moisture regime that is not directly represented with available GIS layers. Instead, indirect 
measures of site moisture such as topographic position or climate might prove useful in modeling 
the species. Thus, a useful predictor set may contain attributes that are intuitively important to a 
species as well as attributes that are somewhat harder to interpret. 

The factors that influence a species’ distribution vary across differing spatial scales, from broad-
scale gradients like climate to fine-scale parameters such as soil texture20. Accordingly, the spatial 
predictor layers used to build distribution models should represent a similar range of scales in 
order to produce the most reasonable models21.  A list of potentially useful predictor data layers 
was generated after reviewing available information for the modeled species. Standard climatic, 
elevation, and vegetation predictors were added to the list of potential predictors that were initially 
identified. 

The full list of potential predictors included data layers related to climate, topography, land 
use/land cover, soils and substrate, and surface water. Climatic variables were downloaded from 
the WorldClim website (http://www.worldclim.org/current) and included the 30 arc-second 
Bioclim data, representing useful seasonal and monthly means, ranges, and extremes of 
temperature and precipitation22. Topographic variables were derived from the National Elevation 
Dataset23 using a variety of transformations to provide representations of important topographic 
attributes, including elevation, slope, aspect, ruggedness, and site moisture. Hydrology predictors 
quantified Euclidean distance to water or wetland habitats, and prevalence of water on the 
landscape, based on hydrology layers prepared by the National GAP Program24. Land cover 
variables included percent cover for forest, shrubs, and herbaceous plants, as well as bare ground, 
from the LANDFIRE dataset25, 26. Soils predictors described chemistry, texture, and moisture 
parameters derived from the STATSGO dataset27. Many layers that were categorical in their native 
format (e.g., soils, vegetation) were transformed into continuous gradients to avoid issues that can 
result from inclusion of categorical predictors in models. More detailed descriptions and references 
for each variable are provided in Appendix 1. 
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MODEL GENERATION ,  VALIDATION ,  AND DISPLAY 

The Geospatial Modeling Environment (GME28) was used to attribute the shapefiles representing 
training presences and background points with values for all potential predictor variables, and the 
associated attribute tables were exported as comma-delimited (CSV) files. Predictor variable values 
were evaluated for multicollinearity. Multicollinearity (i.e., strong correlations between predictor 
variables) can increase the standard errors of coefficients in regression29, changing the 
interpretation of which predictors are most important in a model. Although algorithms such as 
Random Forest are more robust to the effects of multicollinearity than is regression, these methods 
may still overfit when the number of potential predictors is high relative to the number of training 
data points8. Thus, the set of predictor layers was evaluated for pairwise correlations using the 
statistical software, R30. Sets of potential predictors with high pairwise correlations were identified, 
and in each case the subset of predictors that had the lowest multicollinearity was retained. For 
example, the Bioclim predictors describing Mean Diurnal Temperature Range (bioclim2), 
Temperature Seasonality (bioclim4), and Annual Temperature Range (bioclim7) have moderate to 
high pairwise correlations (Figure 2). Bioclim2 and bioclim4 are the most different pair among this 
set, and can predict bioclim7 with an adjusted r-squared of 0.988. In this example set, bioclim7 was 
therefore excluded from the potential predictors because it contains the least unique information in 
the set. 

After eliminating highly collinear predictors, each species was evaluated and the pertinent 
literature was reviewed to flag relevant predictors for inclusion in an initial round of modeling on a 
species-specific basis. An initial round of modeling was done to identify the most informative subset 
of predictors, and a subsequent round of modeling used the resulting predictor subset for each 
species.  

Since using all gridded points for presence source features would amount to pseudoreplication, and 
using all background points would result in class imbalance31, 32, an iterative approach was taken 
that used resampling to build many models from many subsets of the presence and absence data. 
For each iteration, a subsample of presence and absence data were selected, and a model was 
constructed based on those subsamples. Presence point subsamples for the iteration were created 
by randomly selecting a point from each source feature, to avoid pseudoreplication that would be 
caused by taking multiple points from a single source feature. Absence points were randomly 
“down-sampled”32 so that there were three times the number of absence points compared to 
presence points.  

Prior to modeling, a covariance matrix was generated from the full set of absence data, to provide a 
measurement of covariance for the predictor values at all absence points. Next, the initial round of 
modeling for each species used all potential predictors identified for the species, and generated 
summary statistics to allow for objective variable reduction in the next round. After each training 
set subsample (presence and absence) was drawn, a single Random Forest model was generated by 
growing 500 trees with the mtry parameter -- the number of predictors to try at each node -- set by 
default to the square root of the number of total predictors12. The subsample of absence data from 
that iteration was then appended to the absence subsamples from previous iterations, and a new 
covariance matrix was calculated from this cumulative set of absences. The resulting covariance 
matrix was then checked for equivalence with the covariance matrix for the full absence dataset (at 
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alpha level of 0.005), to ensure that the full range of variability contained in the full absence 
dataset, with respect to the predictor variable values, was captured in the cumulative subsets of  

 

Figure 2. Mean Diurnal Temperature Range (bioclim2), Temperature Seasonality (bioclim4), and 
Annual Temperature Range (bioclim7) were correlated with one another at moderate to high levels 
in pairwise comparisons, with bioclim2 and bioclim4 being the most different. Bioclim7 was 
excluded from the set of potential predictors as it can be predicted by a combination of bioclim2 and 
bioclim4 with an adjusted R-squared of 0.988. 

training absences. Iterative subsampling and modeling continued until covariance of background 
data converged and the number of iterations was at least 100. The resulting Random Forest models 
from each iteration were then combined into a single Random Forest model comprising at least 
50,000 trees. A plot of the out-of-bag (OOB) error rate12 for the combined model resulting from 
each iteration was generated to help determine whether models had stabilized within the number 
of iterations run. No spatial output was produced from this round of modeling, as the intent was 
simply to provide the summary statistics necessary to perform objective variable reduction in a 
subsequent round of modeling.  
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To determine which predictors should be removed for each species based on output from the first 
round of modeling, the Mean Decrease in Accuracy (MDA)33 importance parameter was stored for 
each model iteration. Then, a p-value was generated as the proportion of iterations where the Mean 
Decrease in Accuracy for a predictor was not greater than 0. This is the probability, in other words, 
that permuting (randomizing) the values for a given predictor and re-running the model with the 
permuted values lead to a better model, which would only be expected if the variable were not truly 
informative. As the number of tests performed is equal to the number of predictors evaluated, the 
number of predictors included in the model was multiplied by the calculated p-value to get a 
Bonferroni-adjusted p-value. This Bonferroni-adjusted p-value was then used as a criterion for 
identifying predictors to exclude from the next modeling round. Any predictors with a Bonferroni-
adjusted p-value > 0.05 were excluded from the next round of modeling. Permutation-based 
approaches such as this one have been shown to be less prone to overfitting when compared to a 
backward stepwise elimination34-36. 

Following the first round of modeling, statistical and spatial output was reviewed. Input datasets 
were modified in order to improve models, where possible. It provided a database quality control in 
which questionable presence points generated from the WYNDD database were identified as such 
for edits in the WYNDD database and removal from the modeling dataset. New (2015) locations for 
the two sensitive species of alkaline meadows were added to the presence dataset, while data 
representing negative surveys were added to the absence dataset.  

Three predictor layers were added to the set of potential predictors, based on model output review 
and an evaluation of key predictor layer shortcomings in the first round of modeling. A “distance to 
wetland habitat” layer was generated by combining data layers on streams, wetlands, and other 
wetland habitat types, since wetland species, as a group, appeared to have the least refined models 
in the first round. A “bedrock calcium” layer was created by rescoring a bedrock geology layer into 
ordinal categories of calcium carbonate concentration, to help refine models for calciphiles – 
another group for which the first round of models were largely unsatisfactory. Finally, a “biome” 
layer was generated by combining ecoregions into a more generalized map, to help narrow model 
predictions to the appropriate biome for species that were extremely limited in this regard. 
Appendix 1 contains more details related to the creation of each of these new predictors. 

After modification of the presence/absence and predictor datasets, two rounds of modeling were 
repeated: 1) an initial round with all potential predictors and no spatial output, to help identify the 
most important predictors; and 2) a second round using the reduced predictor set and writing full 
spatial output and summary statistics. The resulting set of models was compared to the original set 
generated in the first two rounds, to determine whether the revised input data improved the model 
for each species. Statistical output and spatial output were evaluated to determine which model 
was most useful for each species. As each of the 100 iterations of a model for a species generated 
500 trees, the summary statistics were calculated as the mean of each statistic, based on OOB 
samples, across all 50,000 trees, using a predicted probability threshold of 50%. Statistics used to 
evaluate models included the OOB error, True Skill Statistic (TSS)37, and sensitivity and specificity38.  
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RESULTS  

OVERVIEW  

Of the fifty-two plant species identified as potential candidates for modeling, three were not able to 
be modeled due to data limitations. A preliminary model could not be generated for Winward’s 
goldenweed, as only two presence locations exist for the species39, so preliminary distribution 
models were created for 51 species. Following review of preliminary models, two other species – 
Wyoming locoweed and Desert glandular phacelia – were eliminated from the modeling set. 
Wyoming locoweed was eliminated because only a small fraction of known records for the species 
have currently been incorporated into WYNDD’s database. Desert glandular phacelia was excluded 
from subsequent modeling due to taxonomic uncertainties.   

Potential distribution models therefore were produced for 49 plant species, including TES species 
as well as others that are globally rare and that are found on BLM lands in Wyoming. Models for 
two of the Threatened and Endangered species – Desert yellowhead and Blowout penstemon – 
were rejected following review of all model output. The model generated for Desert yellowhead as 
part of this project was rejected due to the existence of a better model, generated previously as a 
separate project, with more intensive and species-specific methods6. The model for Blowout 
penstemon was rejected because the active sand dune habitats with which it is associated are 
dynamic in nature40 and therefore cannot be represented by a static predictor layer. In total, 
predictive distribution models for 47 species were selected and delivered as final products of this 
project. A detailed summary of the final model for each species, including presence and predictor 
data overviews, model performance measures, and maps showing model output for each species 
can be found in Appendix 2 of this report.  

PRESENCE DATA  

The number of presence points used in modeling ranged from 8 (Small rockcress) to 225 (Beaver 
Rim phlox), with a median of 46. Useful species distribution models have been generated by other 
researchers with as few as 5-50 presence points8, 15, 41-46, though there appears to be some 
consensus that having greater than 50 presence points results in more robust models8. Twenty-one 
species had greater than 50 presence points, while 13 species had fewer than 30 presence points, a 
lower limit suggested by several authors (see Franklin and Miller8 for a thorough discussion of 
sample size considerations). Interestingly, the model with the poorest performance statistics – 
Payson beardtongue – had the median number of locations, 47, used in modeling, while the model 
for Colorado butterfly plant had a similar number of locations (42), and was among the best-
performing models.  Presence data for Payson beardtongue was almost exclusively based on 
collection records (i.e., single points recorded near where a species was collected), whereas 
Colorado butterfly plant had presence data based primarily on surveys that generated detailed 
polygons of occupied habitat, rather than a single collection point. This suggests that the polygon 
level data, and the iterative subsampling that was done to maximize the information gleaned from 
these polygon data, may enable the production of better models when compared to single-point 
data. 

 An alternate possible explanation is that Payson beardtongue occurs across a broader range of 
settings compared to other modeled species (foothills in southwest Wyoming to dry, semi-desert 



2016 16 

basins in the central part of the state), whereas Colorado butterfly plant occupies a fairly narrow 
and specific niche (riparian zones in extreme southeast Wyoming). More presence locations are 
typically needed when a species is more broadly distributed and general in its habitat 
requirements8. Further, Payson beardtongue is not listed as a BLM Sensitive species, and has not 
been the focus of targeted surveys, meaning that the current collection of presence locations might 
offer an incomplete picture of its distribution.  

The WYNDD database reflects current species taxonomic understanding, and presence data as used 
for this project followed the same framework. For example, it has been hypothesized that Phlox 
pungens, a state endemic, comprises two separate varieties in two separate geographic areas of its 
distribution. The taxonomic research is ongoing, and Phlox pungens presence points were modeled 
in a single set rather than as two sets. 

PREDICTOR DATA  

A total of 63 potential predictors (Table 2) were identified for inclusion in the variable selection run 
for each species, after eliminating predictors to reduce collinearity. The Bioclim predictor set22 was 
trimmed from 19 to 10 potential predictors, to reduce collinearity in the predictor set tested for 
each species.  Three soil parameters, Percent Clay, Percent Sand, and Percent Silt, were perfectly 
collinear as a set, so for each species where soil texture was identified as important, the most 
biologically-relevant subset of two were included as potential predictor, and the third was 
excluded. The Topographic Position Index (TPI47, 48) and Vector Ruggedness Measure (VRM49) 
predictors, each created using neighborhood sizes of 3, 5, 11, 21, and 31 cells, were highly collinear. 
Eliminating the versions of these predictors created with 5 and 21 cell neighborhoods greatly 
reduced collinearity among the set, so TPI and VRM predictors based on neighborhood sizes of 3, 
11, and 31 cells were included as potential predictors, where identified as potentially informative. 
Topographic Position Index, in particular, may work best when layers calculated at multiple 
neighborhood sizes are used, as this helps to identify landforms (e.g., ridgetops, valley bottoms, 
midslopes48) that may be important to plants. 

Bioclimatic predictors appeared in final models for the greatest number of species, and also had 
high average importance, across species. Bioclim13 (precipitation of wettest month) and bioclim6 
(minimum temperature of coldest month) were included in nearly all models and had the highest 
average importance values of any predictors, across all species. The high relative importance of 
these two bioclimatic predictors that describe extremes in temperature and precipitation is in line 
with findings of other researchers who concluded that seasonal highs and lows are more important 
in defining species’ distributions than are annual means of these climate parameters (see 8).  

Bare ground cover (bare), ruggedness (vrm11 and vrm31), topographic position (tpi_11 and 
tpi_31), elevation (elev), and biome all appeared in the final models for at least half of the modeled 
species, with elevation and bare ground cover having the highest average importance across all 
models. Many of the soil parameters (e.g., percent sand, percent silt, soil pH, and organic matter) 
were eliminated from the models for most species due to low importance values, but had high 
average importance values to the models in which they remained. Predictors that measured 
proximity to water or presence of saturated soil conditions (e.g., distance to wetland habitat, 
distance to water, available soil water content, ksat_surf) had high importance values for wetland 
and riparian species.  
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Three predictors developed specifically for this project – biome, calcium carbonate concentration 
and distance to wetland habitat – proved important in refining models for select species. Distance 
to wetland habitat refined models for wetland species by better representing various wetland 
types, compared to layers previously used in modeling. Biome helped to constrain predictions for 
species that primarily occurred in a limited set of biomes (e.g., reducing the amount of distribution 
predicted in montane areas for species that are only known from basin settings). 

Table 2. Predictor layers included in modeling, with the number of final models that included the 
predictor and the average importance (Mean Decrease Accuracy) of that predictor across models 
including that predictor. 

Name Predictor 
Number 

of 
Models 

Average 
Importance 

A¹ (Transformed Aspect -- Southeast/Northwest Gradient) aprime135 2 0.002 

A¹ (Transformed Aspect -- North/South Gradient) aprime180 3 0.003 

A¹ (Transformed Aspect -- Southwest/Northeast Gradient) aprime45 3 0.004 

A¹ (Transformed Aspect -- West/East Gradient) aprime90 4 0.002 

Available water capacity, top 200 cm awc 4 0.009 

Available water capacity, surface soil layer awc_surf 2 0.003 

Bare ground cover bare 43 0.016 

Mean Temperature of Warmest Quarter bioclim10 47 0.021 

Annual Precipitation bioclim12 47 0.024 

Precipitation of Wettest Month bioclim13 45 0.036 

Precipitation Seasonality (Coefficient of Variation) bioclim15 46 0.026 

Precipitation of Driest Quarter bioclim17 47 0.018 

Precipitation of Warmest Quarter bioclim18 47 0.026 

Mean Diurnal Range (Mean of monthly (max temp - min temp)) bioclim2 47 0.022 

Isothermality (BIO2/BIO7) (* 100) bioclim3 46 0.022 

Temperature Seasonality (standard deviation *100) bioclim4 46 0.027 

Min Temperature of Coldest Month bioclim6 46 0.035 

Biome biome 26 0.013 

Calcium Carbonate Percentage top 200 cm caco3 11 0.006 

Calcium Carbonate Percentage surface layer of Soil caco3surf 3 0.010 

Soil cation-exchange capacity, top 200 cm cec 0 NA 

Soil cation-exchange capacity, surface soil layer cec_surf 3 0.008 

Conifer Index confr 0 NA 

Landscape Contagion Index contag 1 0.015 

Compound Topographic Index cti 15 0.004 

Distance to Cliffs d2cliffs40 3 0.021 

Distance to Rock Outcrop d2outcrop 5 0.004 

Distance to Permanent Standing Water d2psw 2 0.014 

Depth to shallowest restrictive layer d2srl 2 0.014 

Distance to Any Water d2w 3 0.028 
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Name Predictor 
Number 

of 
Models 

Average 
Importance 

Distance to Wetland Habitat d2wethab 8 0.025 

Depth to water table dep2watr 2 0.002 

Soil Electrical Conductivity top 200 cm ec 1 0.003 

Elevation elev 31 0.019 

Flooding Frequency Class flood_freq 2 0.001 

Mean Forest Cover forest 2 0.003 

Calcium rating of bedrock geology formation geol_calc 6 0.019 

Growing Degree Days growdd 1 0.029 

Herbaceous Cover Index herb 1 0.002 

Heat Load Index HLI 9 0.003 

Erosion Factor, K, Whole Soil, surface layer of Soil kfact_surf 1 0.017 

Saturated Hydraulic Conductivity (KSAT), top 200 cm ksat 2 0.003 

Saturated Hydraulic Conductivity (KSAT), surface soil layer ksat_surf 2 0.008 

Soil organic matter, top 200 cm orgmat 9 0.024 

Soil organic matter, surface soil layer orgmatsurf 4 0.032 

Percent clay, top 200 cm pclay 6 0.009 

Percent clay, surface soil layer pclaysurf 2 0.033 

Percent sand, top 200 cm psand 18 0.021 

Percent sand, surface soil layer psandsurf 6 0.028 

Percent silt, top 200 cm psilt 19 0.016 

Percent silt, surface soil layer psiltsurf 6 0.009 

Sagebrush Index sage 2 0.007 

Soil sodium adsorption ratio top 200 cm sar 1 0.007 

Shrub Index shrub 3 0.018 

Degree Slope slope 22 0.008 

Soil pH, top 200 cm soilph 14 0.022 

Soil pH, surface soil layer soilphsurf 6 0.013 

Topographic Position Index, 11-cell focal window tpi_11 28 0.004 

Topographic Position Index, 3-cell focal window tpi_3 15 0.002 

Topographic Position Index, 31-cell focal window tpi_31 27 0.007 

Vector Ruggedness Measure, 11-cell focal window vrm11 29 0.010 

Vector Ruggedness Measure, 3-cell focal window vrm3 18 0.005 

Vector Ruggedness Measure, 31-cell focal window vrm31 36 0.014 

DISTRIBUTION MODEL OUTPUT  

Initial model runs indicated that covariance matrices derived from cumulative, subsampled 
presence and pseudo-absence locations converged within 100 subsampling iterations for nearly all 
species (Figure 3a). This meant that by the time 100 subsampling iterations had been performed, 
the majority of variability in predictor layer values across all presence/absence locations had been 
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captured, so performing additional iterations would not have a significant impact on the resulting 
models.  Thus, 100 subsampling iterations were used in all subsequent modeling. Likewise, 
preliminary modeling showed that OOB error converged with 500 or fewer trees grown per 
subsampling iteration (Figure 3b), so this number of trees was used for all subsequent models.  

  
Figure 3. P-values for covariance matrix equivalence tests for cumulative subsamples of presence 
and absence data versus the full set of presence and absence data, by subsampling iteration, for 
Williams’ waferparsnip (a). Most species showed a pattern similar to this one, indicating that 100 
subsampling iterations were sufficient for capturing the variability in predictor values across all 
presence and absence points. OOB error by number of trees grown in each subsampling iteration, for 
Williams’ waferparsnip (b). Black dots indicate the mean OOB error associated with the number of 
trees grown in a given Random Forest grown for a subsample of training data; gray bars show one 
standard deviation around the mean. Models for all species exhibited a similar pattern, suggesting 
that growing 500 trees per subsample iteration ensured error convergence. 

 

The median OOB error across final models for all species was 3.1%, indicating that final models for 
most species had low error rates and high accuracy for OOB data points. Similarly, median values 
were high for TSS (91.3%), Sensitivity (93.6%), Specificity (98.0%), and Kappa (91.8%) across all 
species. The model for Long-awned alkali wild-rye had the highest model performance statistics, 
overall, with an OOB error of 0.3%. This species is restricted to active sand dunes and adjacent 
plains with sandy soils, in a contiguous area in southwest Wyoming50. Unlike the dune fields on 
which Blowout penstemon occurs, the features upon which Long-awned alkali wild-rye depends 
appear to be well defined by available soils data and other predictor layers. The most important 
predictors included in the model for Long-awned alkali wild-rye, in descending order of 
importance, were soil organic matter, shrub cover, precipitation of warmest quarter, and percent 
sand, and the relationships with these predictor layers were relatively strong and were consistent 
with habitat descriptions for the species50.  

It is worth noting that the summary statistics presented here pertain to binary versions of models 
created with a logistic probability threshold set at 50%. Though a commonly used, default 

a) b) 
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threshold, 50% is often not the optimal threshold for a distribution model based on presence and 
pseudo-absence data deriving from spatially biased or otherwise unrepresentative sampling51. 
Thus, binary versions of each model based on a refined probability threshold likely would have 
higher model performance scores. 

Model deliverables for each species are highlighted in Appendix 2 and comprise two expressions of 
the final model selected for the species: 1) a version representing the raw, predicted probability 
values; and 2) a four-category version created by applying thresholds to produce a simplified and 
more interpretable layer. The three threshold values used to generate the four-category expression 
of the model were: 

1) The minimum predicted probability assigned to any known presence locations 
2) The predicted probability associated with the 25th percentile of probability values assigned 

to known presence locations (i.e., a threshold selected such that 25% of known presence 
locations had lower predicted probabilities than this threshold) 

3) The predicted probability associated with the 75th percentile of probability values assigned 
to known presences 

Binning the model output into categories based on predicted probability at known presences 
resulted in models that display varying levels of likelihood, while at the same time conveying a 
sense of the uncertainty that is inherent with any model. The categories resulting from application 
of the above thresholds can be interpreted as:  

1) Predicted Absent 
2) Low predicted probability of presence  
3) Medium predicted probability of presence 
4) Highest predicted probability of presence 

Further interpretations and guidance regarding these categories can be found in the Discussion 
section. Additionally, another threshold, “MaxTSS” -- the threshold that maximizes the TSS – was 
identified using the GENetic Optimization Using Derivatives routine in the rgenoud52 package for R. 
This is an optimization routine that was used to identify an optimal threshold that maximizes a 
function summing the specificity and sensitivity for a binary version of the model with a given 
threshold. Applying this threshold to the probability raster will yield a binary version of each model 
that balances the tradeoff between correctly predicting presence, and minimizing incorrect 
prediction of absences as presence (i.e., commission error). 

Table 3. Model performance for final models, by species. Statistics shown here are based on out-of-bag 
(OOB) samples, using a classification threshold of 50% predicted probability. 

Common 
OOB 
Error 

TSS Sensitivity Specificity Kappa 
Max S+S 

Threshhold 

Absaroka beardtongue 6.8% 83.9% 89.5% 94.5% 82.3% 0.5911 

Barneby's clover 4.4% 87.7% 90.3% 97.4% 88.2% 0.5285 

Beaver Rim phlox 5.1% 88.8% 93.4% 95.4% 86.8% 0.4783 

Big Piney milkvetch 4.6% 89.5% 93.4% 96.1% 88.0% 0.6666 

Cary's beardtongue 5.5% 86.3% 90.5% 95.8% 85.4% 0.6680 

Cedar Mountain Easter-daisy 2.8% 92.9% 94.9% 98.0% 92.7% 0.7624 
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Common 
OOB 
Error 

TSS Sensitivity Specificity Kappa 
Max S+S 

Threshhold 
Cedar Rim thistle 7.7% 77.8% 82.0% 95.8% 79.2% 0.6443 

Colorado butterfly plant 0.9% 98.0% 98.7% 99.3% 97.7% 0.4500 

Devil's Gate twinpod 4.8% 87.6% 90.9% 96.7% 87.4% 0.5112 

Dorn's twinpod 2.0% 95.2% 96.7% 98.5% 94.8% 0.7393 

Dubois milkvetch 0.9% 97.1% 97.4% 99.7% 97.6% 0.6404 

Entire-leaved Peppergrass 1.8% 94.0% 94.7% 99.3% 95.0% 0.6938 

Evert's waferparsnip 6.0% 83.3% 86.8% 96.4% 83.9% 0.4225 

Fremont bladderpod 1.2% 95.6% 95.7% 99.8% 96.8% 0.5964 

Gibbens' beardtongue 2.7% 90.3% 90.8% 99.5% 92.7% 0.4357 

Green river greenthread 1.3% 98.2% 99.8% 98.3% 96.6% 0.8875 

Hyattville milkvetch 0.6% 99.2% 99.9% 99.3% 98.5% 0.5854 

Laramie columbine 1.4% 94.5% 94.7% 99.8% 96.1% 0.6786 

Laramie false sagebrush 0.9% 98.1% 98.8% 99.2% 97.7% 0.5575 

Large-fruited bladderpod 6.0% 86.0% 91.1% 94.9% 84.3% 0.4027 

Long-awned alkali wild-rye 0.3% 99.3% 99.6% 99.8% 99.2% 0.7032 

Many-stemmed spider-flower 1.8% 97.4% 99.7% 97.7% 95.3% 0.7180 

Meadow milkvetch 5.8% 83.7% 87.3% 96.5% 84.3% 0.4568 

Meadow pussytoes 1.6% 95.6% 96.6% 99.0% 95.7% 0.4764 

Nelson's milkvetch 6.7% 79.8% 83.3% 96.6% 81.6% 0.6331 

Opal phlox 6.5% 82.6% 86.9% 95.8% 82.7% 0.5173 

Owl Creek miner's candle 3.6% 90.7% 93.3% 97.4% 90.4% 0.1996 

Ownbey's thistle 3.1% 91.5% 93.6% 98.0% 91.6% 0.4359 

Pale blue-eye-grass 4.9% 85.7% 88.5% 97.3% 86.7% 0.6107 

Payson Beardtongue 14.6% 57.8% 65.8% 92.0% 59.8% 0.5921 

Persistent sepal yellowcress 3.1% 90.9% 92.4% 98.5% 91.8% 0.7264 

Porter's sagebrush 0.9% 97.7% 98.3% 99.4% 97.7% 0.5339 

Precocious milkvetch 1.0% 98.6% 99.9% 98.7% 97.4% 0.8373 

Prostrate bladderpod 2.7% 92.9% 94.9% 98.0% 92.7% 0.7109 

Rocky Mountain twinpod 6.1% 82.3% 85.7% 96.6% 83.5% 0.4242 

Shoshonea 4.9% 87.2% 90.5% 96.7% 87.0% 0.4207 

Sidesaddle bladderpod 0.5% 99.3% 100.0% 99.4% 98.7% 0.6917 

Small rockcress 0.5% 99.3% 100.0% 99.3% 98.6% 0.8574 

Stemless beardtongue 1.9% 95.6% 97.1% 98.5% 95.1% 0.5816 

Trelease's racemose milkvetch 4.9% 88.9% 93.2% 95.8% 87.2% 0.7572 

Tufted twinpod 3.5% 91.3% 94.0% 97.3% 90.6% 0.6463 

Uinta greenthread 1.4% 97.5% 99.0% 98.5% 96.4% 0.5918 

Ute ladies' tresses 1.3% 97.9% 99.4% 98.5% 96.6% 0.8618 

Ward's goldenweed 3.5% 89.2% 90.9% 98.4% 90.5% 0.5857 

Williams' waferparsnip 2.5% 93.0% 94.6% 98.4% 93.2% 0.5132 

Woolly twinpod 7.7% 77.3% 81.2% 96.1% 79.1% 0.5026 

Wyoming tansymustard 6.5% 83.3% 88.0% 95.3% 82.7% 0.4944 
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DISCUSSION  

USAGE AND LIMITATIONS OF DISTRIBUTION MODELING  

In species distribution modeling, there is uncertainty and error inherent in presence and pseudo-
absence points, predictor layers, and the underlying mechanistic processes that shape actual 
distribution. Presence points can be mismapped in processing data or in any facet of reporting field 
results, including transcription error or over- or under-representation of occupied habitat. 
Presence points can also be based on misidentification, a shortcoming that WYNDD addresses in 
quality control steps. Finally, presence points may not be representative of a species’ distribution, 
or they can derive from biased sampling efforts and as a consequence suggest an unrealistic picture 
of the species’ distribution. Predictor layers can exhibit error in both position and value, leading to 
spurious conclusions about the relationship between a predictor and a species’ distribution. Finally, 
the underlying mechanisms that influence a species’ distribution can be inordinately complex, 
nuanced, or otherwise challenging to represent accurately with a simplified model. For many rare 
plant species in Wyoming, distribution appears to be a function of both available habitat and 
processes associated with geographic isolation. Thus, models like those prepared in this project 
represent “potential distribution.” Despite the presence of error and uncertainty, such models 
remain useful hypotheses about a species’ geographic distribution, as long as users understand the 
inherent limitations of each model.  

MODEL INTERPRETATION AND USAGE  

The output values from distribution models are commonly thought of as a logistic probability of a 
species’ presence, but the actual interpretation is typically more nuanced. Without substantial and 
representative absence data, it is impossible to determine the species’ extent across large 
landscapes51, since it is unknown whether empty spots on the “dot maps” of species observations 
are truly unoccupied. Thus, there is no direct way to estimate the true probability of a species’ 
presence at any given location. Instead, output values from models such as the ones developed for 
this project should be viewed as relative indices of suitability for a species. Output from two 
different models cannot be directly compared (i.e., a value of 0.5 in a model for one species may not 
mean the same thing as a value of 0.5 in another species’ model, and the true probability of a 
species occurring in such a location may not be 50% in either case). Higher output values should 
generally correspond with a higher probability of presence, and vice-versa, so models can be used 
to identify the areas that have the highest potential for species’ presence. 

Distribution models such as those produced in this project can help identify the species of interest 
that are potentially present in a proposed project area. They might also identify areas of potentially 
high concentrations of target species, or potential habitat for a priority species, at a coarse scale. 
Planners can use such maps to identify possible locations for Areas of Critical Environmental 
Concern, or to help them determine areas that may be more suitable for development with minimal 
adverse impacts to biodiversity or to a particular species8.  

Distribution models can also be used to guide field surveys. By selecting the areas predicted by a 
model to be most suitable, researchers can hone in on the most likely locations to find a particular 
species to make the most of limited field project budgets. Moreover, by evaluating model output in 
the context of known presence points, researchers can focus on areas a model deems suitable but 
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that currently have no known records for the species, potentially expanding its known distribution. 
However, models should not be used in place of site-level, clearance surveys for TES species, as the 
predictor layers used to create distribution models are generally too coarse to make an accurate 
prediction at this scale. For project planning at a site-level, models can provide only an indication of 
whether the species is predicted to be “in the neighborhood,” in which case field surveys are likely 
warranted.  

Final model products from this project were delivered both as continuous, predicted suitability 
values and as simplified output showing four ordinal categories of suitability. Any use of a 
distribution model may require expressing the model differently by applying different thresholding 
or symbology in mapping the model output. A biologist interested in locating a particular species, 
for example, would most benefit by limiting their sampling to only the areas predicted to be most 
highly suitable for their target species (i.e., focusing on only the top-most category – “Highest 
predicted probability of presence”). Conversely, a manager tasked with evaluating the potential 
impact of development for a species or group of species may want to err on the side of caution, by 
considering even areas of lower predicted likelihood of presence to be potentially occupied and 
warranting field surveys (i.e., ruling out only the “Predicted Absent” category”).  

Caution must also be exercised when evaluating partial plots: graphs showing likelihood of 
presence as a function of each variable, holding all other variables constant. While indirect 
predictor layers such as elevation might contribute substantially to the accuracy of a model, it 
would not be correct in most cases to state, for example, that elevation has a specific effect on 
distribution. Rather, elevation most likely influences temperature, precipitation, vegetation, soils, or 
other gradients that more directly limit a species’ distribution. Biological understanding is thus 
important in interpreting partial plots – particularly those for more indirect predictors.53 

OCCURRENCE DATA LIMITATIONS  

While researchers have used a variety of modeling approaches to produce useful models with as 
few as ten training presences, model performance generally improves with increasing sample size54, 

55, possibly leveling off somewhat at 50 to 100 training presence points15, 42, 43. Approximately half of 
the modeled species had 50 or more usable presence points, and all but two had 10 or more points, 
so it is likely that the resulting models will have utility in management. Some of the species 
represented by these models may have distributions that extend beyond the currently known 
distributions; in these cases, substantially better models may result if additional, independent 
observations are made in expanded portions of the species’ distributions and added to the 
modeling sets for these species.  

True negative (i.e., absence) records were not available in a readily usable format for the set of 
modeled species. While modeling based on presence-background data is common, true negative 
data can be used to provide models that discriminate more sharply between areas of predicted 
presence and absence56. Additionally, true absence data allow the modeler a broader suite of 
potential modeling algorithms, including standard statistical methods such as generalized linear 
models29, or methods like occupancy modeling57 that directly account for imperfect detection, when 
sample sizes are sufficiently large. Absence data may be difficult to generate, as it requires 
relatively detailed knowledge of survey effort and design, and the amount of survey effort required 
to confidently assign a location as an absence varies by species58.  Nevertheless, given the benefits 
of absence data for distribution modeling, it warrants further consideration. WYNDD is currently in 
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the process of creating a new observations database that will provide the ability to store and 
compile survey efforts and negative datasets for species. This will allow for the production of more 
refined models as time goes by and negative data accumulate in the database. 

PREDICTOR DATA LIMITATIONS  

For most plants, soil characteristics are extremely important in limiting distribution, and this has 
been recognized for native plants in Wyoming59. Unfortunately, detailed digital soils data layers 
(SSURGO27) are not currently available as a statewide coverage for Wyoming, and likely will not 
become available for a number of years (J. Bauchert, pers. comm.). Although portions of the state 
have coverage of the detailed soils layers, making use of the data in a subset of the study area 
introduces large areas where no predictions can be made, as they lack the necessary predictor 
values. Statewide soils layers provide some information that can help in model building, but 
completion of the more detailed, SSURGO soil data layer would allow much more precise 
predictions to be made. Users of the models can use SSURGO data layers, in combination with 
model output if SSURGO coverage is available for their project area. 

For at least one of the species modeled in this project -- Blowout penstemon – habitat suitability is a 
dynamic characteristic on the landscape40. This species is restricted to very active sand dune 
features60, 61, and both the dunes and features within them are discontinuous, meaning that the 
spatial extent and configuration of habitat may vary over time. While some existing GIS data layers 
map dune extents over time, any models using these layers as predictors would need to be updated 
frequently to provide a current prediction of species distribution. One practical alternative is to 
maintain a more general distribution model for such species, and to use ancillary data such as 
digital aerial imagery, to guide precise field work or assist with assessing and mapping habitat 
quality. 

For other species, such as Ute ladies-tresses, there were excellent presence/pseudo-absence data 
for eastern Wyoming but not for the rest of the state. In theory, results of WYNDD wetland survey 
projects could be used to generate meaningful absence data. But at this point, the species’ 
distribution from adjoining states cannot readily be put to use because the environmental data 
layers do not span state boundaries. 

SUGGESTIONS FOR FUTURE WORK  

As with any analysis or modeling project, collecting additional training data can improve 
distribution models. Clearly, additional observation records for modeled species – particularly 
records some distance away from existing records – will provide additional information for 
modeling. Similarly, absence data for the modeled species could greatly improve models in two 
ways: 1) presence-absence models can draw a sharper distinction between occupied and 
unoccupied habitat; and 2) the availability of absence data in addition to presence data allows the 
use of many other modeling algorithms, including established statistical methods like regression. 
Inferences drawn from presence-absence models are generally more straightforward than those 
drawn from presence-only models. Absence data can be collected directly, when a species is 
surveyed for but not found, or it can be created retroactively based on prior survey work that found 
other species, but not the target species. While creating pseudo-absence data from locations where 
other species were recorded seems reasonable in this case, explicitly building negative datasets for 
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each species could greatly improve models, particularly at fine scales. WYNDD has recently created 
a new database that allows for the structured storage and retrieval of negative data. Consolidating 
the negative records that currently exist as assorted GIS files and printed records into the new 
database would help lay the groundwork for a future modeling effort using true presence/absence 
methods.  

As with presence point data, collection or generation of newer and better predictor datasets should 
continue to be a priority for modeling work. This includes refinement of existing data layers, and 
development of new data layers based on remotely sensed data that are made available on a regular 
basis as satellite imagery becomes more ubiquitous. Ideally, there would be replacement of 
surrogate layers with ones that are directly derived. The rare species addressed in this project are 
habitat specialists, and while we tried to address those that are calciphiles, there are others that 
have substrate requirements that are not shared with other species. If time permits, developing 
species-specific layers by rescaling, scoring, or combining other datasets may improve models.  

Land cover layers were not directly used in constructing the models for these species. Land cover 
layers no doubt contain useful information, but are problematic for inductive modeling, as variables 
with many of categories tend to be preferentially selected by modeling algorithms even when the 
relationship with the categories is spurious.62 If a conceptual understanding of a species’ 
distribution suggests that vegetative community strongly influences distribution, one could assign 
species-specific, numerical suitability ratings to each land cover type to produce a continuous index 
from these categorical data. While somewhat subjective in their definition, indices such as these 
have proven invaluable in previous modeling efforts.5 Alternatively, land cover layers could be used 
to produce a standard deductive model that predicts distribution based on a binary suitability value 
(suitable/not suitable) for each land cover type. This deductive model could then be combined with 
an inductive model for the same species using a simple multiplicative raster overlay to eliminate 
areas that are not within suitable land cover types. This approach has also been successfully 
implemented in prior modeling work.4 
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