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ABSTRACT  

We produced predictive distribution models for 38 plant species that occur on or adjacent to the SNF, 

using a common algorithm and methods. These Wyoming models can be used to guide surveys looking 

for new populations of each species, and can also be used as a “coarse filter” for evaluating the potential 

impacts of management activities or development on the species. As with all models, uncertainty exists, 

and their use on SNF might be enhanced by environmental data layers unique to the Forest. These 

distribution models should not be used as a substitute for field surveys. 
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INTRODUCTION  

The Shoshone National Forest (SNF) manages for Sensitive1 species and species of local concern (SOLC2). 

Sensitive species in particular receive special emphasis in planning and management activities to assure 

their conservation. On the SNF, this includes 24 Sensitive plant species as well as 23 plant species with 

SOLC designation.  

Effective management of priority plant species requires an understanding of where a species is found on 

the landscape. Existing data provide an indication of where priority species are currently known to occur 

on the SNF, but data coverage is invariably uneven. Species distribution modeling can be used to evaluate 

the potential for the occurrence of a species in unsurveyed areas, and has become a common tool for 

informing management of priority species in Wyoming3-7, and elsewhere. Distribution models relate the 

occurrence of a species to important environmental gradients using statistical methods, and then 

extrapolate these statistical relationships using Geographic Information Systems (GIS), to make 

predictions about the likelihood of occurrence for the species in unsurveyed areas. WYNDD has produced 

models for other rare plant species in the state3, 6, 8, but models for most of the SNF Sensitive and SOLC 

species have not been generated prior to this project. 

Many of the predictor datasets and methods used to generate models as part of this project were the 

same as those used for a previous project aimed at modeling the distribution of rare plants on BLM lands 

in Wyoming8. As such, we describe these datasets and methods more generally in this report, and refer 

readers who need additional information to the previous report8 for more detail. In cases where more 

detailed information was deemed necessary to include in this report to effectively describe the datasets 

or methods used, text has been included, in some cases verbatim, from the BLM plant modeling project 

report. The majority of the information related to species-specific model results can be found in Appendix 

2, which contains summary statistics, thumbnails of model output, and other model-specific details. 

METHODS  

OVERVIEW  

Plant species distribution records (hereafter referred to as occurrence records) have been compiled in a 

database managed by the Wyoming Natural Diversity Database (WYNDD; University of Wyoming). For this 

project, occurrence records for 38 species were exported from the database, along with a background, 

pseudo-absence dataset generated from the occurrence records of other plant species of concern in 

Wyoming, from the same database. GIS layers representing environmental gradients relating to climate, 

soils, hydrology, topography, and vegetation were assembled to use as predictor variables. Predictive 

distribution models were then generated using Random Forest9, an extension of Classification and 

Regression Trees (CART) that uses an iterative and stochastic process to produce useful models from 

small training datasets. The resulting statistical models were used to produce GIS layers showing the 

predicted relative probability of occurrence for the candidate species set. Each step in the process is 

described in greater detail on the following pages. 
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SPECIES TARGETS  

The 24 Sensitive plant species and 23 plant species with SOLC designation on the SNF formed the initial 

set of candidate species for modeling. About 60 additional Wyoming plant species of concern or species 

of potential concern (WY-SOC) that are present on SNF were also considered as candidates for 

modeling10. Species in these three groups (Sensitive, SOLC, WY-SOC) were evaluated as prospective 

modeling targets by Michael Kirkpatrick, Forest Botanist in an initial scoring table that also included 

factors such as whether the species has known management concerns and whether it is an endemic. He 

proposed species from all three groups, with WYNDD input, and culled some of the species if there was 

another species target of very similar habitat requirements. SNF harbors some priority species only 

known from 1-2 occurrences; these species were eliminated from consideration as this was too few 

records to produce useful models.  

Thirty-eight plant species were ultimately identified for modeling, including 14 Sensitive species, 8 SOLC, 

and 22 Wyoming species of concern (Table 1). They include species that are state endemics: species for 

which the Wyoming distribution encompasses worldwide distribution. They also include species that are 

regional endemics (geographically restricted, though with distribution extending beyond state borders), 

disjuncts (populations removed by about 300+ miles from the main, contiguous portion of the continental 

range), peripherals (at the perimeter of contiguous distribution), and species that are sparsely distributed 

throughout their range. There was some overlap between the three SNF plant lists and the previous set of 

species modelled for BLM in Wyoming3, 8, and there was no adjustment to targets if a species had 

previously been addressed in the prior study. Specifically, eight species that were included as modeling 

candidates for the SNF had previously been modeled as part of a project for the Wyoming BLM; these 

species were not eliminated as potential modeling candidates since new occurrence or predictor data 

may have become available that could have produced improved models. Further, the non-deterministic 

nature of the Random Forest algorithm and the subsampling routine we employed in each project 

(explained below, in the Model Generation, Validation, and Display section) means that slightly different 

models could result from successive but identical model generation processes, even with identical input 

data. Producing another set of models for these eight species therefore could provide some insight into 

the potential variability in model output with these methods, with very little additional investment of 

time. 

PRESENCE DATA COLLECTION AND PROCESSING  

WYNDD maintains plant occurrence data with supporting bodies of species information, taxonomic 

information, and reference information. The occurrence data are a synthesis of known distribution of 

Wyoming plant species of concern, including all TES species and other rare, native species whose viability 

is in question in the state. The WYNDD observation database integrates available documentation 

including the specimen data of RM and all other studies to produce a comprehensive and cohesive 

picture of each species’ known distribution.  

Systematic floristic surveys have been conducted on SNF through the Rocky Mountain Herbarium (RM) 

that have significantly expanded our understanding of the SNF flora11-14. Major contributions include 

decades of investigation by Erwin Evert15 and Richard Scott16. Substantial floristic documentation was 

built into research natural area establishment reports prepared by WYNDD17-25. WYNDD also conducted 

targeted gap-filling studies of candidate sensitive species on the Forest26. Finally, of the 38 species, nine 
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have been the subject of one or more systematic survey projects, mostly by WYNDD, expanding and 

synthesizing distribution syntheses, as stored in WYNDD’s database, and compilation of status-pertinent 

information in these status reports 27-39. Some of the systematic survey projects were for BLM so the level 

of work on national forest was wanting or incomplete. Each survey project sought to expand known 

distribution using some combination of map interpretation, review of environmental information, review 

of existing distribution data, field reconnaissance, and extensive field work. As such, they have relatively 

robust presence data. There have also been segments of SNF targeted for gap-filling surveys in areas of 

high sensitive species concentrations (e.g., on the North Fork of the Shoshone River) insofar as 

management plans needed more robust data40. This resulted in a wide array of data documentation levels 

among the target species. This body of information is represented in WYNDD databases and in a one-time 

series of species assessment documents produced by WYNDD botanists and others to compile existing 

species’ data throughout the USFS Rocky Mountain Region, including 36 species assessments that address 

36 of the SNF sensitive and rare plant species (posted on 

http://www.fs.usda.gov/detail/r2/landmanagement/?cid=stelprdb5177128 ). 

WYNDD’s Biotics database was queried for all occurrence data used in building models. The database has 

a system to flag dubious records, and a secondary review step was built in to double-check the data 

exports for dubious records and remove them or any others that had unresolved identity questions (e.g., 

those specimens displaying features intermediate between two species, and of possible hybrid origin). 

Since species may no longer be extant at historical sites, relating historical records to the environmental 

gradients might not produce a model that accurately predicts current distribution. Thus, records 

representing observations from before 1970 were excluded. Likewise, occurrence records with a mapping 

buffer representing mapping uncertainty of greater (i.e., worse) than 1200 meters were also excluded. 

This distance is commonly applied to the many plant records that have no greater location detail than 

section. Excluding less precise records reduces the possibility that a poorly-mapped point location will 

introduce noise into modeling, by falsely indicating presence in an unsuitable setting. 

Although species distribution modeling is typically based solely on points representing documented 

observations for the target species, plant records from WYNDD’s database instead comprise two basic 

and distinct types of shapes: points and polygons, both of which are referred to as “source features.” All 

records that have collection data as their most detailed source of information are mapped as points, with 

an uncertainty buffer applied, resulting in a circular feature. By contrast, almost all records that have 

survey data as their most detailed source of information are mapped as polygons of occupied habitat, 

created either as boundaries drawn on field maps and later digitized, or as waypoints collected in the field 

and subsequently used to draw polygons in GIS. Records that have survey data as their most detailed 

source of information are usually mapped as polygons, unless the entire source feature fits within an area 

of 20 m radius.  

These two different source feature types required different processing methods in order to generate 

modeling points and relate the records to specific environmental gradient values (e.g., Figure 1). For 

buffered presence points, the centroid of each circular feature was used, as this minimized the potential 

spatial error in a point’s location. For mapped polygons of occupied habitat, a grid of points was 

generated at 30 m spacing within each polygon, aligned with the centroids of the 30 m raster cells used 

to represent environmental predictors. By creating multiple, gridded points to represent each habitat 

polygon rather than using a single polygon centroid, more information was available from each polygon. 

Although using all gridded points in a model would represent a form of pseudoreplication41, iterative 

http://www.fs.usda.gov/detail/r2/landmanagement/?cid=stelprdb5177128
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resampling (explained further in the “Model Generation” section, below) allowed the use of more of the 

information available in the gridded points while preventing pseudoreplication issues.  

By these methods, approximately 100,000 presence points were generated, representing about 1,750 

mapped occurrence locations for the target species. The number of mapped occurrences available by 

species varied dramatically, from 225 occurrence locations for Beaver Rim Phlox to just 9 for Twinleaf 

cinquefoil (Table 1), with a median of 27. Useful species distribution models have been generated by 

other researchers with as few as 5-50 presence points42-49, though there appears to be some consensus 

that having greater than 50 presence points results in more robust models42. Twelve of the 38 modeled 

species had 50 or more presence points; 20 species had fewer than 30 presence points, a lower limit that 

is sometimes suggested as a minimum (see Franklin and Miller42 for a thorough discussion of sample size 

considerations).  

 

Figure 1. Polygon source features representing occupied habitat, as in the case of the elongate shape 

represented by a red polygon in the lower left, were sub-sampled using gridded points spaced at 30 m, 

shown here as blue dots. Source features representing buffered points were sub-sampled using a single 

centroid for the circular feature, as shown in the circular feature and corresponding centroid on the right. 

These two sets of points were combined to generate the presence points used in modeling. 
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Table 1. Occurrence location data by species. Totals indicate the number of occurrence locations for the 
species derived from WYNDD records. Modeling locations indicates the number of occurrence locations 
used for model training after filtering for record age and precision. *Species modeled by WYNDD as part of 
a previous project8. 
 

Common Name Scientific Name Federal Status 
Occurrence 
Locations 

Modeling 
Locations 

*Absaroka beardtongue Penstemon absarokensis Sensitive 160 136 

Absaroka biscuitroot Lomatium attenuatum  108 92 

Absaroka goldenweed 
Pyrrocoma 
carthamoides var. 
subsquarrosa 

Sensitive 108 82 

*Beaver Rim phlox Phlox pungens  296 225 

*Dubois milkvetch 
Astragalus gilviflorus 
var. purpureus 

 106 43 

English sundew Drosera anglica Sensitive 58 46 

*Evert's waferparsnip Cymopterus evertii 
Species of 
Local Concern 

58 37 

*Fremont bladderpod Lesquerella fremontii Sensitive 147 94 

Hall's fescue Festuca hallii Sensitive 25 19 

Hoary willow Salix candida Sensitive 108 72 

Howard's forget-me-not Eritrichium howardii  34 20 

Ice grass Phippsia algida 
Species of 
Local Concern 

16 10 

Kirkpatrick's ipomopsis 
Ipomopsis spicata var. 
robruthii 

 36 26 

Koenigia Koenigia islandica 
Species of 
Local Concern 

58 42 

Large yellow lady-slipper  
Cypripedium parviflorum 
var. pubescens 

Sensitive 39 23 

Lesser bladderwort Utricularia minor Sensitive 74 66 

Low fleabane Erigeron humilis  20 13 

Moschatel Adoxa moschatellina 
Species of 
Local Concern 

26 13 

Naked-stemmed parrya Parrya nudicaulis 
Species of 
Local Concern 

31 17 

Narrowleaf goldenweed 
Ericameria discoidea 
var. linearis 

 40 19 

North Fork Easter-daisy 
Townsendia condensata 
var. anomala 

Sensitive 158 140 

Oeder's lousewort Pedicularis oederi  46 25 
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Common Name Scientific Name Federal Status 
Occurrence 
Locations 

Modeling 
Locations 

Payson's whitlow-grass 
Draba paysonii var. 
paysonii 

 34 24 

Rockcress whitlow-grass Draba globosa  46 28 

*Rocky Mountain twinpod 
Physaria saximontana 
var. saximontana 

 142 92 

Roundleaf orchid Amerorchis rotundifolia Sensitive 20 10 

Russet cottongrass Eriophorum chamissonis Sensitive 97 72 

Sheathed cottongrass Eriophorum callitrix 
Species of 
Local Concern 

30 14 

*Shoshonea Shoshonea pulvinata Sensitive 98 51 

Snow paintbrush Castilleja nivea  62 50 

Sweet-flowered rock 
jasmine 

Androsace 
chamaejasme var. 
carinata 

Species of 
Local Concern 

42 17 

Teton wire-lettuce Stephanomeria fluminea  46 36 

Trelease's whitlow-grass 
Draba paysonii var. 
treleasii 

 20 14 

Twinleaf cinquefoil Potentilla subjuga  16 9 

Upward-lobe moonwort Botrychium ascendens Sensitive 15 14 

Weber's saw-wort Saussurea weberi 
Species of 
Local Concern 

29 15 

White arctic whitlow-grass Draba fladnizensis  29 14 

*Wyoming tansymustard Descurainia torulosa Sensitive 46 30 

NEGATIVE DATA COLLECTION AND PROCESSING  

True absence data for a given species are seldom available, since most researchers typically do not 

explicitly record locations where they surveyed for a species but failed to find it. Even when negative 

results from surveys are recorded, they seldom are databased in a way that makes them readily 

accessible in numbers sufficient for distribution modeling. Survey routes have routinely been recorded in 

field notes, but such negative data have not typically been digitized and databased. Given the common 

lack of robust absence data, methods have been developed to generate “pseudo-absence” or 

“background” data points43, 50. Such methods use background data in order to distinguish between the 

environmental gradients present in areas that are used by a species versus those in areas that are 

available to the species. One method for creating a background dataset that is commonly used with the 

Maxent algorithm for distribution modeling, for example, is to select a large number (e.g., 10,000) of 

random points from the modeling area to represent the gradients available to a species51. However, this 
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approach assumes that the presence dataset that will be contrasted to the random points is itself a 

product of random or at least representative sampling.  

Botanical initiatives of recent decades, including the pioneering studies of Robert Dorn and the floristic 

inventories of RM, have aimed for systematic approaches to botanical survey coverage across the state. 

WYNDD surveys have addressed the need for detailed information on the rarest species. However, these 

survey initiatives have had discrete scopes and logistical constraints, and nearly all were focused on public 

lands that sometimes have limited access, so gaps remain in coverage of rare plant presence records.  

If sampling bias is not accounted for, a presence-only modeling approach that uses randomized 

background points may produce a model that predicts sampling effort better than it predicts a species’ 

true distribution52. These types of broader-scale sampling biases were addressed in this project by using a 

target background group approach50, rather than the default method of selecting random background 

points or some other means of generating background data. This approach attempts to mirror spatial 

sampling bias in the presence data for a species by selecting background data – often records for related 

species – that derive from surveys exhibiting similar spatial biases. Matching the biases in the presence 

data for a target species with similar biases in the background data helps to factor out systemic sampling 

bias in modeling, resulting in a model that more accurately reflects a species’ distribution. Further, since 

most of the rare plant presence points used in this modeling project derive from WYNDD botanical 

surveys, it is reasonable to assume that, had a species been present at any surveyed site, it would have 

been recorded. Thus, to generate background data for modeling a given species, locations from WYNDD’s 

database for all other species of concern or potential concern were used. Rather than use the gridded 

points generated for all species, a centroid was generated for the source features representing all plant 

species of concern or potential concern in Wyoming, to avoid skewing the background dataset to the 

largest source features. Highly imbalanced sets can result in models that emphasize correct classification 

of the majority class – absence, in the case of the plant models – over correct classification of the 

minority class (presences). As such, a down-sampling approach was also used to balance the number of 

presence and absence points used in modeling (see the “Model Generation” section below, for details).  

ENVIRONMENTAL DATA ORGANIZATION AND PROCESSING  

The factors that influence a species’ distribution vary across differing spatial scales, from broad-scale 

gradients like climate to fine-scale parameters such as soil texture53. Accordingly, the spatial predictor 

layers used to build distribution models should represent a similar range of scales in order to produce the 

most reasonable models54. WYNDD has produced an extensive set of environmental predictor layers for 

distribution modeling, as part of prior modeling projects4, 5, 7. These predictors captured important 

environmental gradients across multiple scales, and related to topography, soils and substrate, hydrology, 

climate, and vegetation. We explored a subset of 75 of these available predictor layers as potential 

predictors of distribution for rare plants on the SNF (see Appendix 1 of this report for a full list of 

potential predictor layers). Although categorical data layers representing mapped units of geology or soils 

have been used for distribution modeling in some cases, we avoided the use of most categorical datasets 

because of the propensity for model overfitting when using categorical layers: particularly those with a 

large number of categories55. We evaluated the possibility of using SNF-specific layers that exist, but 

determined that the benefit of including these more precise data layers would be outweighed in most 

species’ cases by the fact that we would then be unable to use as model training data any occurrence 

locations outside of the area covered by the layers.  
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MODEL GENERATION,  VALIDATION,  AND D ISPLAY  

The original set of potential predictors was evaluated for collinearity within Wyoming as part of a prior 

project8, and those results were used to reduce the set of potential predictors used to generate 

distribution models for plants on the SNF to an initial set of candidates. Briefly, we eliminated predictor 

layers that had a high degree of collinearity with other, more intuitive predictors, across Wyoming. After 

reducing the potential set of predictors based on collinearity, a set of predictor layers was selected for 

each species by reviewing all available information on the biology and habitat requirements of the 

species, erring on the side of initially including predictors that could be informative for each species. 

Random Forest is relatively robust to overfitting9, and some related evaluations done by WYNDD have 

shown that beyond an initial variable selection process by a biologist, further variable reduction does not 

result in substantial differences in models, so no further variable reduction was done as part of this 

project. We used the Geospatial Modeling Environment (GME)56 to assign values from each potential 

predictor layer to the presence and pseudo-absence points. Shapefiles containing these values were then 

exported as CSV files that could be used in Program R57. Models were constructed using all predictor 

layers identified as potentially informative for each species, based on species biology. 

Since using all gridded points for presence source features would amount to pseudoreplication41, and 

using all background points would result in class imbalance58, 59, an iterative approach was taken that used 

resampling to build many models from many subsets of the presence and absence data. Specifically, for 

each iteration, a subsample of presence and absence data were selected, and a model was constructed 

based on those subsamples. Presence point subsamples for the iteration were created by randomly 

selecting a point from each source feature, to avoid pseudoreplication that would be introduced into the 

process by taking multiple points from a single source feature. Absence points were randomly “down-

sampled”59 so that there were three times the number of absence points compared to presence points, 

to mitigate prediction issues due to class imbalance.  

After each training set subsample (presence and absence) was drawn, a single Random Forest model was 

generated by growing 500 trees with the mtry parameter -- the number of predictors to try at each node 

-- set by default to the square root of the number of total predictors9. A total of 100 subsampling 

iterations were performed, as we found during work producing plant distribution models for the BLM that 

this number of iterations adequately captured the variability of predictor data values across presence and 

absence points, leading to stable models8. The resulting Random Forest models from each iteration were 

then combined into a single Random Forest model comprising 50,000 classification trees. A plot of the 

out-of-bag (OOB) error rate9 for the combined model resulting from each iteration was generated to 

further evaluate whether models had stabilized within the number of iterations run. As each of the 100 

iterations of a model for a species generated 500 trees, the summary statistics were calculated as the 

mean of each statistic, based on OOB samples, across all 50,000 trees, using a predicted probability 

threshold of 50%. Statistics used to evaluate models included the OOB error, True Skill Statistic (TSS)60, 

and sensitivity and specificity61. 

RESULTS  

Measures of model performance across all species were relatively good (Table 2). OOB error estimates 

ranged from a low of 0.9% for Fremont bladderpod to 20.4% for Twinleaf cinquefoil, with a median OOB 
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error of 6.9% across all species. TSS scores, which can range from 0 to 100%, with higher values indicating 

better models, ranged from a low of 34.7% to a high of 97.0%, respectively, for Twinleaf cinquefoil and 

Fremont bladderpod. Model performance, as measured by TSS, was weakly correlated with the number 

of source features available for modeling (R² = 0.16), though some species with relatively few points (e.g., 

Roundleaf orchid, Sheathed cottongrass) had relatively high values for TSS. Roundleaf orchid, for 

example, had only ten presence locations available for modeling, but had the fifth highest TSS score 

(93.9%) of all species. This species is extremely narrowly distributed, so it is relatively easy for a modeling 

algorithm to identify a narrow set of environmental gradients within which the species occurs, resulting in 

a prediction that tightly fits known distribution. Conversely, Hoary willow, which had a relatively high 

number of source features available for modeling (72), had relatively poor model performance, especially 

with respect to sensitivity (80.7%). This could be explained by the fact that the species, though a habitat 

specialist, is found in most of the major mountain ranges in Wyoming, and more presence data may be 

needed to adequately represent its distribution.  

Table 2. Model performance for final models, by species. Statistics shown here are based on out-of-bag 

(OOB) samples, using a classification threshold of 50% predicted probability. 

Common 
OOB 
Error 

TSS Sensitivity Specificity Kappa 
Max S+S 

Threshhold 

Absaroka beardtongue 5.7% 84.6% 88.3% 96.3% 84.8% 0.490 

Absaroka biscuitroot 5.0% 88.1% 92.2% 95.9% 86.8% 0.638 

Absaroka goldenweed 3.8% 89.9% 92.4% 97.5% 89.9% 0.646 

Beaver Rim phlox 3.3% 93.4% 96.8% 96.6% 91.3% 0.385 

Dubois milkvetch 1.3% 95.5% 95.7% 99.8% 96.6% 0.572 

English sundew 9.2% 75.4% 81.5% 93.9% 75.5% 0.556 

Evert's waferparsnip 5.8% 83.0% 86.1% 96.9% 84.2% 0.645 

Fremont bladderpod 0.9% 97.0% 97.2% 99.8% 97.6% 0.633 

Hall's fescue 12.1% 63.3% 69.2% 94.2% 66.3% 0.671 

Hoary willow 7.9% 76.7% 80.7% 96.0% 78.6% 0.562 

Howard's forget-me-not 9.0% 70.5% 73.8% 96.7% 74.6% 0.553 

Ice grass 7.4% 82.8% 88.9% 93.9% 80.8% 0.771 

Kirkpatrick's ipomopsis 12.7% 67.0% 75.9% 91.1% 66.5% 0.636 

Koenigia 2.4% 94.6% 96.8% 97.9% 93.6% 0.490 

Large yellow lady-slipper  7.7% 77.6% 81.8% 95.8% 79.0% 0.643 

Lesser bladderwort 7.0% 80.4% 84.7% 95.7% 81.1% 0.661 

Low fleabane 13.4% 64.3% 73.3% 91.0% 64.2% 0.596 

Moschatel 14.9% 85.1% 58.5% 94.0% 57.0% 0.545 

Naked-stemmed parrya 7.2% 81.8% 87.1% 94.7% 81.0% 0.472 

Narrowleaf goldenweed 6.4% 79.4% 81.8% 97.6% 82.3% 0.783 

North Fork Easter-daisy 5.1% 86.8% 90.3% 96.5% 86.6% 0.608 

Oeder's lousewort 2.3% 95.3% 97.4% 97.8% 94.0% 0.543 

Payson's whitlow-grass 10.8% 73.3% 81.5% 91.8% 71.8% 0.520 

Rockcress whitlow-grass 9.6% 77.4% 85.2% 92.1% 75.2% 0.732 

Rocky Mountain twinpod 4.2% 88.5% 91.1% 97.4% 88.9% 0.397 
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Common 
OOB 
Error 

TSS Sensitivity Specificity Kappa 
Max S+S 

Threshhold 

Roundleaf orchid 2.7% 93.9% 96.3% 97.6% 92.9% 0.561 

Russet cottongrass 6.8% 80.6% 84.4% 96.2% 81.7% 0.638 

Sheathed cottongrass 4.8% 91.7% 97.2% 94.5% 87.7% 0.813 

Shoshonea 4.0% 88.9% 91.4% 97.5% 89.2% 0.463 

Snow paintbrush 8.3% 79.5% 85.8% 93.7% 78.2% 0.703 

Sweet-flowered rock jasmine 5.6% 86.2% 90.4% 95.8% 85.3% 0.657 

Teton wire-lettuce 3.3% 91.5% 93.8% 97.7% 91.3% 0.322 

Trelease's whitlow-grass 12.1% 69.0% 77.6% 91.4% 68.2% 0.627 

Twinleaf cinquefoil 20.4% 34.7% 42.9% 91.8% 38.9% 0.713 

Upward-lobe moonwort 9.8% 69.8% 74.3% 95.5% 72.8% 0.620 

Weber's saw-wort 5.5% 86.4% 90.5% 95.9% 85.6% 0.360 

White Arctic Whitlow-grass 11.7% 68.5% 76.3% 92.3% 68.7% 0.747 

Wyoming tansymustard 7.4% 81.1% 86.5% 94.6% 80.3% 0.543 

 

Climate predictors were included in all species’ models, and had an mean importance score (MDA) of 

0.019. Bioclim4 (Temperature Seasonality) and bioclim10 (Mean Temperature of Warmest Quarter) were 

particularly important to species models, with mean importance scores of 0.033 and 0.027, respectively. 

Among other predictors, Soil cation-exchange capacity (cec_surf), slope, and growing degree days 

(growdd) appeared in models for fewer species (7, 1, and 8, respectively), but had had relatively high 

importance values for those species’ models (0.034, 0.033, and 0.032, respectively). Variables based on 

transformations of slope aspect values were of relatively low importance, with all four of these predictors 

having mean MDA scores of 0.001 or below. 

Table 3. Predictor layers included in modeling, with the number of final models that included the predictor 

and the average importance (Mean Decrease Accuracy) of that predictor across models including that 

predictor. 

Name Predictor 
Number 

of 
Models 

Average 
Importance 

A¹ (Transformed Aspect -- Southeast/Northwest Gradient) aprime135 11 0.001 
A¹ (Transformed Aspect -- North/South Gradient) aprime180 11 0.001 
A¹ (Transformed Aspect -- Southwest/Northeast Gradient) aprime45 11 0.001 
A¹ (Transformed Aspect -- West/East Gradient) aprime90 9 0.000 
Available water capacity, surface soil layer awc_surf 11 0.006 
Bare ground cover bare 23 0.004 
Mean Temperature of Warmest Quarter bioclim10 38 0.027 
Annual Precipitation bioclim12 38 0.021 
Precipitation of Wettest Month bioclim13 38 0.016 
Precipitation Seasonality (Coefficient of Variation) bioclim15 38 0.012 
Precipitation of Driest Quarter bioclim17 38 0.019 
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Name Predictor 
Number 

of 
Models 

Average 
Importance 

Precipitation of Warmest Quarter bioclim18 38 0.016 
Mean Diurnal Range (Mean of monthly (max temp - min temp)) bioclim2 38 0.015 
Isothermality (BIO2/BIO7) (* 100) bioclim3 38 0.018 
Temperature Seasonality (standard deviation *100) bioclim4 38 0.033 
Min Temperature of Coldest Month bioclim6 38 0.013 
Biome biome 38 0.007 
Soil cation-exchange capacity, surface soil layer cec_surf 7 0.034 
Landscape Contagion Index contag 4 0.003 
Compound Topographic Index cti 12 0.004 
Distance to Cliffs d2cliffs40 14 0.018 
Distance to Rock Outcrop d2outcrop 14 0.004 
Distance to Permanent Flowing Water d2pfw 3 0.011 
Distance to Wetland Habitat d2wethab 10 0.026 
Depth to water table dep2watr 10 0.003 
Soil Electrical Conductivity top 200 cm ec_surf 6 0.007 
Elevation elev 19 0.023 
Flooding Frequency Class flood_freq 1 0.002 
Forest Canopy Cover forestcc 3 0.019 
Frost Days frostdays 8 0.023 
Calcium rating of bedrock geology formation geol_calc 18 0.009 
Growing Degree Days growdd 8 0.032 
Herbaceous Cover Index herb 1 0.023 
Heat Load Index hli 9 0.003 
Soil organic matter, surface soil layer orgmatsurf 7 0.010 
Percent clay, surface soil layer pclaysurf 3 0.005 
Cottonwood Index pode 1 0.004 
Percent sand, surface soil layer psandsurf 21 0.017 
Percent silt, surface soil layer psiltsurf 23 0.015 
Degree Slope slope 1 0.033 
Soil pH, surface soil layer soilphsurf 6 0.016 
Topographic Position Index, 11-cell focal window tpi_11 26 0.007 
Topographic Position Index, 3-cell focal window tpi_3 26 0.005 
Topographic Position Index, 31-cell focal window tpi_31 24 0.009 
Vector Ruggedness Measure, 11-cell focal window vrm11 14 0.010 
Vector Ruggedness Measure, 3-cell focal window vrm3 14 0.004 
Vector Ruggedness Measure, 31-cell focal window vrm31 14 0.016 
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D ISCUSSION  

USAGE AND L IMITATIONS OF D ISTRIBUTION MODELING  

The quality and utility of predictive distribution models is necessarily limited by the quality and quantity of 

presence/absence data, the availability of important predictor layers, and the uncertainties associated 

with the biogeographic processes that influence realized distribution. Presence data are subject to error 

in recording, reporting, and data entry, and misidentification may be an issue with species for which 

identification is difficult. Available presence data may also be the result of uneven sampling effort, which 

can result in patterns of occurrence locations that are more an artifact of sampling than a manifestation 

of habitat preferences by the species. Likewise, predictor data layers may contain errors, or may fail to 

adequately represent the important environmental gradients that drive the complex biological processes 

that shape distribution.  

For example, the presence data for Twinleaf cinquefoil draws almost completely on collection records. It 

is a species that has been regarded as common in Colorado62 so has not warranted consideration as a 

sensitive species in the USFS Rocky Mountain Region or focus of survey work in SNF. However, the work 

of a Flora of North America expert has provided evidence that it may represent an undescribed species 

restricted to SNF63. The coarseness of this species’ presence data may account for the exceptionally low 

TSS value of its model. 

The species addressed in this project represent many interesting cases, and even with precise presence 

data and ideal environmental layers, it is problematic to model species such as Moschatel. It is distributed 

in both the Black Hills and in the Greater Yellowstone plus one location in the Bighorn Mountains, all with 

similar microhabitat conditions but fundamentally different climate envelopes and landscape differences. 

In other words, this species is present in the Black Hills at elevations that are mostly below 6000 feet and 

are surrounded by the Great Plains, as well as in the Greater Yellowstone landscapes mostly above 6000 

feet in the middle of the Rocky Mountains.  

For many rare plant species in Wyoming, distribution appears to be a function of both available habitat 

and processes associated with geographic isolation. Thus, models like those prepared in this project 

represent “potential distribution.” Despite the presence of error and uncertainty, such models remain 

useful hypotheses about a species’ geographic distribution, as long as users understand the inherent 

limitations of each model.  

MODEL INTERPRETATION AND USAGE  

Potential distribution models are tools, and in the case of SNF, valuable additions to existing tools 

represented by the environmental data layers already developed for the Forest. Although the output 

values from distribution models are commonly thought of as a logistic probability of a species’ presence, 

the actual interpretation is typically more nuanced. Without substantial and representative absence data, 

it is impossible to determine the species’ extent across large landscapes64, since it is unknown whether 

empty spots on the “dot maps” of species observations are truly unoccupied. Thus, there is no direct way 

to estimate the true probability of a species’ presence at any given location. Instead, output values from 

models such as the ones developed for this project should be viewed as relative indices of suitability for a 
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species. Output from two different models cannot be directly compared (i.e., a value of 0.5 in a model for 

one species may not mean the same thing as a value of 0.5 in another species’ model, and the true 

probability of a species occurring in such a location may not be 50% in either case). Higher output values 

should generally correspond with a higher probability of presence, and vice-versa, so models can be used 

to identify the areas that have the highest potential for species’ presence. 

Distribution models such as those produced in this project can help identify the species of interest that 

are potentially present in a proposed project area. They might also identify areas of potentially high 

concentrations of target species, at a coarse scale. Planners can use such maps to help them determine 

areas that may be more suitable for development or management activities with less likelihood of 

adverse impacts to biodiversity or to a particular species42.  

Distribution models can also be used to guide field surveys. By selecting the areas predicted by a model to 

be most suitable, researchers can hone in on the most likely locations to find a particular species to make 

the most of limited field project budgets. Moreover, by evaluating model output in the context of known 

presence points, researchers can focus on areas a model deems suitable but that currently have no 

known records for the species, potentially expanding its known distribution. However, models should not 

be used in place of site-level, clearance surveys for TES species, as the predictor layers used to create 

distribution models are generally too coarse to make an accurate prediction at this scale. For project 

planning at a site-level, models can provide only an indication of whether the species is predicted to be 

“in the neighborhood,” in which case field surveys may be warranted.  

Final model products from this project were delivered as continuous, predicted suitability values, as a 

binary (predicted present/predicted absence) representation, and as simplified output showing four 

ordinal categories of suitability. Any use of a distribution model may require expressing the model 

differently by applying different thresholds or symbology in mapping the model output. A biologist 

interested in locating a particular species, for example, would most benefit by limiting their sampling to 

only the areas predicted to be most highly suitable for their target species (i.e., focusing on only the top-

most category – “Highest predicted probability of presence”). Conversely, a manager tasked with 

evaluating the potential impact of development for a species or group of species may want to err on the 

side of caution, by considering even areas of lower predicted likelihood of presence to be potentially 

occupied and warranting field surveys (i.e., initially ruling out only the “Predicted Absent” category). Any 

additional information that may be available on a local scale, such as detailed soils or geology data for the 

SNF, can be used in conjunction with the models as another indicator of suitability. 

Caution must also be exercised when evaluating the partial plots generated for each species’ model. 

These plots are show the relative likelihood of presence as a function of each variable, holding all other 

variables constant. While indirect predictor layers such as elevation might contribute substantially to the 

accuracy of a model, it would not be correct in most cases to state, for example, that elevation has a 

specific effect on distribution. Rather, elevation most likely influences temperature, precipitation, 

vegetation, soils, or other gradients that more directly limit a species’ distribution. Biological 

understanding is thus important in interpreting partial plots – particularly those for more indirect 

predictors65. 
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OCCURRENCE DATA L IMITATIONS  

Over half of the species modeled as part of this project were known from fewer than 30 distinct locations. 

Thirty locations has sometimes been suggested as a practical lower limit for producing predictive 

distribution models42, though other have produced useful models with far fewer presence locations42-49. 

Models for species with fewer than 30 presence locations available for model building, in particular, 

should be considered an initial hypothesis about potential distribution for the species. Some of the 

species represented by these models may have distributions that extend beyond the currently known 

distributions; in these cases, substantially better models may result if additional, independent 

observations are made in expanded portions of the species’ distributions and added to the modeling sets 

for these species. 

PREDICTOR DATA L IMITATIONS  

For most plants, soil characteristics are extremely important in limiting distribution, and this has been 

recognized for native plants in Wyoming66. Unfortunately, detailed digital soils data layers (SSURGO) are 

not currently available as a statewide coverage for Wyoming, and likely will not become available for a 

number of years (J. Bauchert, pers. comm.). Although portions of the state, including most of the SNF, 

have coverage of the detailed soils layers, making use of the data in a subset of the study area introduces 

large areas where no predictions can be made, as they lack the necessary predictor values. Statewide 

soils layers provide some information that can help in model building, but completion of the more 

detailed, SSURGO soil data layer would allow much more precise predictions to be made. Users of the 

models can add SSURGO data, or other, more detailed predictor layers available for the SNF or other 

locales in the state, in combination with model output, as additional context for model usage. 

Species that were found in several mountain ranges around the state tend to have lower model 

performance scores, on average, than those that occur in relatively isolated and contiguous areas. This 

reflects the relative ease with which a modeling algorithm can identify narrow ranges of environmental 

gradients within which the species occur, for very narrowly distributed species. Hoary willow is also a 

habitat specialist but even more widely distributed across an even broader geographic area, across a 

range of climate envelopes and elevations. For these species, the results suggest the limitations of 

modeling unless sectors of its distribution were modeled separately.  

SUGGESTIONS FOR FUTURE WORK  

Additional presence locations for the modeled species have the potential to improve distribution models. 

New locations that are identified far from previous locations, or in novel habitats, have the greatest 

potential for impacting the results of any subsequent modeling. Substantial and representative absence 

data for the modeled species likewise could improve distribution models, by enabling true 

presence/absence modeling techniques that could produce superior models to those produced with 

presence/background or presence/pseudo-absence methods. 

Absence data can be collected directly, when a species is surveyed for but not found, or it can be created 

retroactively based on prior survey work that found other species, but not the target species. While 

creating pseudo-absence data from locations where other species were recorded seems reasonable in 

this case, explicitly building negative datasets for each species could greatly improve models, particularly 
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at fine scales. WYNDD has recently created a new database that allows for the structured storage and 

retrieval of negative data. Consolidating the negative records that currently exist as assorted GIS files and 

printed records into the new database would help lay the groundwork for a future modeling effort using 

true presence/absence methods.  

As with presence point data, collection or generation of newer and better predictor datasets should 

continue to be a priority for modeling work. This includes refinement of existing data layers, and 

development of new data layers based on remotely sensed data that are made available on a regular 

basis as satellite imagery becomes more ubiquitous. Detailed soil data, in particular, is likely to be 

important in refining models for rare plants in Wyoming, as it eventually becomes available throughout 

the state.  
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