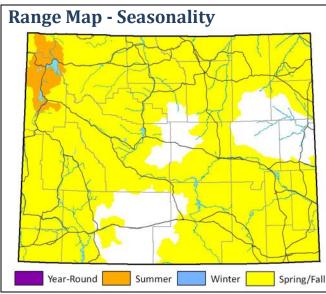
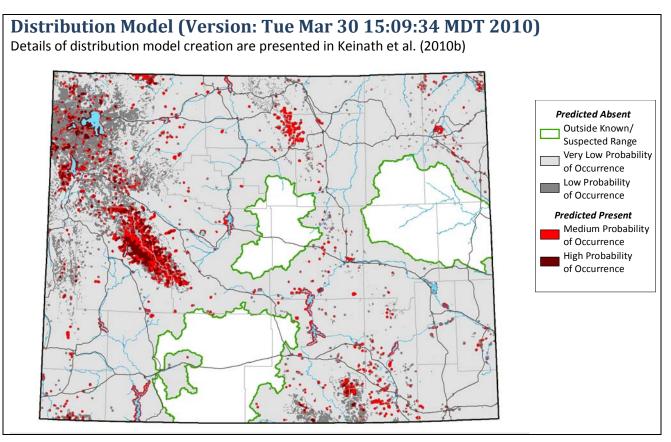

Common Loon (*Gavia immer*) Range Map and Distribution Model Summary

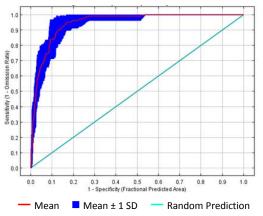

August 20, 2010

This report presents range and distribution of Common Loon (ABNBA01030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 1.000
- Details of range map creation noted in Keinath et al. (2010a).

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

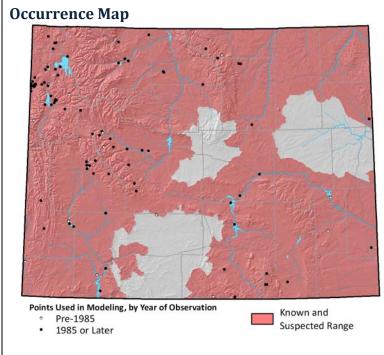
Model Parameters

- Season Modeled: Breeding (25-May- 31-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1399470
- High-Probability Threshold Value: 0.6187087
- Low-Probability Threshold Value: 0.0273487

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH


Expert Assessment: Medium Occurrence Sample Size: Medium-High Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.966 Regularized Training Gain: 2.207

- Average Test AUC: 0.946 ± 0.021
- Upper Bound on Test AUC: 0.950
- Average Test Gain: 1.935 ± 0.356
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.13± 0.14

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 924
- Number of Occurrences used to create distribution model: 98
- Average Point Quality Index (highest quality is 12.00): 6.42 ± 2.21
- Most recent occurrence used: 2008
- Oldest occurrence used: 1979
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E SAMPLES.csv

Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

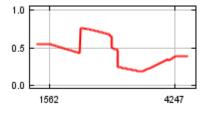
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

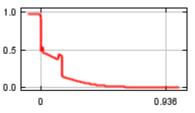
Percent Contribution (PC) to final model

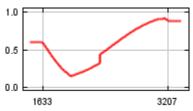
Environmental Variable	РС	
Prevalence of Permenent Standing Water within 1600	70	
meters		
Herbaceous Cover Index	7	
Conifer Index	6	
Annual number of Frost Days	6	
Annual Relative Humidity Range	6	
Annual mean precipitation	5	

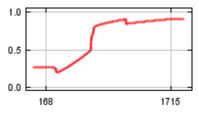
Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

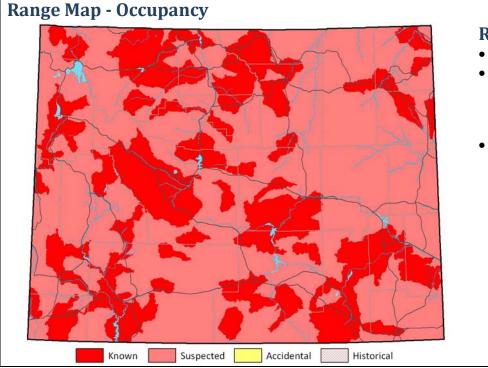

Prevalence of Permenent Standing Water within



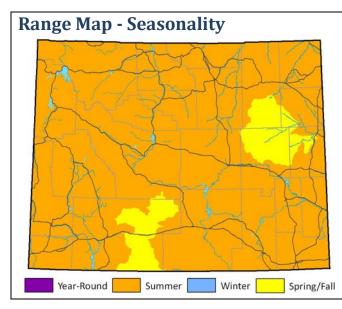

Annual Relative Humidity Range


Herbaceous Cover Index

Annual number of Frost Days


Annual mean precipitation

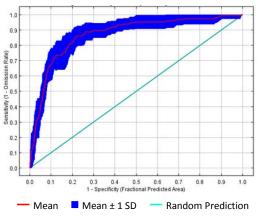
Western Grebe (*Aechmophorus occidentalis*) Range Map and Distribution Model Summary


August 20, 2010

This report presents range and distribution of Western Grebe (ABNCA04010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.295
- Details of range map creation noted in Keinath et al. (2010a).


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

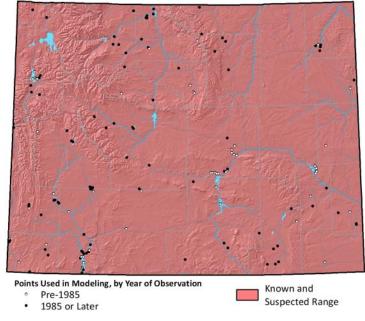
- Season Modeled: Breeding (25-May- 31-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1976090
- High-Probability Threshold Value: 0.6322537
- Low-Probability Threshold Value: 0.0281695

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low Occurrence Sample Size: High Quality of Occurrences: Low

Positive Success Rate: Medium Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.897 Regularized Training Gain: 1.235

- Average Test AUC: 0.870 ± 0.032
- Upper Bound on Test AUC: 0.870
- Average Test Gain: 1.087 ± 0.263
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.20± 0.10

Occurrence Map

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 700
- Number of Occurrences used to create distribution model: 144
- Average Point Quality Index (highest quality is 12.00): 5.29 ± 1.38
- Most recent occurrence used: 2007
- Oldest occurrence used: 1977
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E SAMPLES.csv

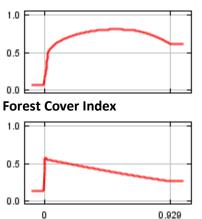
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

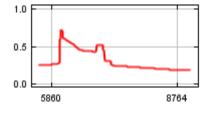
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

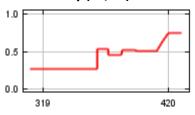
Environmental Variable	РС
Prevalence of Permenent Standing Water within 1600	84
meters	
Elevation	5
Forest Cover Index	4
Isothermality (T2/T5)	3
Relative Humidity of most humid month	3
Variation in monthly Relative Humidity	2


Response Curves

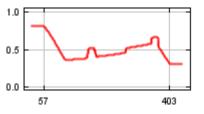
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).


Elevation

Prevalence of Permenent Standing Water within

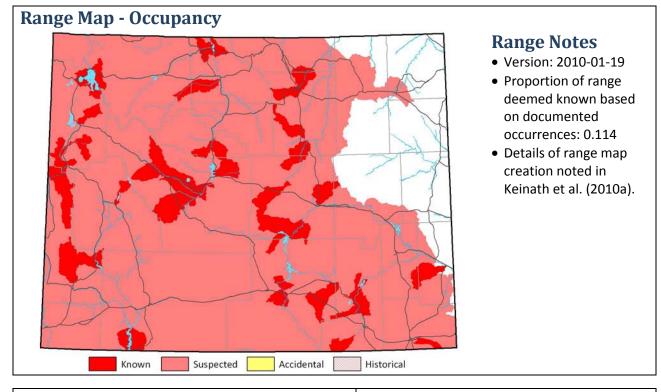


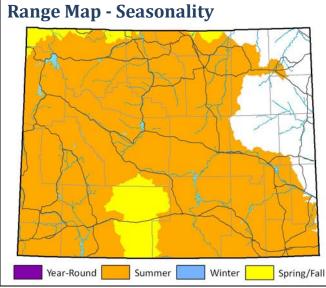
Relative Humidity of most humid month



1.0 0.5 0.0 973.271 3624.541

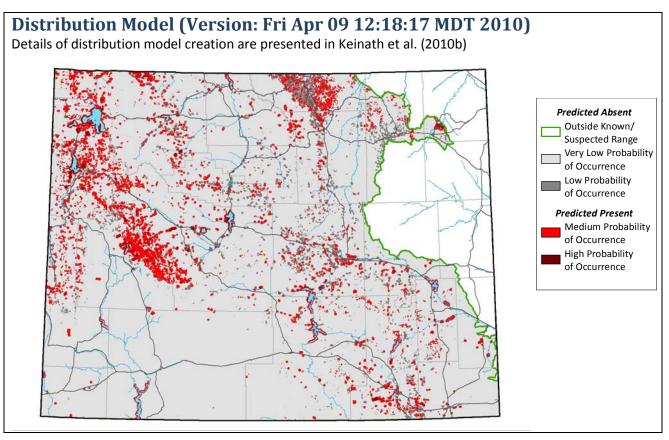
Isothermality (T2/T5)


Variation in monthly Relative Humidity

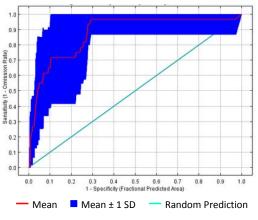


Clark's Grebe (*Aechmophorus clarkii*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Clark's Grebe (ABNCA04020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

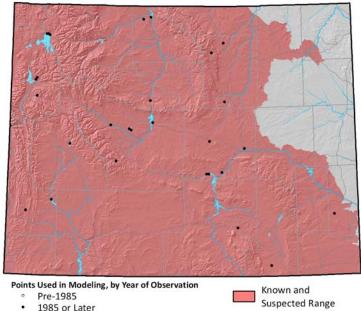
- Season Modeled: Breeding (20-May- 31-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Equal training sensitivity and specificity
- Binary Threshold Value: 0.1589990
- High-Probability Threshold Value: 0.6735551
- Low-Probability Threshold Value: 0.1206929

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low

Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.943 Regularized Training Gain: 1.628

- Average Test AUC: 0.876 ± 0.124
- Upper Bound on Test AUC: 0.916
- Average Test Gain: -0.054 ± 4.553
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.28± 0.31

Occurrence Map

Occurrence Summary Statistics

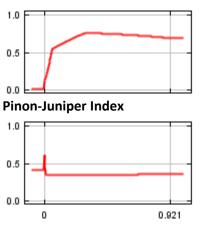
- Number of Occurrences in AWVED master dataset: 65
- Number of Occurrences used to create distribution model: 29
- Average Point Quality Index (highest quality is 12.00): 6.45 ± 2.13
- Most recent occurrence used: 2005
- Oldest occurrence used: 1986
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E_SAMPLES.csv

Comments

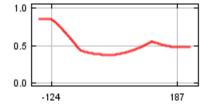
Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

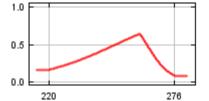
Percent Contribution (PC) to final model

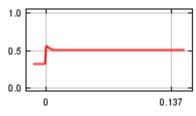

Environmental Variable	РС
Prevalence of Permenent Standing Water within 1600	87
meters	
Radiation of the lightest month	6
Pinon-Juniper Index	3
Cottonwood Index	2
Wettest quarter mean temperature	1

Response Curves

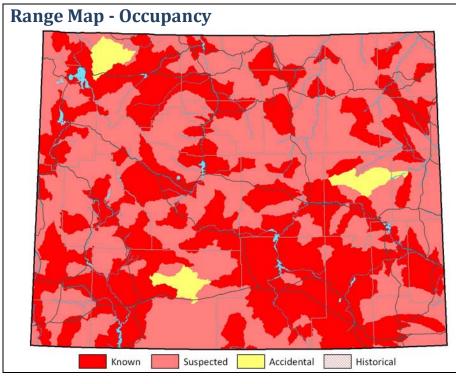

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Prevalence of Permenent Standing Water within Ra

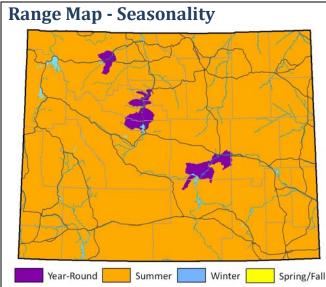

1600 meters


Wettest quarter mean temperature

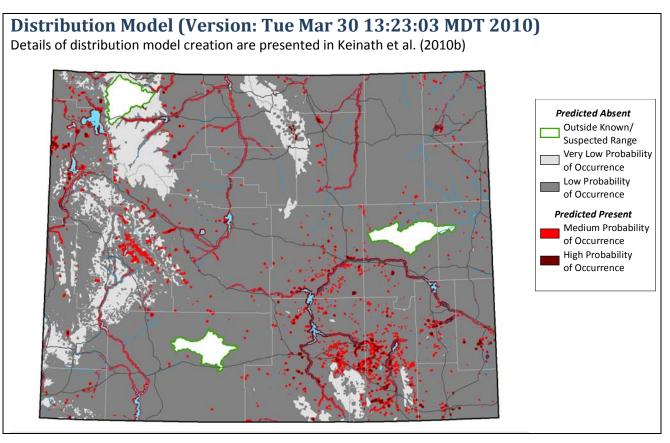
Radiation of the lightest month


Cottonwood Index

American White Pelican (*Pelecanus erythrorhynchos*) Range Map and Distribution Model Summary

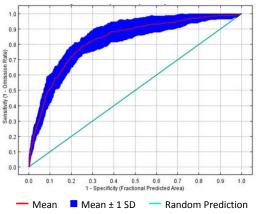

August 20, 2010

This report presents range and distribution of American White Pelican (ABNFC01010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.400
- Details of range map creation noted in Keinath et al. (2010a).

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

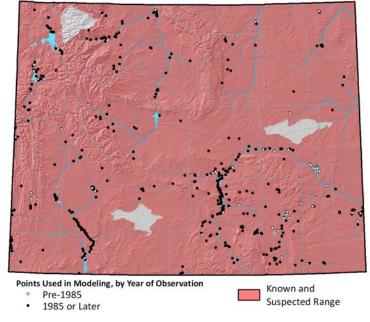
Model Parameters

- Season Modeled: Breeding (15-Apr- 25-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2886640
- High-Probability Threshold Value: 0.5786364
- Low-Probability Threshold Value: 0.0443388

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.843 Regularized Training Gain: 0.834

- Average Test AUC: 0.824 ± 0.044
- Upper Bound on Test AUC: 0.826
- Average Test Gain: 0.791 ± 0.230
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.22± 0.06

Occurrence Map

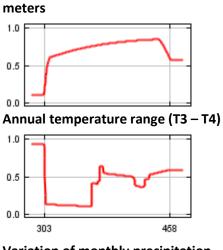
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 1,854
- Number of Occurrences used to create distribution model: 430
- Average Point Quality Index (highest quality is 12.00): 6.41 ± 1.89
- Most recent occurrence used: 2008
- Oldest occurrence used: 1964
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E SAMPLES.csv

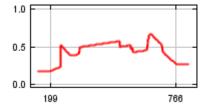
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

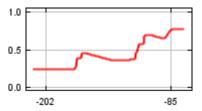
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

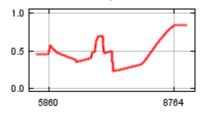

Percent Contribution (PC) to final model

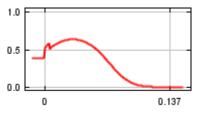
Environmental Variable	РС
Prevalence of Lakes/Large Rivers within 1600 meters	80
Coldest month mean minimum temperature	9
Annual temperature range (T3 – T4)	4
Relative Humidity of most humid month	4
Variation of monthly precipitation	2
Cottonwood Index	1


Response Curves

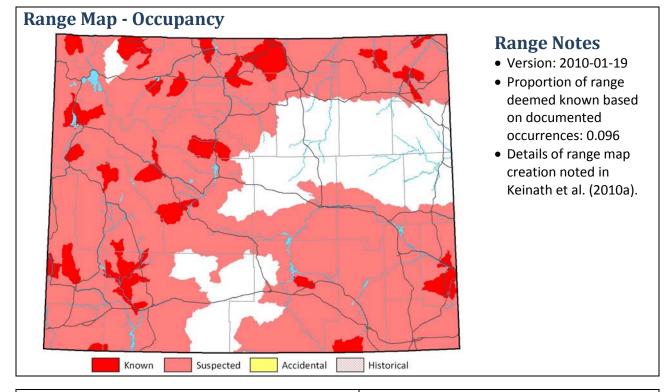
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

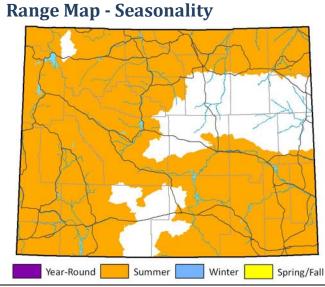

Prevalence of Lakes/Large Rivers within 1600


Variation of monthly precipitation


Coldest month mean minimum temperature

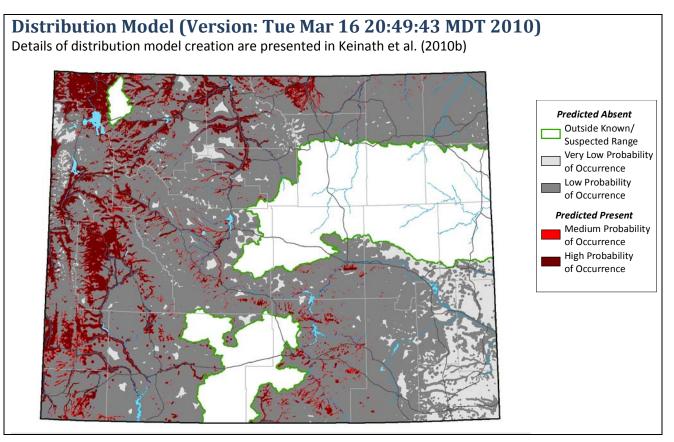
Relative Humidity of most humid month


Cottonwood Index

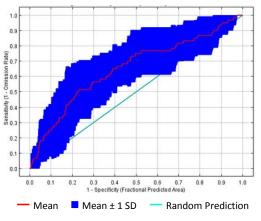


American Bittern (*Botaurus lentiginosus*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of American Bittern (ABNGA01020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

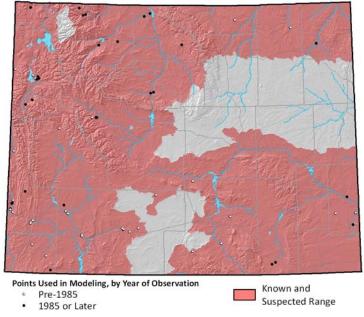
- Season Modeled: Breeding (7-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.5116400
- High-Probability Threshold Value: 0.5355997
- Low-Probability Threshold Value: 0.1404112

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Medium

Occurrence Sample Size: Medium-High Quality of Occurrences: Low Positive Success Rate: Low Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.690 Regularized Training Gain: 0.177

- Average Test AUC: 0.652 ± 0.118
- Upper Bound on Test AUC: 0.665
- Average Test Gain: 0.104 ± 0.262
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.47± 0.23

Occurrence Map

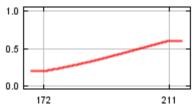
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 151
- Number of Occurrences used to create distribution model: 60
- Average Point Quality Index (highest quality is 12.00): 5.45 ± 1.68
- Most recent occurrence used: 2004
- Oldest occurrence used: 1970
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

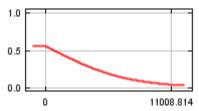
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

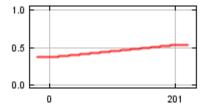
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

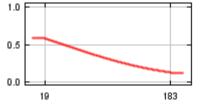

Percent Contribution (PC) to final model

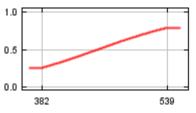
26
23
20
19
10
2

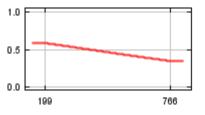

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

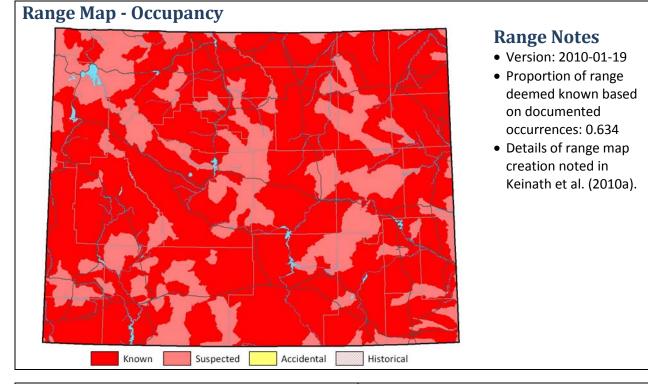

Annual Radiation range

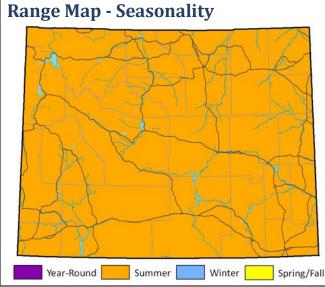

Distance to Permanent Water


Depth to Shallowest Restrictive Layer



Variation in monthly radiation


Variation of monthly precipitation



Great Blue Heron (*Ardea herodias*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Great Blue Heron (ABNGA04010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Distribution Model (Version: Wed Mar 17 01:12:37 MDT 2010)
Details of distribution model creation are presented in Keinath et al. (2010b)

Image: Stribution Model (Version: Wed Mar 17 01:12:37 MDT 2010)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Predicted Absent

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Predicted Absent

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Predicted Absent

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

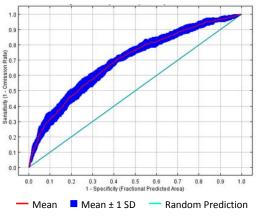

Image: Stribution Model Creation are presented in Keinath et al. (2010b)

Image: Stribution Model Creation are presented in Keinath et al. (2010b)
Image: Stribution Model Creation are presented in Keinath et al. (2010b)
Image: Stribution Are presented in Keinath et al. (2010b)
Image: Stribution Are presented in Keinath et al. (2010b)
Image: Stribution Are presented in Keinath et al. (2010b)
Image: Stribution Are presented in Keinath et al. (2

Model Parameters

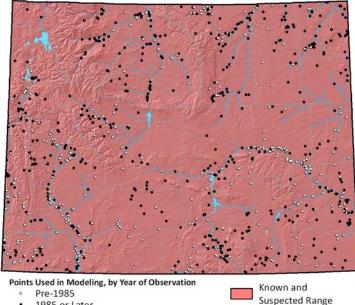
- Season Modeled: Breeding (25-Mar- 31-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4160760
- High-Probability Threshold Value: 0.4832493
- Low-Probability Threshold Value: 0.0117899

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Medium

Occurrence Sample Size: High Quality of Occurrences: Low Positive Success Rate: Low Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.701 Regularized Training Gain: 0.273

- Average Test AUC: 0.695 ± 0.023
- Upper Bound on Test AUC: 0.694
- Average Test Gain: 0.253 ± 0.095
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.33± 0.04

Occurrence Map

1985 or Later

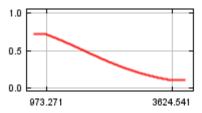
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 2.671
- Number of Occurrences used to create distribution model: 847
- Average Point Quality Index (highest quality is 12.00): 5.65 ± 1.32
- Most recent occurrence used: 2007
- Oldest occurrence used: 1959
- Occurrence File: BIRD SAMPLE POINTS ALL SPP 2.csv

Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

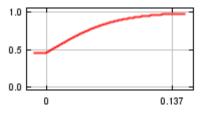
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

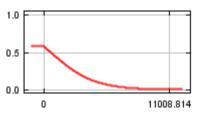

Percent Contribution (PC) to final model

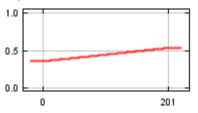
Environmental Variable	РС
Elevation	31
Distance to Permanent Water	24
Annual mean temperature	19
Depth to Shallowest Restrictive Layer	14
Cottonwood Index	11
Deciduous Forest Index	1

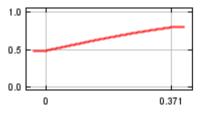
Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

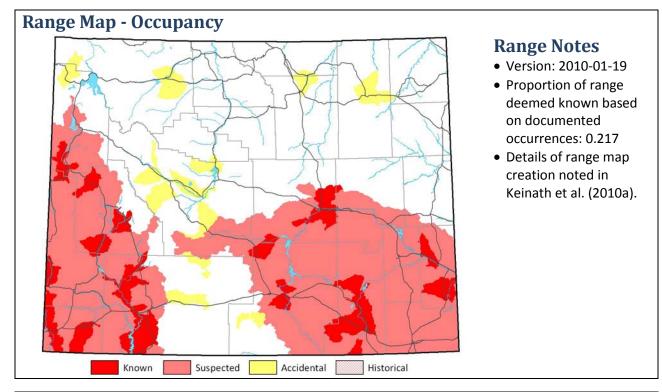

Elevation

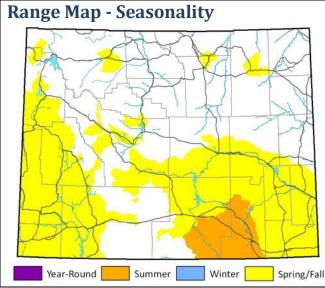

Annual mean temperature


Cottonwood Index


Distance to Permanent Water

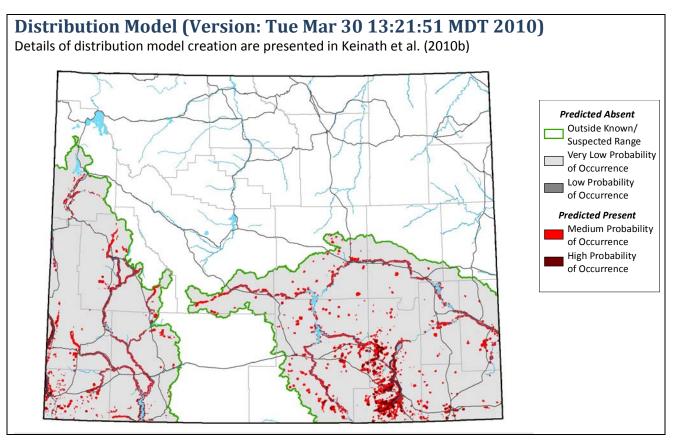
Depth to Shallowest Restrictive Layer


Deciduous Forest Index

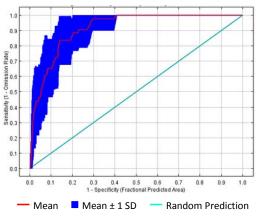


Snowy Egret (*Egretta thula*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Snowy Egret (ABNGA06030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

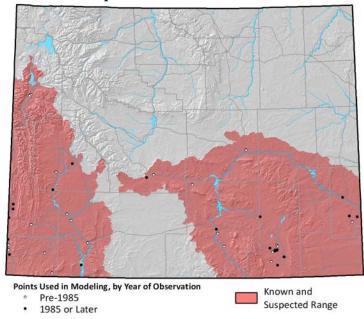
Model Parameters

- Season Modeled: Breeding (1-May- 25-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1242050
- High-Probability Threshold Value: 0.5920071
- Low-Probability Threshold Value: 0.1242048

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Low Positive Success Rate: High Test AUC and Model Gain: High


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.942 Regularized Training Gain: 1.620

- Average Test AUC: 0.914 ± 0.040
- Upper Bound on Test AUC: 0.920
- Average Test Gain: 1.449 ± 0.631
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.17± 0.17

Occurrence Map

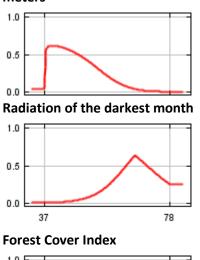
Occurrence Summary Statistics

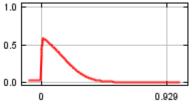
- Number of Occurrences in AWVED master dataset: 163
- Number of Occurrences used to create distribution model: 43
- Average Point Quality Index (highest quality is 12.00): 5.30 ± 1.47
- Most recent occurrence used: 2005
- Oldest occurrence used: 1979
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E_SAMPLES.csv

Comments

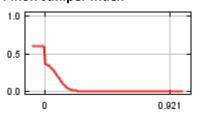
Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

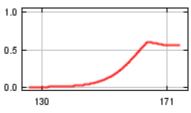

Percent Contribution (PC) to final model

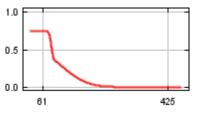

Environmental Variable	РС
Prevalence of Lakes/Large Rivers within 1600 meters	56
Pinon-Juniper Index	10
Radiation of the darkest month	10
Annual total radiation	10
Forest Cover Index	7
Interannual variation in annual frost days	7

Response Curves

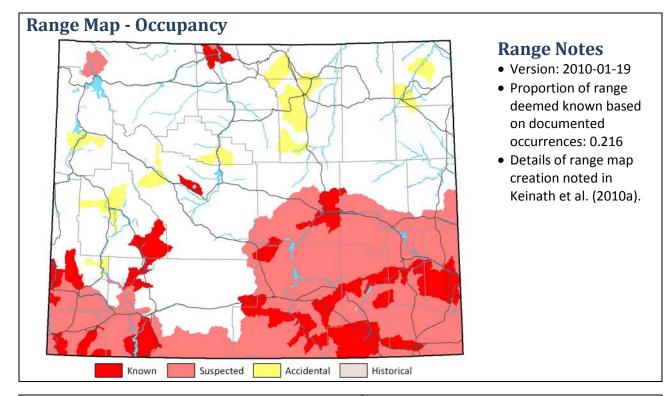

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

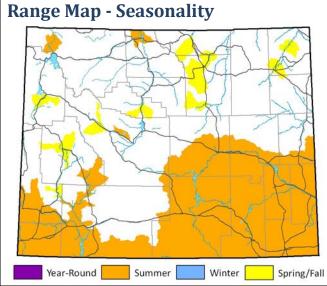
Prevalence of Lakes/Large Rivers within 1600 meters




Pinon-Juniper Index

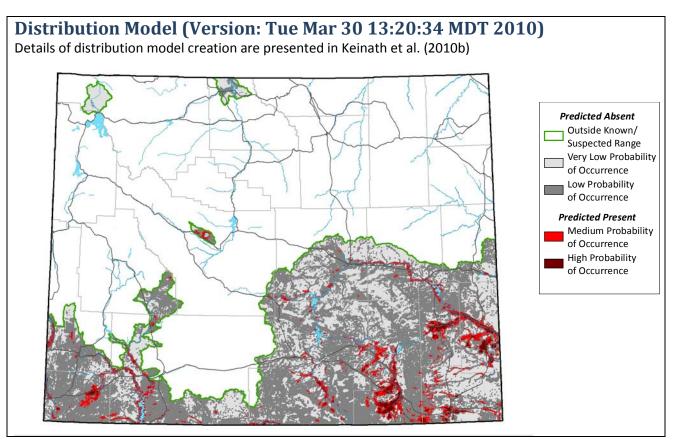
Annual total radiation


Interannual variation in annual frost days

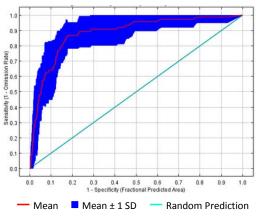


Black-crowned Night-Heron (*Nycticorax nycticorax*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Black-crowned Night-Heron (ABNGA11010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

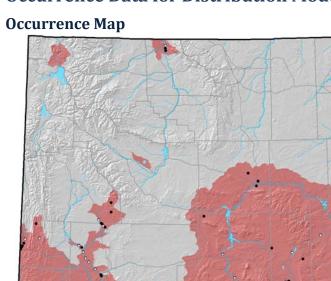

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (7-May- 15-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3298920
- High-Probability Threshold Value: 0.6229382
- Low-Probability Threshold Value: 0.0221583

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: Medium Occurrence Sample Size: Medium-High Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.911 Regularized Training Gain: 1.347

- Average Test AUC: 0.883 ± 0.064
- Upper Bound on Test AUC: 0.894
- Average Test Gain: 0.894 ± 1.250
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.12± 0.10

Points Used in Modeling, by Year of Observation

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 301
- Number of Occurrences used to create distribution model: 76
- Average Point Quality Index (highest quality is 12.00): 5.93 ± 1.80
- Most recent occurrence used: 2008
- Oldest occurrence used: 1978
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E_SAMPLES.csv

Comments

Pre-1985

1985 or Later

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

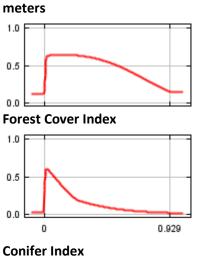
Known and

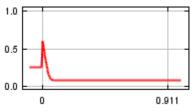
Suspected Range

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

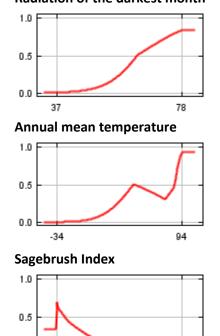
Percent Contribution (PC) to final model

Environmental Variable	РС
Prevalence of Lakes/Large Rivers within 3200 meters	36
Radiation of the darkest month	20
Forest Cover Index	13
Annual mean temperature	12
Conifer Index	10
Sagebrush Index	9


Response Curves

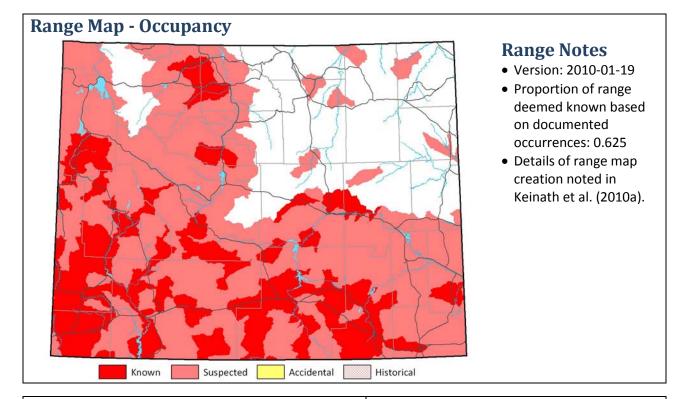

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

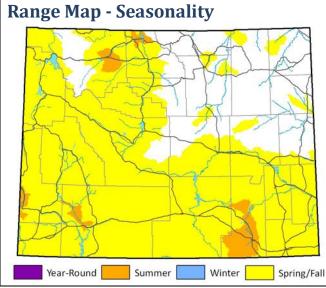
0.0


0

Prevalence of Lakes/Large Rivers within 3200

Radiation of the darkest month

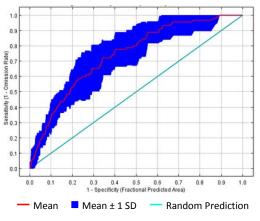



0.6

White-faced Ibis (*Plegadis chihi*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of White-faced Ibis (ABNGE02020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

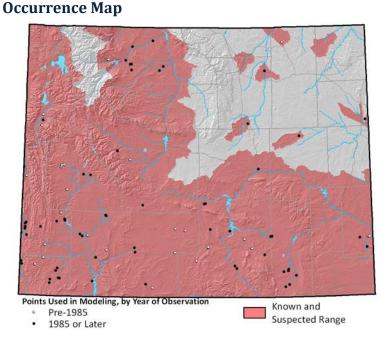
Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (15-May- 31-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4393100
- High-Probability Threshold Value: 0.5467968
- Low-Probability Threshold Value: 0.0652045

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: Medium Occurrence Sample Size: Medium-High Quality of Occurrences: Medium Positive Success Rate: Low Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.767 Regularized Training Gain: 0.451

- Average Test AUC: 0.742 ± 0.061
- Upper Bound on Test AUC: 0.758
- Average Test Gain: 0.356 ± 0.283
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.36± 0.19

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 492
- Number of Occurrences used to create distribution model: 89
- Average Point Quality Index (highest quality is 12.00): 5.97 ± 2.03
- Most recent occurrence used: 2007
- Oldest occurrence used: 1975
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

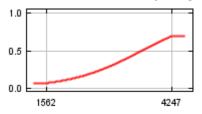
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

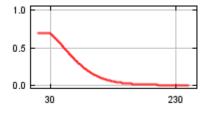
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

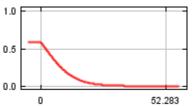
Percent Contribution (PC) to final model

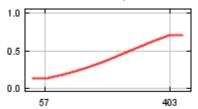
Environmental Variable	РС
Distance to Permanent Water	33
Degree Slope	21
Annual Relative Humidity Range	19
Variation in monthly Relative Humidity	19
Precipitation of the wettest month	4
Forest Cover Index	4

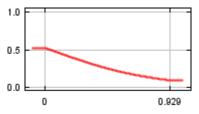

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

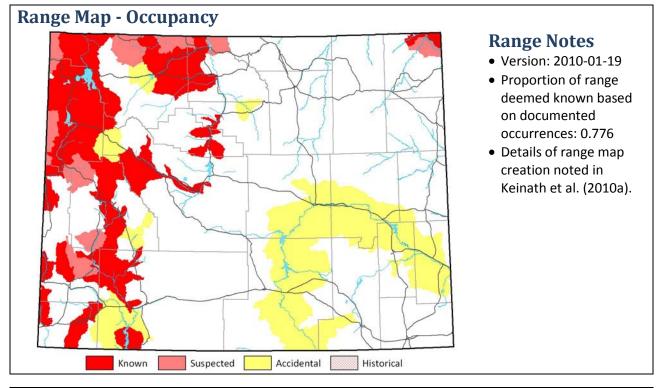

Distance to Permanent Water

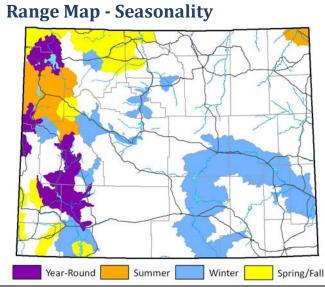

Annual Relative Humidity Range


Precipitation of the wettest month


Degree Slope

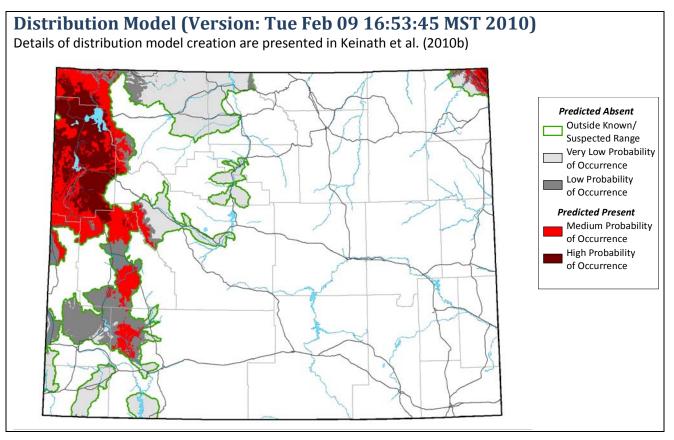
Variation in monthly Relative Humidity


Forest Cover Index

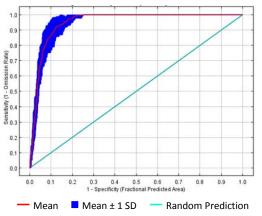


Trumpeter Swan (*Cygnus buccinator*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Trumpeter Swan (ABNJB02030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

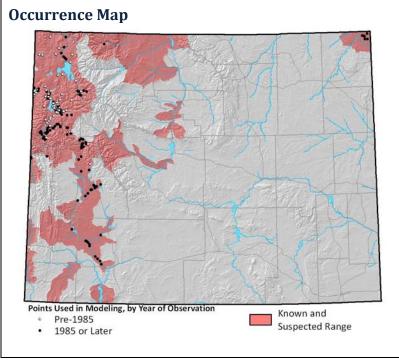
- Season Modeled: Breeding (7-May- 7-Sep)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1759400
- High-Probability Threshold Value: 0.6158186
- Low-Probability Threshold Value: 0.0400876

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Very High Test AUC and Model Gain: High


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.960 Regularized Training Gain: 1.954

- Average Test AUC: 0.950 ± 0.013
- Upper Bound on Test AUC: 0.942
- Average Test Gain: 1.938 ± 0.286
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.09± 0.09

Occurrence Data for Distribution Model

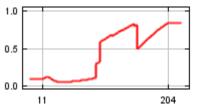
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 3,145
- Number of Occurrences used to create distribution model: 165
- Average Point Quality Index (highest quality is 12.00): 6.67 ± 2.06
- Most recent occurrence used: 2008
- Oldest occurrence used: 1955
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

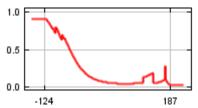
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

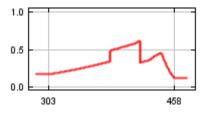
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

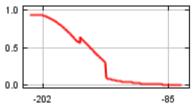

Percent Contribution (PC) to final model

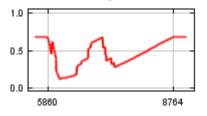
Environmental Variable	РС
Precipitation of the driest quarter	39
Coldest month mean minimum temperature	28
Wettest quarter mean temperature	20
Relative Humidity of most humid month	5
Annual temperature range (T3 – T4)	4
Elevation	4

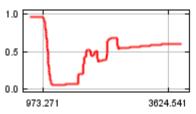

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

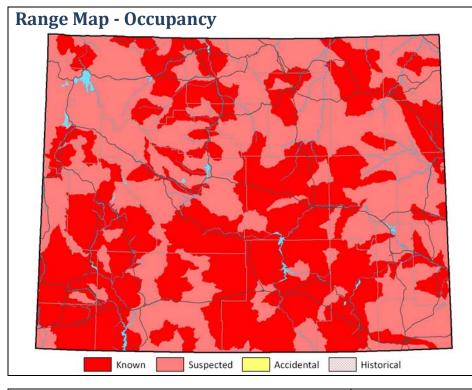

Precipitation of the driest quarter


Wettest quarter mean temperature


Annual temperature range (T3 – T4)

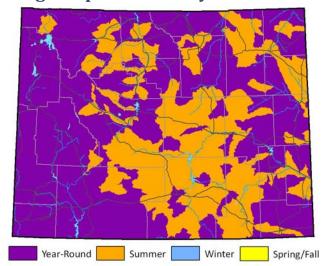

Coldest month mean minimum temperature

Relative Humidity of most humid month


Elevation

Northern Pintail (*Anas acuta*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Northern Pintail (ABNJB10110) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Notes

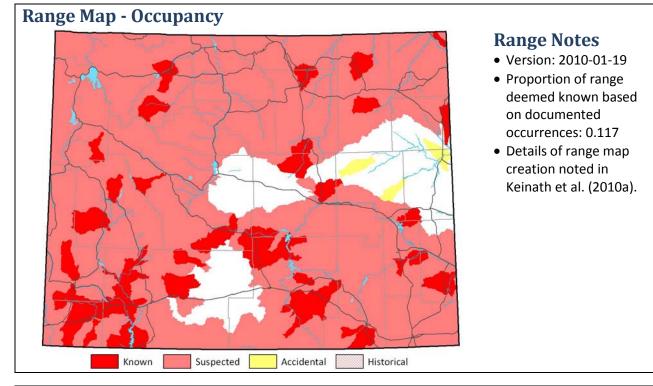
- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.423
- Details of range map creation noted in Keinath et al. (2010a).

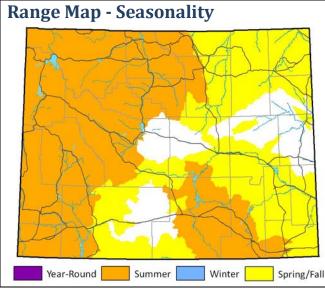
Range Map - Seasonality

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Comments

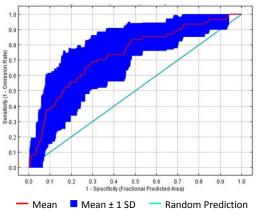

A model was not genrated for Northern Pintail because there were too few occurrence records. Occurrence records exist in the Wildlife Observation System, but its inclusion on the SGCN list was unclear until after models were created, so occurrence data were not compiled and a distribution model was not generated for this report.


- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Canvasback (*Aythya valisineria*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Canvasback (ABNJB11020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

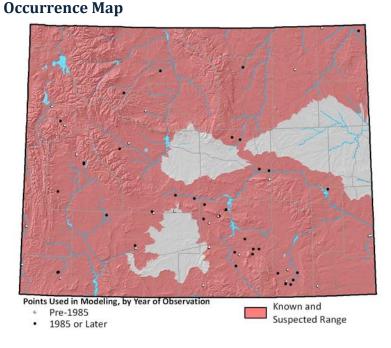
- Season Modeled: Breeding (25-Apr- 15-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4939270
- High-Probability Threshold Value: 0.5638385
- Low-Probability Threshold Value: 0.0628170

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low Occurrence Sample Size: Medium-High Quality of Occurrences: Low

Positive Success Rate: Low Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.762 Regularized Training Gain: 0.364

- Average Test AUC: 0.733 ± 0.086
- Upper Bound on Test AUC: 0.731
- Average Test Gain: 0.010 ± 1.084
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.36± 0.25

Occurrence Data for Distribution Model

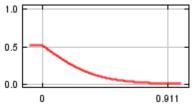
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 227
- Number of Occurrences used to create distribution model: 62
- Average Point Quality Index (highest quality is 12.00): 5.66 ± 1.33
- Most recent occurrence used: 2007
- Oldest occurrence used: 1978
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

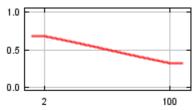
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

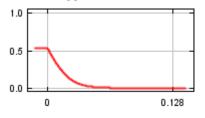
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

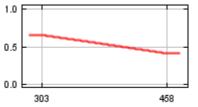

Percent Contribution (PC) to final model

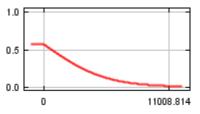
Environmental Variable	РС
Conifer Index	26
Annual temperature range (T3 – T4)	22
Contagion Index	19
Distance to Permanent Water	19
Vector Ruggedness Measure	8
Precipitation of the warmest quarter	5
	5

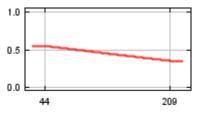

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

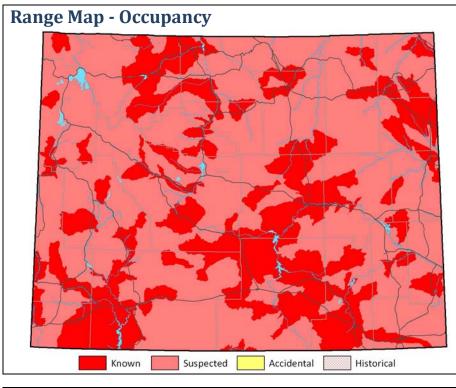

Conifer Index


Contagion Index

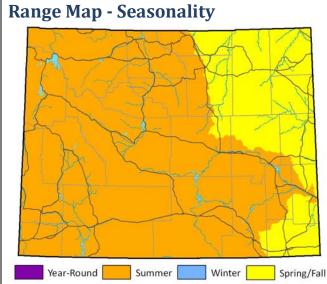

Vector Ruggedness Measure


Annual temperature range (T3 – T4)

Distance to Permanent Water


Precipitation of the warmest quarter

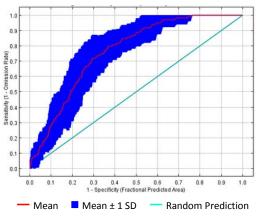
Redhead (*Aythya americana*) Range Map and Distribution Model Summary


August 20, 2010

This report presents range and distribution of Redhead (ABNJB11030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.300
- Details of range map creation noted in Keinath et al. (2010a).


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

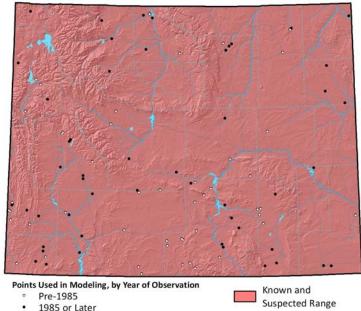
- Season Modeled: Breeding (25-Apr- 31-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3085620
- High-Probability Threshold Value: 0.5218791
- Low-Probability Threshold Value: 0.0657201

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium-High Quality of Occurrences: Low Positive Success Rate: High Test AUC and Model Gain: Medium

Model Evaluation Statistics


Final Model Statistics

Training AUC: 0.791 Regularized Training Gain: 0.582

- Average Test AUC: 0.763 ± 0.065
- Upper Bound on Test AUC: 0.790
- Average Test Gain: 0.458 ± 0.266
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.18± 0.10

Occurrence Data for Distribution Model

Occurrence Map

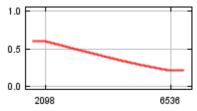
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 621
- Number of Occurrences used to create distribution model: 99
- Average Point Quality Index (highest quality is 12.00): 5.69 ± 1.72
- Most recent occurrence used: 2007
- Oldest occurrence used: 1977
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E_SAMPLES.csv

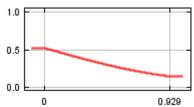
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. This species is ubiquitous in Wyoming and occurs within a variety of habitat types. It is therefore difficult to develop an uniformly-accurate environmental niche model that can be effectively applied across the state. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

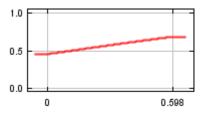
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

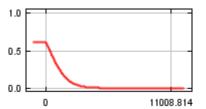

Percent Contribution (PC) to final model

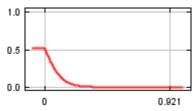
Environmental Variable	РС
Relative Humidity of least humid month	36
Distance to Permanent Water	35
Forest Cover Index	11
Pinon-Juniper Index	7
Shrub Cover Index	7
Herbaceous Cover Index	4

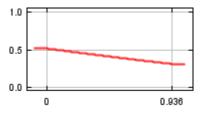

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

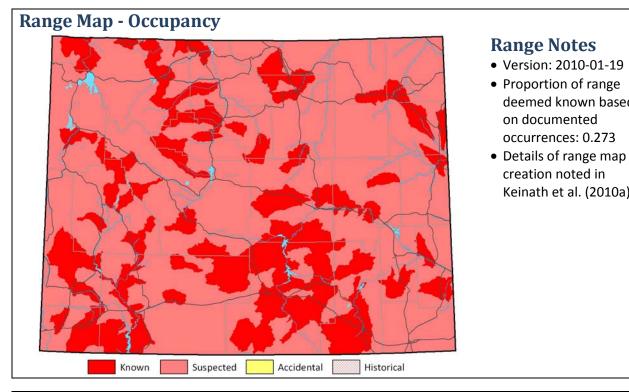

Relative Humidity of least humid month


Forest Cover Index


Shrub Cover Index


Distance to Permanent Water

Pinon-Juniper Index


Herbaceous Cover Index

Lesser Scaup (Aythya affinis) **Range Map and Distribution Model Summary**

August 20, 2010

This report presents range and distribution of Lesser Scaup (ABNJB11070) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

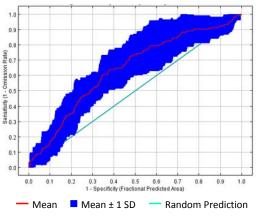
Range Map - Seasonality Year-Round Summer Winter Spring/Fall

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist Mark Andersen, GIS Specialist

© 2010, WYNDD

Keinath et al. (2010a).


deemed known based on documented occurrences: 0.273

creation noted in

Model Parameters

- Season Modeled: Breeding (25-May- 7-Sep)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4500440
- High-Probability Threshold Value: 0.5040767
- Low-Probability Threshold Value: 0.1077144

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low Occurrence Sample Size: High Quality of Occurrences: Low

Positive Success Rate: Low Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.689 Regularized Training Gain: 0.233

- Average Test AUC: 0.641 ± 0.097
- Upper Bound on Test AUC: 0.682
- Average Test Gain: 0.055 ± 0.283
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.36± 0.15

Occurrence Data for Distribution Model Occurrence Map

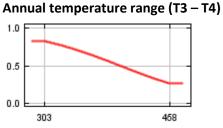
Pints Used in Modeling, by Year of Observation • Pre-1988 • 1985 or Later

Occurrence Summary Statistics

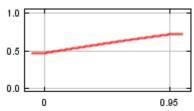
- Number of Occurrences in AWVED master dataset: 536
- Number of Occurrences used to create distribution model: 102
- Average Point Quality Index (highest quality is 12.00): 5.43 ± 1.35
- Most recent occurrence used: 2006
- Oldest occurrence used: 1978
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

Comments

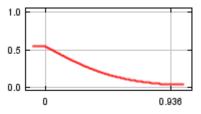
Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. This species is ubiquitous in Wyoming and occurs within a variety of habitat types. It is therefore difficult to develop an uniformly-accurate environmental niche model that can be effectively applied across the state. Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

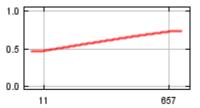

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

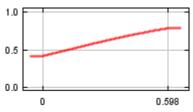
Percent Contribution (PC) to final model

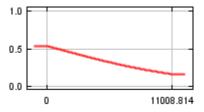

Environmental Variable	РС
Annual temperature range (T3 – T4)	36
Precipitation of the coldest quarter	20
Percent Forest Cover	15
Shrub Cover Index	14
Herbaceous Cover Index	9
Distance to Permanent Water	6

Response Curves

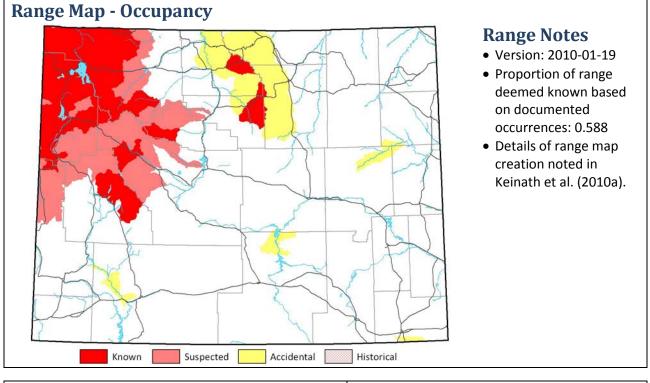

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

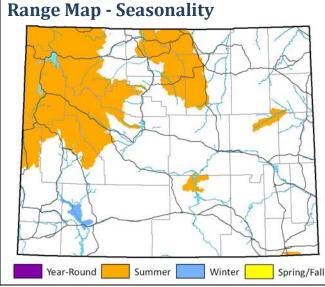

Percent Forest Cover


Herbaceous Cover Index


Precipitation of the coldest quarter

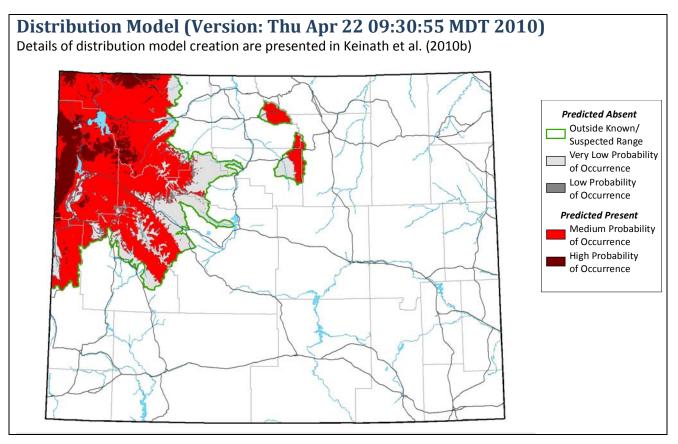
Shrub Cover Index


Distance to Permanent Water

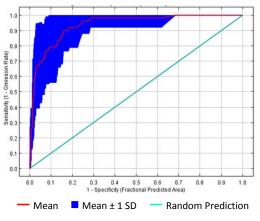


Harlequin Duck (*Histrionicus histrionicus*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Harlequin Duck (ABNJB15010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

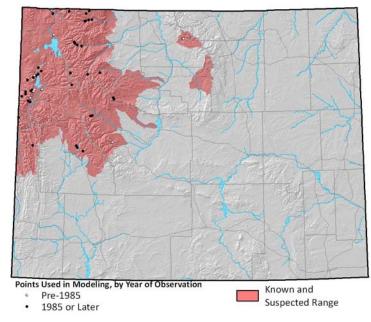
- Season Modeled: Breeding (1-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.0763590
- High-Probability Threshold Value: 0.6186383
- Low-Probability Threshold Value: 0.0517483

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: High

Model Evaluation Statistics


Final Model Statistics

Training AUC: 0.967 Regularized Training Gain: 2.301

- Average Test AUC: 0.937 ± 0.058
- Upper Bound on Test AUC: 0.952
- Average Test Gain: 1.970 ± 1.001
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.14± 0.19

Occurrence Data for Distribution Model

Occurrence Map

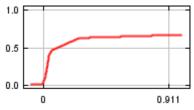
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 160
- Number of Occurrences used to create distribution model: 47
- Average Point Quality Index (highest quality is 12.00): 6.45 ± 2.06
- Most recent occurrence used: 2006
- Oldest occurrence used: 1959
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

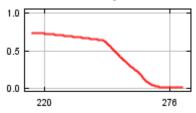
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

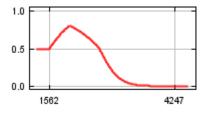
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

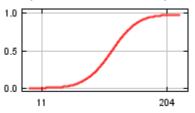

Percent Contribution (PC) to final model

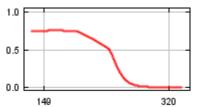
Environmental Variable	РС
Conifer Index	39
Precipitation of the driest quarter	29
Radiation of the lightest month	11
Hottest month mean maximum temperature	9
Annual Relative Humidity Range	9
Cottonwood Index	4

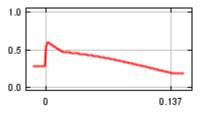

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

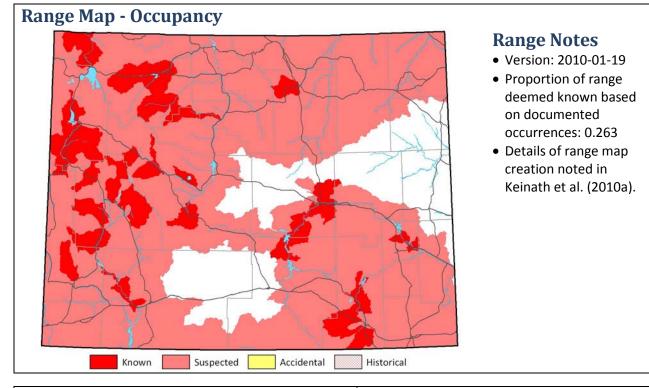

Conifer Index

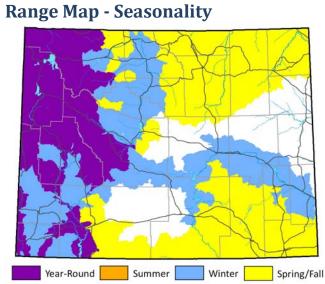

Radiation of the lightest month


Annual Relative Humidity Range


Precipitation of the driest quarter

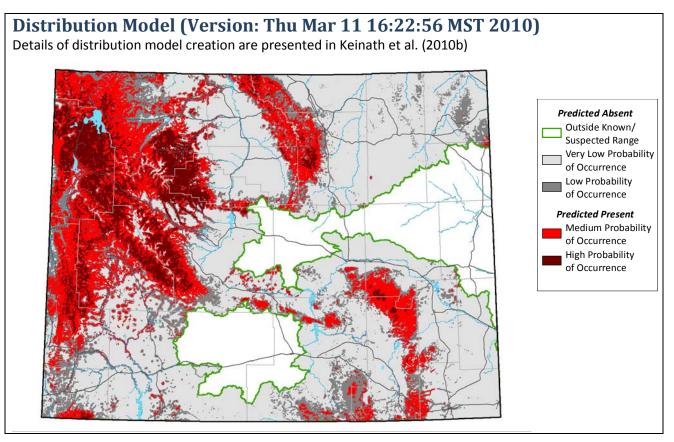
Hottest month mean maximum temperature


Cottonwood Index

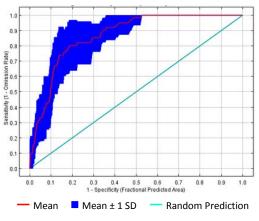


Barrow's Goldeneye (*Bucephala islandica*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Barrow's Goldeneye (ABNJB18020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

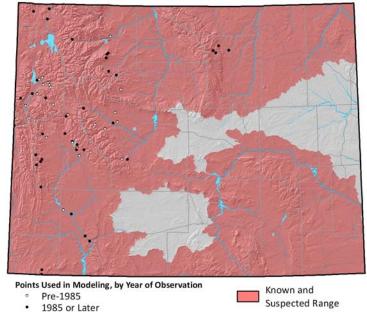
- Season Modeled: Breeding (15-Apr- 31-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2243000
- High-Probability Threshold Value: 0.5760866
- Low-Probability Threshold Value: 0.0762812

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium-High Quality of Occurrences: Low Positive Success Rate: Medium Test AUC and Model Gain: Medium

Model Evaluation Statistics


Final Model Statistics

Training AUC: 0.904 Regularized Training Gain: 1.230

- Average Test AUC: 0.869 ± 0.042
- Upper Bound on Test AUC: 0.886
- Average Test Gain: 1.054 ± 0.426
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.23± 0.21

Occurrence Data for Distribution Model

Occurrence Map

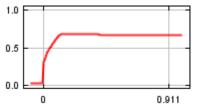
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 229
- Number of Occurrences used to create distribution model: 61
- Average Point Quality Index (highest quality is 12.00): 5.46 ± 1.40
- Most recent occurrence used: 2005
- Oldest occurrence used: 1978
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

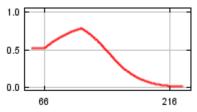
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming. We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

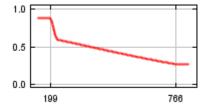
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

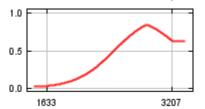

Percent Contribution (PC) to final model

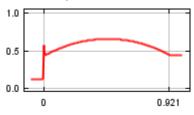
РС
29
28
17
10
10
6

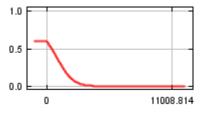

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

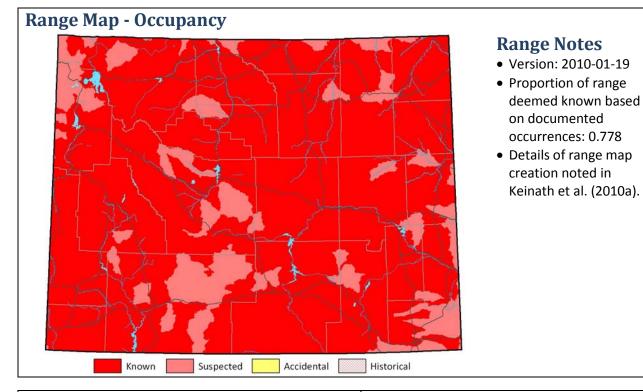

Conifer Index

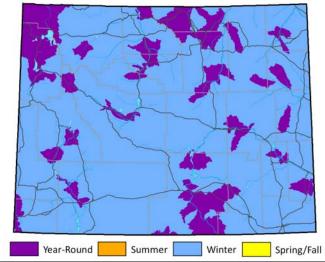

Warmest quarter mean temperature


Variation of monthly precipitation


Annual number of Frost Days

Pinon-Juniper Index

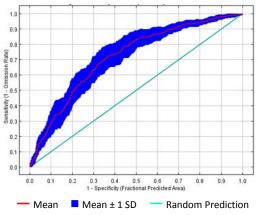

Distance to Permanent Water


Bald Eagle - summer (*Haliaeetus leucocephalus*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Bald Eagle - summer (ABNKC10010S) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Map - Seasonality


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

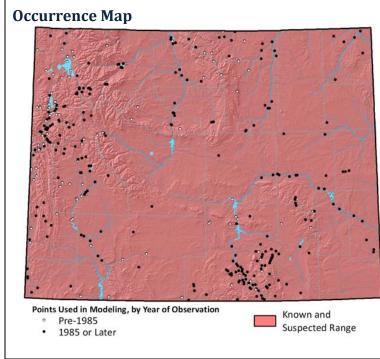
Model Parameters

- Season Modeled: Summer (15-May- 25-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4093660
- High-Probability Threshold Value: 0.5393025
- Low-Probability Threshold Value: 0.1220973

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Low Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.759 Regularized Training Gain: 0.360

- Average Test AUC: 0.718 ± 0.043
- Upper Bound on Test AUC: 0.730
- Average Test Gain: 0.283 ± 0.146
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.34± 0.13

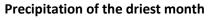
Occurrence Data for Distribution Model

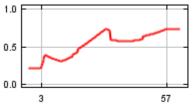
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 1,119
- Number of Occurrences used to create distribution model: 353
- Average Point Quality Index (highest quality is 12.00): 6.36 ± 1.93
- Most recent occurrence used: 2008
- Oldest occurrence used: 1971
- Occurrence File: LARGE_AREA_SAMPLE_POINTS_ALL.CS
 V

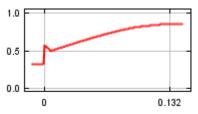
Comments

There are no additional comments specific to this species range map or distribution model.

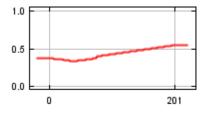

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

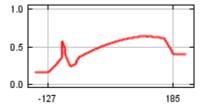

Percent Contribution (PC) to final model

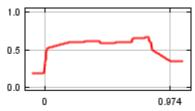
24
20
17
16
13
10

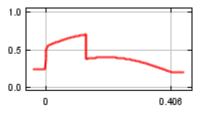

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

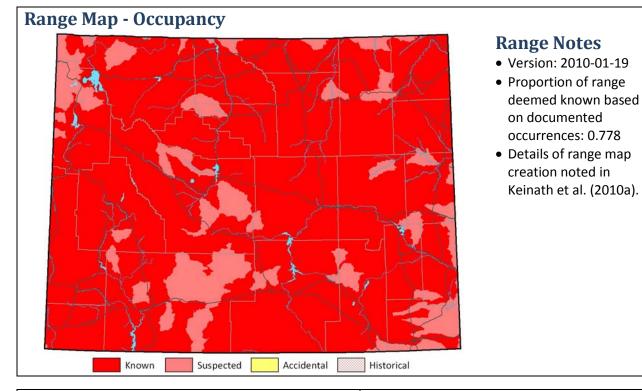


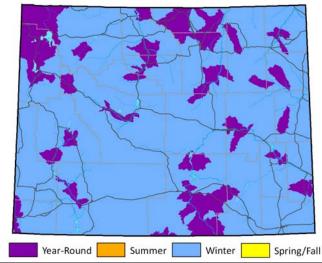

Cottonwood Index


Depth to Shallowest Restrictive Layer


Driest quarter mean temperature

Forest Cover Index

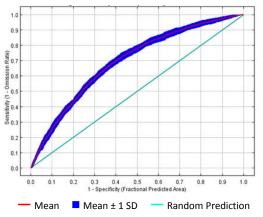

Deciduous Forest Index


Bald Eagle - winter (*Haliaeetus leucocephalus*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Bald Eagle - winter (ABNKC10010W) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Map - Seasonality


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Winter (1-Oct- 31-Mar)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4372830
- High-Probability Threshold Value: 0.5207806
- Low-Probability Threshold Value: 0.0778948

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Medium

Occurrence Sample Size: High Quality of Occurrences: Low Positive Success Rate: Low Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.708 Regularized Training Gain: 0.241

- Average Test AUC: 0.693 ± 0.014
- Upper Bound on Test AUC: 0.691
- Average Test Gain: 0.231 ± 0.039
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.32± 0.04

Occurrence Data for Distribution Model

<figure><figure>

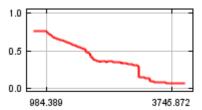
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 9,460
- Number of Occurrences used to create distribution model: 2,794
- Average Point Quality Index (highest quality is 12.00): 5.49 ± 1.53
- Most recent occurrence used: 2008
- Oldest occurrence used: 1972
- Occurrence File: LARGE_AREA_SAMPLE_POINTS_ALL.CS
 V

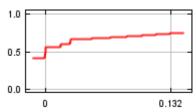
Comments

This species is ubiquitous in Wyoming and occurs within a variety of habitat types. It is therefore difficult to develop an uniformly-accurate environmental niche model that can be effectively applied across the state. This species uses aspects of wetlands (e.g., dense emergent vegetation) for which statewide data are not available or reliable. This often results in low model quality because key habitat features are not mappable across the state. Great improvements in our ability to model this species distribution could be obtained by improving wetland maps.

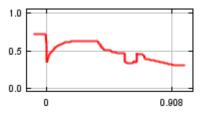
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

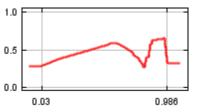

Percent Contribution (PC) to final model

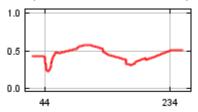
Environmental Variable	РС
Elevation	51
Bare Ground Index	15
Cottonwood Index	10
Precipitation of the warmest quarter	10
Herbaceous Cover Index	9
Variation in monthly radiation	4

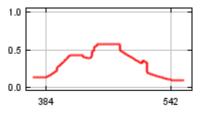

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

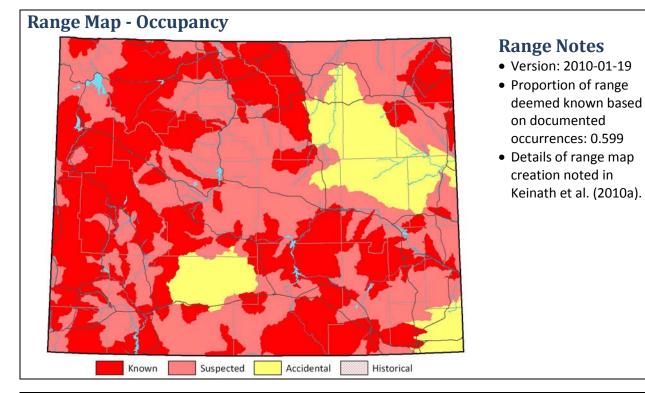

Elevation

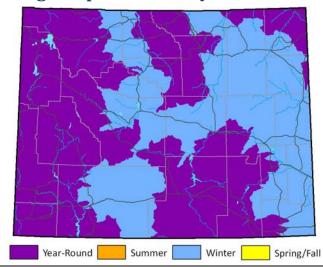

Cottonwood Index


Herbaceous Cover Index


Bare Ground Index

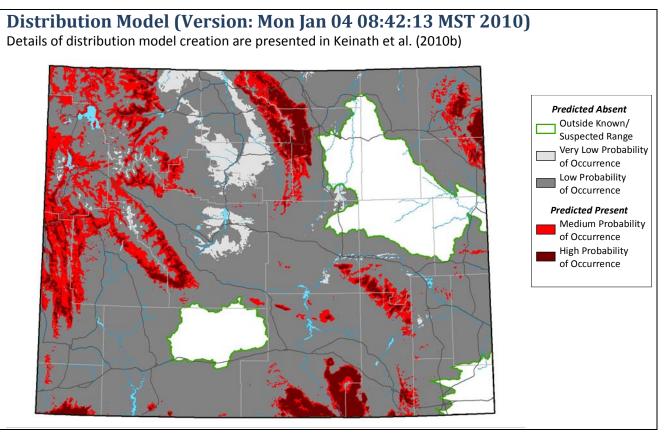
Precipitation of the warmest quarter


Variation in monthly radiation


Northern Goshawk (*Accipiter gentilis*) Range Map and Distribution Model Summary

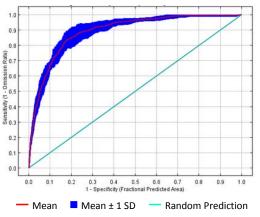
August 20, 2010

This report presents range and distribution of Northern Goshawk (ABNKC12060) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.



Range Map - Seasonality

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

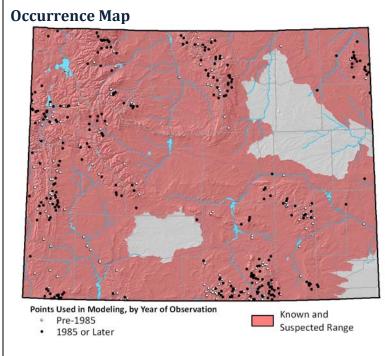

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (15-Apr- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2549630
- High-Probability Threshold Value: 0.5754688
- Low-Probability Threshold Value: 0.0066447

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.902 Regularized Training Gain: 1.349

- Average Test AUC: 0.891 ± 0.017
- Upper Bound on Test AUC: 0.893
- Average Test Gain: 1.301 ± 0.138
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.17± 0.06

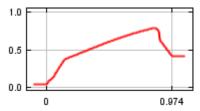
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 1,580
- Number of Occurrences used to create distribution model: 421
- Average Point Quality Index (highest quality is 12.00): 6.58 ± 2.41
- Most recent occurrence used: 2008
- Oldest occurrence used: 1969
- Occurrence File: LARGE_AREA_SAMPLE_POINTS_ALL.CS
 V

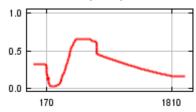
Comments

There are no additional comments specific to this species range map or distribution model.

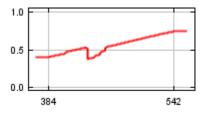
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

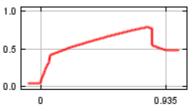

Percent Contribution (PC) to final model

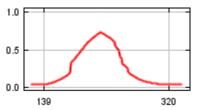
Environmental Variable	РС
Forest Cover Index	46
Conifer Index	25
Annual mean precipitation	11
Hottest month mean maximum temperature	6
Variation in monthly radiation	6
Annual mean temperature	6

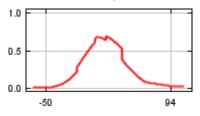

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

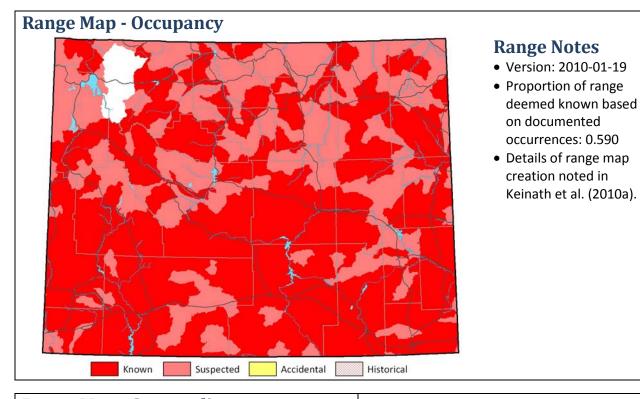

Forest Cover Index

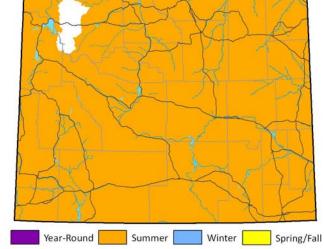

Annual mean precipitation


Variation in monthly radiation


Conifer Index

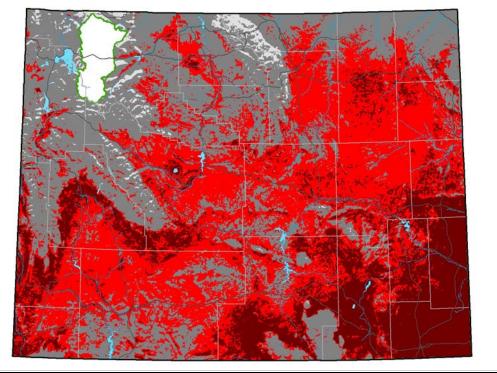
Hottest month mean maximum temperature

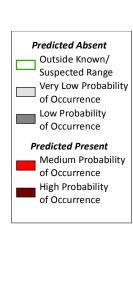

Annual mean temperature


Swainson's Hawk (*Buteo swainsoni*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Swainson's Hawk (ABNKC19070) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

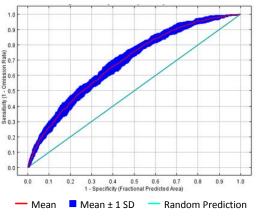

Range Map - Seasonality



Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Distribution Model (Version: Sun Apr 25 15:36:15 MDT 2010) Details of distribution model creation are presented in Keinath et al. (2010b)



Model Parameters

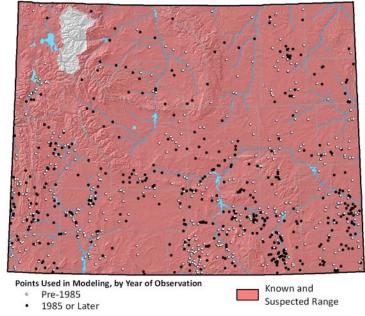
- Season Modeled: Breeding (15-Apr- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: 10 percentile training presence
- Binary Threshold Value: 0.3484500
- High-Probability Threshold Value: 0.5119595
- Low-Probability Threshold Value: 0.0502005

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: Low

Positive Success Rate: Low Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.709 Regularized Training Gain: 0.235

- Average Test AUC: 0.685 ± 0.019
- Upper Bound on Test AUC: 0.686
- Average Test Gain: 0.221 ± 0.049
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.35± 0.09

Occurrence Map

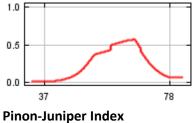
Occurrence Summary Statistics

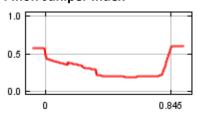
- Number of Occurrences in AWVED master dataset: 2,230
- Number of Occurrences used to create distribution model: 861
- Average Point Quality Index (highest quality is 12.00): 5.64 ± 1.60
- Most recent occurrence used: 2007
- Oldest occurrence used: 1961
- Occurrence File: LARGE_AREA_SAMPLE_POINTS_ALL_2. csv

Comments

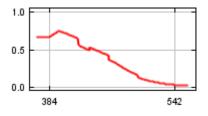
This species is ubiquitous in Wyoming and occurs within a variety of habitat types. It is therefore difficult to develop an uniformly-accurate environmental niche model that can be effectively applied across the state.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

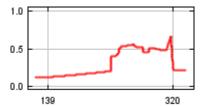

Percent Contribution (PC) to final model

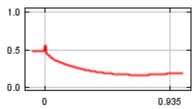

Env	vironmental Variable	РС
Rad	iation of the darkest month	26
Hot	test month mean maximum temperature	17
Pino	on-Juniper Index	17
Con	ifer Index	15
Var	iation in monthly radiation	13
Ann	ual mean precipitation	10
Elev	vation	2
Con Vari Ann	ifer Index iation in monthly radiation ual mean precipitation	15 13

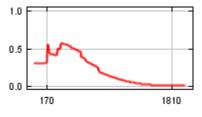
Response Curves


Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

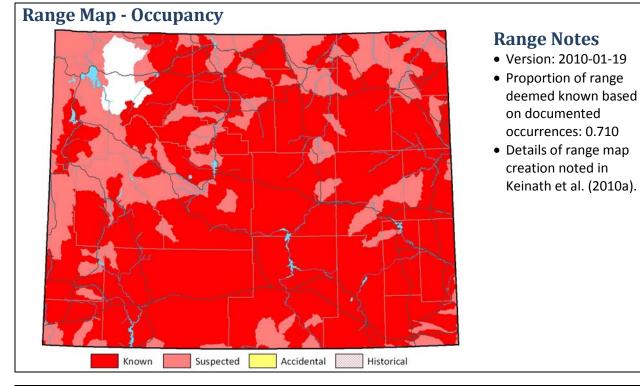
Radiation of the darkest month

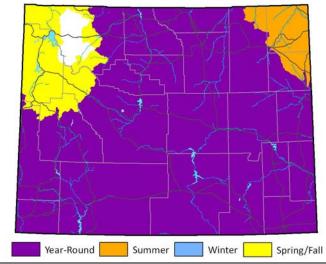

Variation in monthly radiation




Hottest month mean maximum temperature

Conifer Index

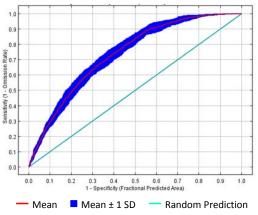

Annual mean precipitation


Ferruginous Hawk (*Buteo regalis*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Ferruginous Hawk (ABNKC19120) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Map - Seasonality


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

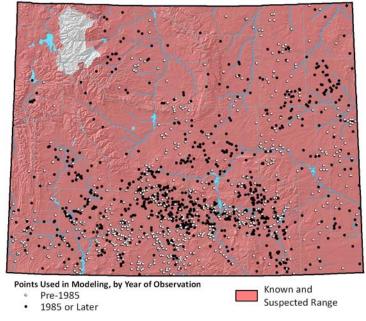
Model Parameters

- Season Modeled: Breeding (1-Apr- 15-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4379630
- High-Probability Threshold Value: 0.5423713
- Low-Probability Threshold Value: 0.0194921

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.749 Regularized Training Gain: 0.383

- Average Test AUC: 0.737 ± 0.023
- Upper Bound on Test AUC: 0.737
- Average Test Gain: 0.373 ± 0.070
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.24± 0.10

Occurrence Map

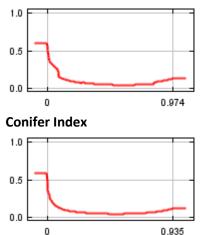
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 4,914
- Number of Occurrences used to create distribution model: 1,443
- Average Point Quality Index (highest quality is 12.00): 6.12 ± 1.92
- Most recent occurrence used: 2008
- Oldest occurrence used: 1876
- Occurrence File: LARGE_AREA_SAMPLE_POINTS_ALL.CS
 V

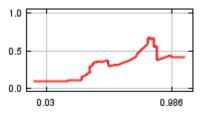
Comments

There are no additional comments specific to this species range map or distribution model.

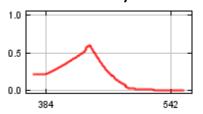
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

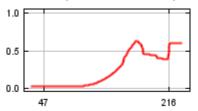

Percent Contribution (PC) to final model

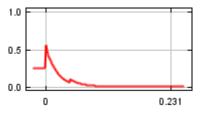
Environmental Variable	РС
Forest Cover Index	37
Variation in monthly radiation	17
Conifer Index	15
Warmest quarter mean temperature	15
Bare Ground Index	11
Vector Ruggedness Measure	5


Response Curves

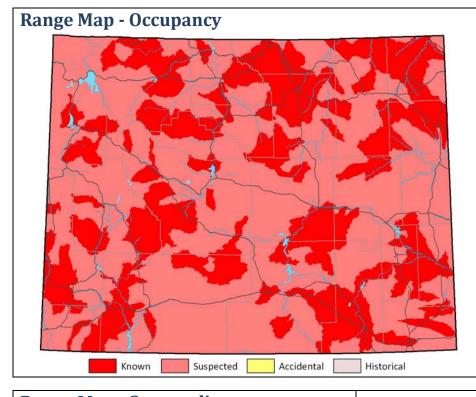
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).


Forest Cover Index

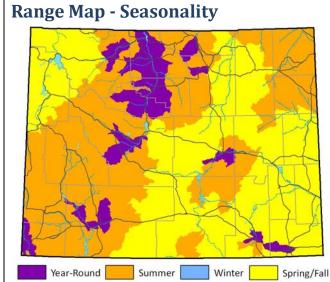

Bare Ground Index


Variation in monthly radiation

Warmest quarter mean temperature


Vector Ruggedness Measure

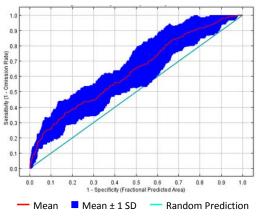
Merlin (*Falco columbarius*) Range Map and Distribution Model Summary


August 20, 2010

This report presents range and distribution of Merlin (ABNKD06030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.409
- Details of range map creation noted in Keinath et al. (2010a).


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

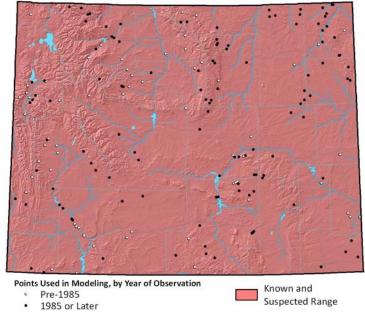
Model Parameters

- Season Modeled: Breeding (25-Apr- 25-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.5679630
- High-Probability Threshold Value: 0.4688465
- Low-Probability Threshold Value: 0.1142441

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Low Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.662 Regularized Training Gain: 0.220

- Average Test AUC: 0.634 ± 0.066
- Upper Bound on Test AUC: 0.666
- Average Test Gain: 0.139 ± 0.150
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.64± 0.15

Occurrence Map

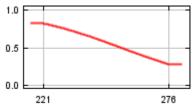
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 588
- Number of Occurrences used to create distribution model: 182
- Average Point Quality Index (highest quality is 12.00): 6.35 ± 2.28
- Most recent occurrence used: 2008
- Oldest occurrence used: 1966
- Occurrence File: LARGE_AREA_SAMPLE_POINTS_ALL_2. csv

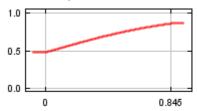
Comments

Conclusive identification of this species is difficult unless the observer is experienced with the species. We suspect numerous occurrences could be in error, thus resulting in lower than expected model quality. The lack of supporting data provided with many occurrences (notably those from the Wildlife Observation System) makes it impossible to assess the accuracy of such observations. Supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

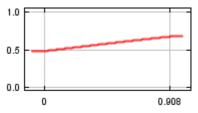
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

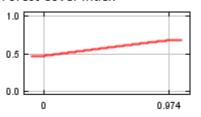

Percent Contribution (PC) to final model

Environmental Variable	РС
Radiation of the lightest month	52
Forest Cover Index	17
Pinon-Juniper Index	16
Distance to Permanent Water	8
Herbaceous Cover Index	4
Precipitation of the warmest quarter	3

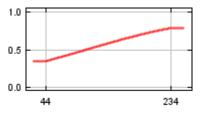

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

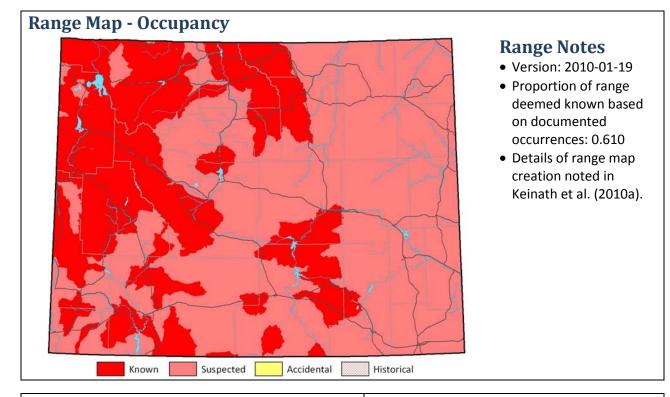


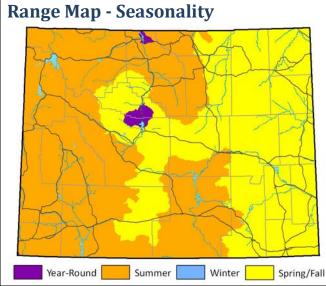

Pinon-Juniper Index


Herbaceous Cover Index


Forest Cover Index

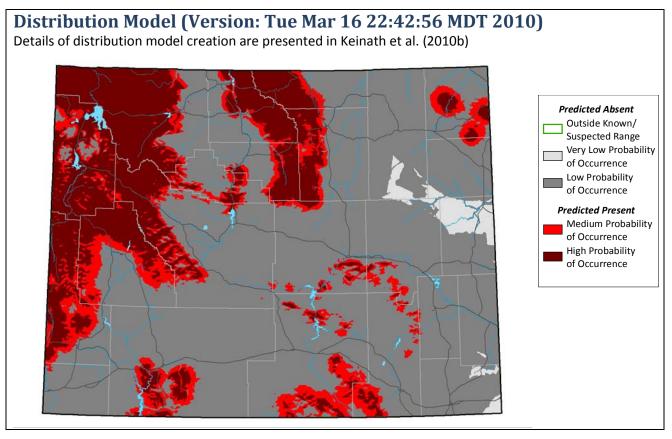
Distance to Permanent Water


Precipitation of the warmest quarter

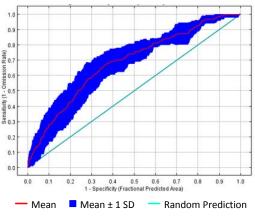


Peregrine Falcon (*Falco peregrinus*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Peregrine Falcon (ABNKD06070) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

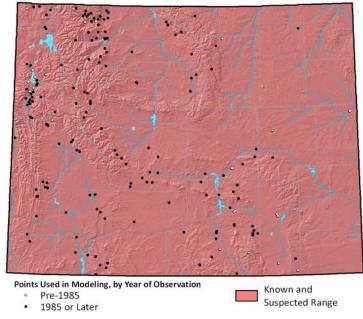
Model Parameters

- Season Modeled: Breeding (15-May- 31-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4496070
- High-Probability Threshold Value: 0.5073747
- Low-Probability Threshold Value: 0.0431552

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Low Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.701 Regularized Training Gain: 0.269

- Average Test AUC: 0.684 ± 0.055
- Upper Bound on Test AUC: 0.701
- Average Test Gain: 0.212 ± 0.161
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.37± 0.10

Occurrence Map

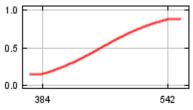
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 470
- Number of Occurrences used to create distribution model: 181
- Average Point Quality Index (highest quality is 12.00): 7.39 ± 2.58
- Most recent occurrence used: 2008
- Oldest occurrence used: 1978
- Occurrence File: LARGE_AREA_SAMPLE_POINTS_ALL_2. csv

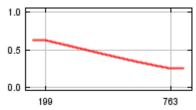
Comments

Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

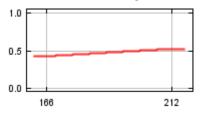
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

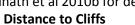

Percent Contribution (PC) to final model

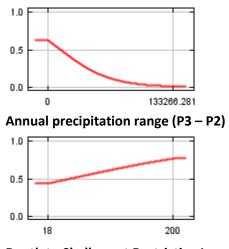
Environmental Variable	РС
Variation in monthly radiation	50
Distance to Cliffs	38
Variation of monthly precipitation	7
Annual precipitation range (P3 – P2)	2
Annual Radiation range	2
Depth to Shallowest Restrictive Layer	1


Response Curves

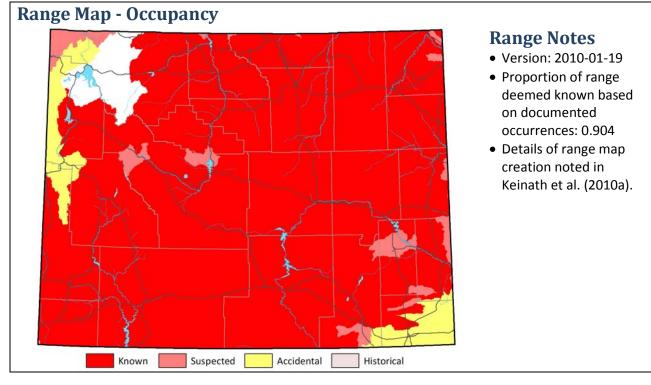
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

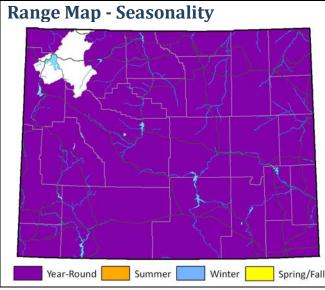





Variation of monthly precipitation

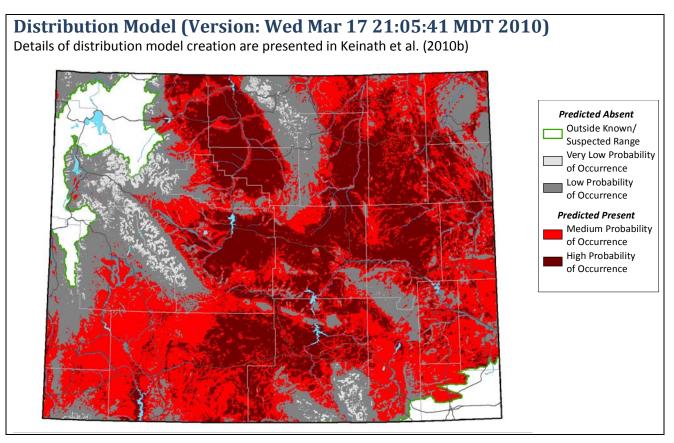
Annual Radiation range


Depth to Shallowest Restrictive Layer

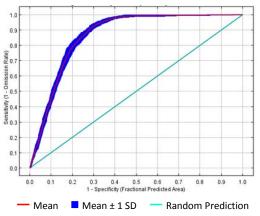


Greater Sage-Grouse (*Centrocercus urophasianus*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Greater Sage-Grouse (ABNLC12010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

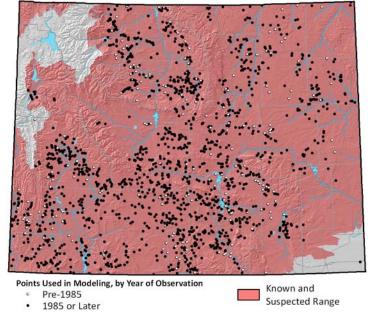

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (15-Mar- 30-Jun)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2642430
- High-Probability Threshold Value: 0.5747061
- Low-Probability Threshold Value: 0.0015102

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Very High Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics Training AUC: 0.871 Regularized Training Gain: 1.042

- Average Test AUC: 0.865 ± 0.010
- Upper Bound on Test AUC: 0.867
- Average Test Gain: 1.033 ± 0.075
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.09± 0.03

Occurrence Map

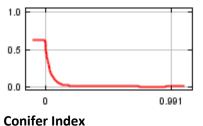
Occurrence Summary Statistics

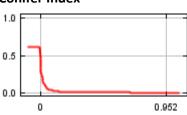
- Number of Occurrences in AWVED master dataset: 46,089
- Number of Occurrences used to create distribution model: 1,610
- Average Point Quality Index (highest quality is 12.00): 7.87 ± 1.48
- Most recent occurrence used: 2007
- Oldest occurrence used: 1949
- Occurrence File: GAME_SAMPLE_POINTS_ALL_2.csv

Comments

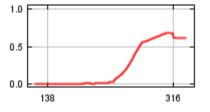
This is a sagebrush obligate species for which model quality would likely improve if an accurate statewide estimate of sagebrush structure (i.e., density and/or height) were available.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

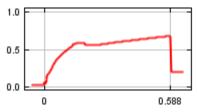

Percent Contribution (PC) to final model


Environmental Variable	РС
Forest Cover Index	49
Warmest quarter mean temperature	28
Conifer Index	8
Bare Ground Index	6
Hottest month mean maximum temperature	4
Relative Humidity of most humid month	2
Sagebrush Index	2

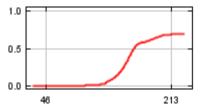
Response Curves


Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

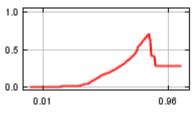
Forest Cover Index

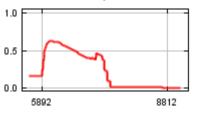


Hottest month mean maximum temperature

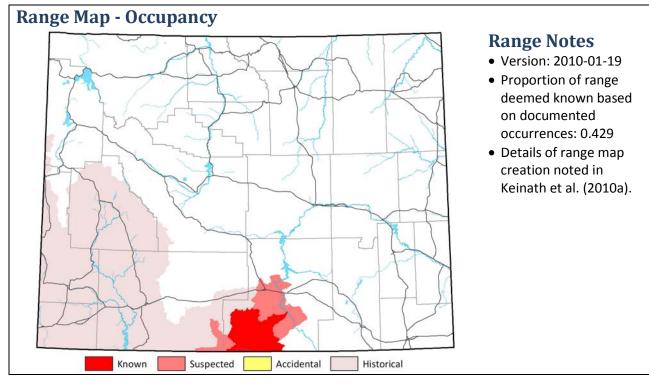


Sagebrush Index


A5-94


Warmest quarter mean temperature

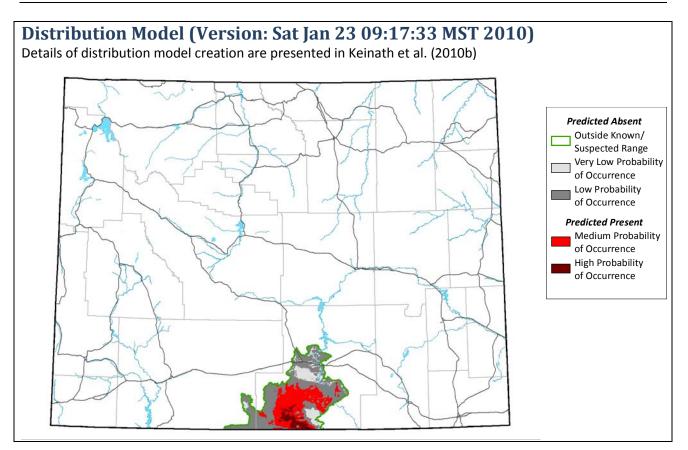
Bare Ground Index


Relative Humidity of most humid month

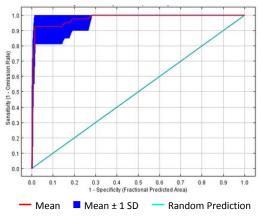


Columbian Sharp-tailed Grouse (*Tympanuchus phasianellus columbianus*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Columbian Sharp-tailed Grouse (ABNLC13033) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist Mark Andersen, GIS Specialist

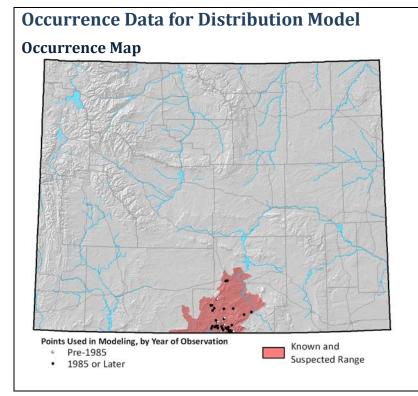
Model Parameters

- Season Modeled: Breeding (1-Apr- 15-Sep)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2322070
- High-Probability Threshold Value: 0.6771706
- Low-Probability Threshold Value: 0.0061581

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH Expert Assessment: High


Occurrence Sample Size: Medium Quality of Occurrences: High Positive Success Rate: High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.988 Regularized Training Gain: 3.565

- Average Test AUC: 0.980 ± 0.026
- Upper Bound on Test AUC: 0.973
- Average Test Gain: 3.628 ± 0.856
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.13± 0.18

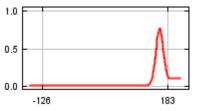
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 2,673
- Number of Occurrences used to create distribution model: 40
- Average Point Quality Index (highest quality is 12.00): 8.38 ± 2.82
- Most recent occurrence used: 2006
- Oldest occurrence used: 1980
- Occurrence File: GAME_SAMPLE_POINTS_ALL.csv

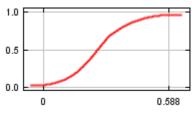
Comments

There are no additional comments specific to this species range map or distribution model.

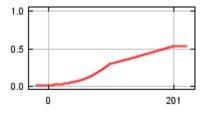
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

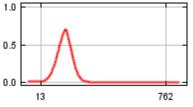

Percent Contribution (PC) to final model

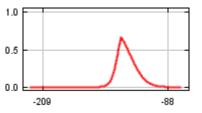
Environmental Variable	РС
Driest quarter mean temperature	36
Precipitation of the coldest quarter	22
Sagebrush Index	18
Coldest month mean minimum temperature	13
Depth to Shallowest Restrictive Layer	7
Wettest quarter mean temperature	5

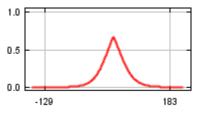

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

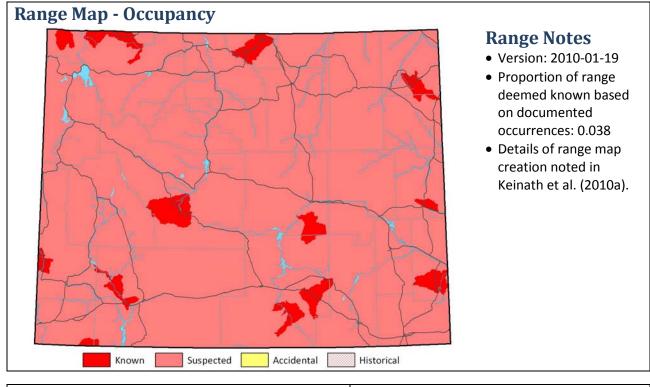

Driest quarter mean temperature

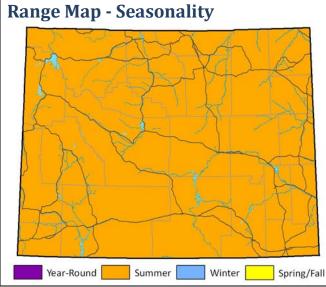

Sagebrush Index


Depth to Shallowest Restrictive Layer


Precipitation of the coldest quarter

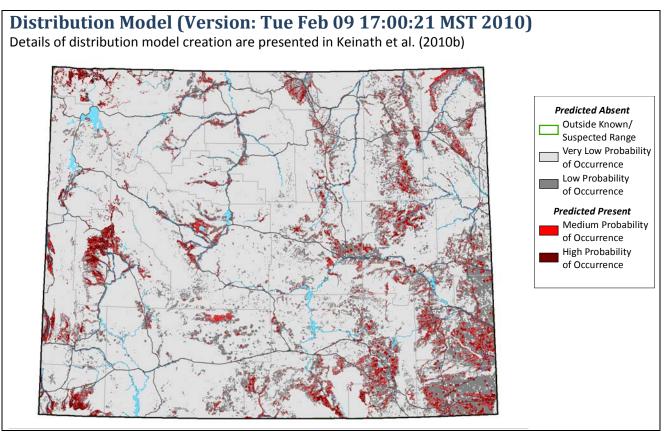
Coldest month mean minimum temperature


Wettest quarter mean temperature

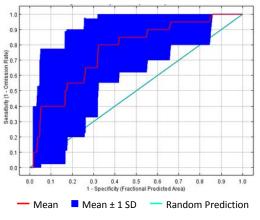


Virginia Rail (*Rallus limicola*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Virginia Rail (ABNME05030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

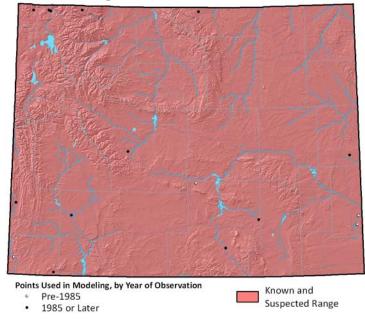
Model Parameters

- Season Modeled: Breeding (7-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4788990
- High-Probability Threshold Value: 0.6221668
- Low-Probability Threshold Value: 0.2341670

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Low Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.912 Regularized Training Gain: 0.884

- Average Test AUC: 0.762 ± 0.156
- Upper Bound on Test AUC: 0.837
- Average Test Gain: 0.277 ± 1.182
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.45± 0.37

Occurrence Map

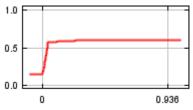
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 39
- Number of Occurrences used to create distribution model: 16
- Average Point Quality Index (highest quality is 12.00): 6.31 ± 1.54
- Most recent occurrence used: 2008
- Oldest occurrence used: 1982
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

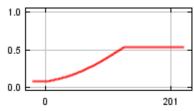
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state.

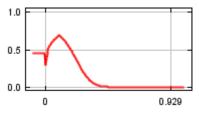
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

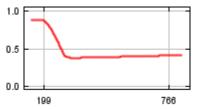

Percent Contribution (PC) to final model

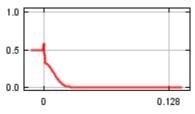
Environmental Variable	РС
Herbaceous Cover Index	22
Variation of monthly precipitation	18
Depth to Shallowest Restrictive Layer	17
Vector Ruggedness Measure	15
Forest Cover Index	15
Distance to Permanent Water	14

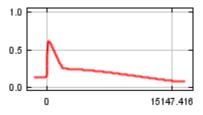

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

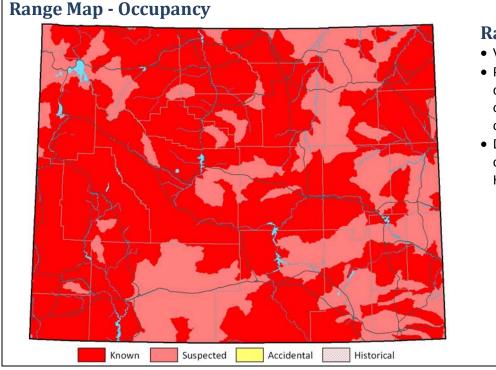

Herbaceous Cover Index


Depth to Shallowest Restrictive Layer

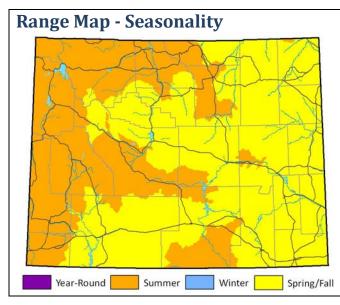

Forest Cover Index


Variation of monthly precipitation

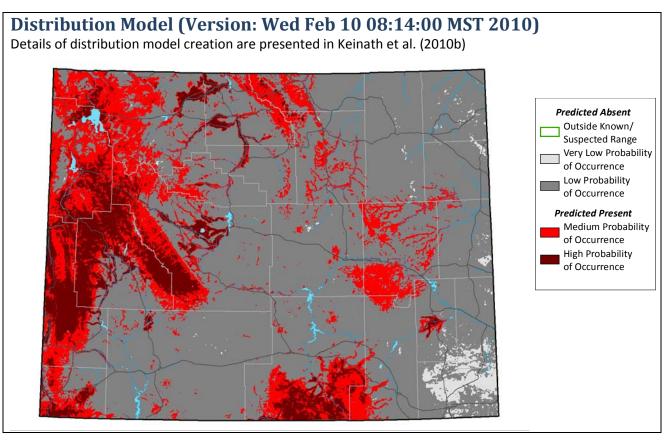
Vector Ruggedness Measure


Distance to Permanent Water

Greater Sandhill Crane (*Grus canadensis*) Range Map and Distribution Model Summary

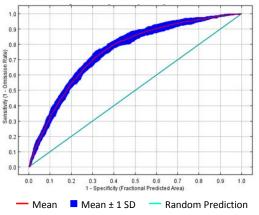

August 20, 2010

This report presents range and distribution of Greater Sandhill Crane (ABNMK01010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.839
- Details of range map creation noted in Keinath et al. (2010a).

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

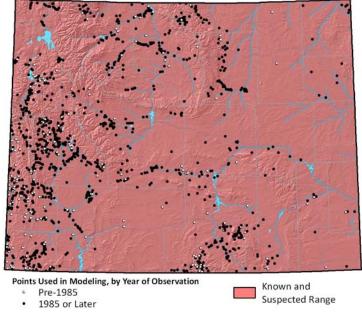
- Season Modeled: Breeding (7-Apr- 15-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3463090
- High-Probability Threshold Value: 0.5543355
- Low-Probability Threshold Value: 0.0545212

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low

Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.771 Regularized Training Gain: 0.420

- Average Test AUC: 0.753 ± 0.016
- Upper Bound on Test AUC: 0.748
- Average Test Gain: 0.410 ± 0.057
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.25± 0.03

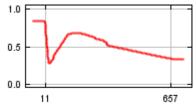
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 6,090
- Number of Occurrences used to create distribution model: 1,181
- Average Point Quality Index (highest quality is 12.00): 6.54 ± 1.88
- Most recent occurrence used: 2008
- Oldest occurrence used: 1977
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

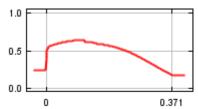
Comments

This species uses aspects of wetlands (e.g., dense emergent vegetation) for which statewide data are not available or reliable. This often results in low model quality because key habitat features are not mappable across the state. Great improvements in our ability to model this species distribution could be obtained by improving wetland maps.

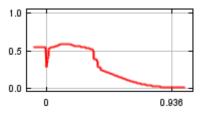
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

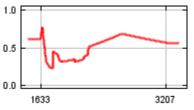

Percent Contribution (PC) to final model

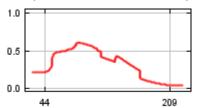
Environmental Variable	РС
Precipitation of the coldest quarter	23
Annual number of Frost Days	21
Deciduous Forest Index	19
Precipitation of the warmest quarter	17
Herbaceous Cover Index	11
Bare Ground Index	10

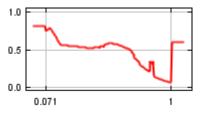

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

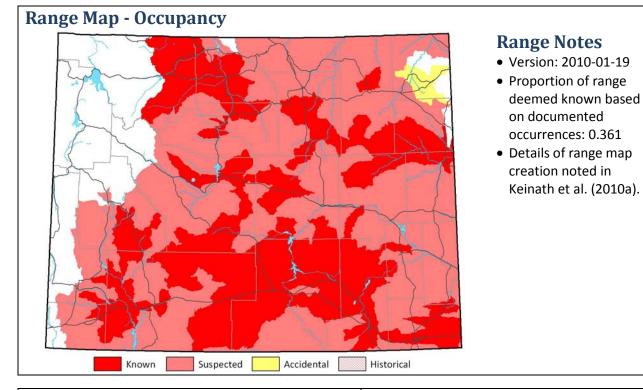

Precipitation of the coldest quarter

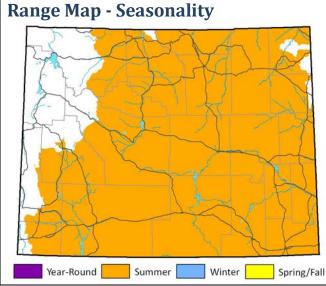

Deciduous Forest Index


Herbaceous Cover Index


Annual number of Frost Days

Precipitation of the warmest quarter

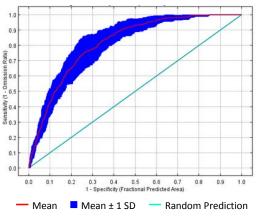

Bare Ground Index



Mountain Plover (*Charadrius montanus*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Mountain Plover (ABNNB03100) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (25-Apr- 31-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3270460
- High-Probability Threshold Value: 0.5634029
- Low-Probability Threshold Value: 0.0523645

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: High Positive Success Rate: Medium Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.840 Regularized Training Gain: 0.738

- Average Test AUC: 0.815 ± 0.037
- Upper Bound on Test AUC: 0.819
- Average Test Gain: 0.680 ± 0.180
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.23± 0.12

<section-header><figure>

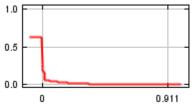
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 1,755
- Number of Occurrences used to create distribution model: 302
- Average Point Quality Index (highest quality is 12.00): 8.63 ± 2.91
- Most recent occurrence used: 2007
- Oldest occurrence used: 1960
- Occurrence File: REVISED_SAMPLE_POINTS_ALL_SPP.cs
 v

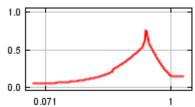
Comments

The model for mountain plover could be biased due to a lack of sample points from privately-owned land in the southeastern portion of Wyoming. There is likely much suitable land in this area, but surveys and occurrence data are less common on private property. Qualitative expert evaluation of this model noted that some high-elevation parks are inappropriately predicted.

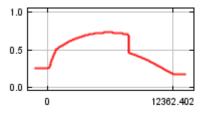
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

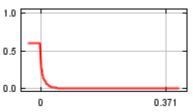

Percent Contribution (PC) to final model

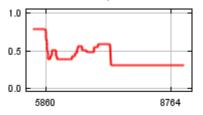
Environmental Variable	РС
Conifer Index	42
Deciduous Forest Index	27
Bare Ground Index	11
Relative Humidity of most humid month	9
Potential for Rock Outcrop	7
Forest Cover Index	5

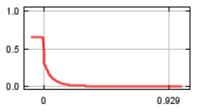

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

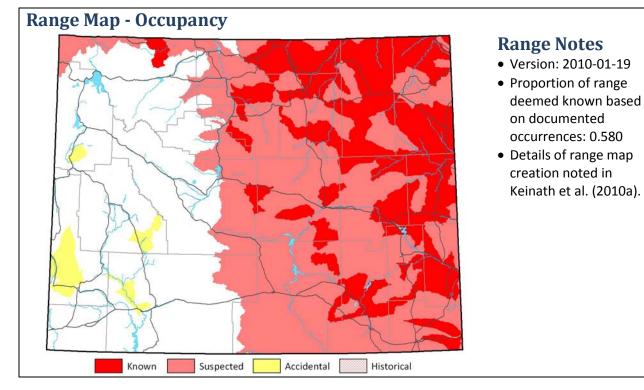

Conifer Index

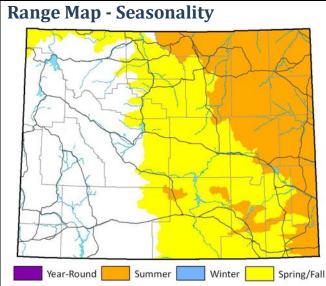

Bare Ground Index


Potential for Rock Outcrop


Deciduous Forest Index

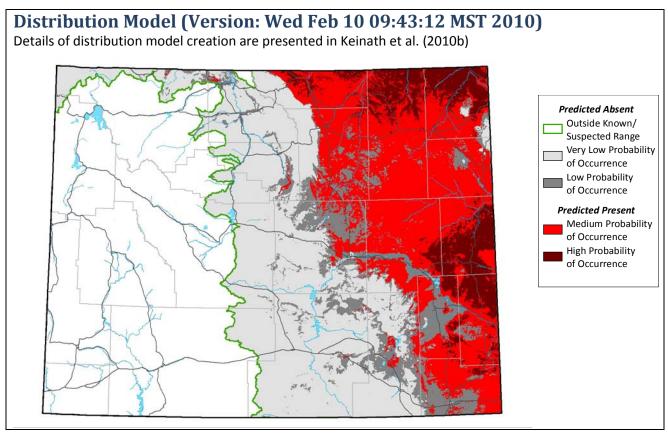
Relative Humidity of most humid month


Forest Cover Index

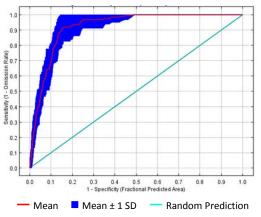


Upland Sandpiper (*Bartramia longicauda*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Upland Sandpiper (ABNNF06010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

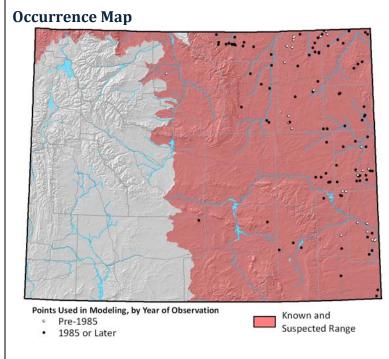
Model Parameters

- Season Modeled: Breeding (1-May- 7-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1604380
- High-Probability Threshold Value: 0.5936415
- Low-Probability Threshold Value: 0.0352934

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH Expert Assessment: Medium Occurrence Sample Size: High


Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.945 Regularized Training Gain: 1.662

- Average Test AUC: 0.921 ± 0.025
- Upper Bound on Test AUC: 0.929
- Average Test Gain: 1.545 ± 0.351
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.11± 0.14

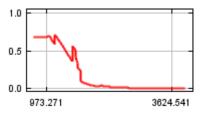
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 376
- Number of Occurrences used to create distribution model: 120
- Average Point Quality Index (highest quality is 12.00): 6.08 ± 1.66
- Most recent occurrence used: 2005
- Oldest occurrence used: 1974
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

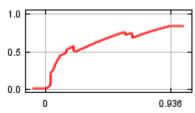
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state. Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

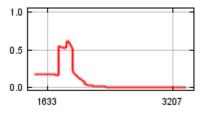
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

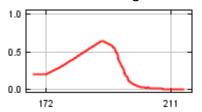

Percent Contribution (PC) to final model

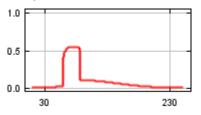
РС
32
31
11
10
8
8


Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

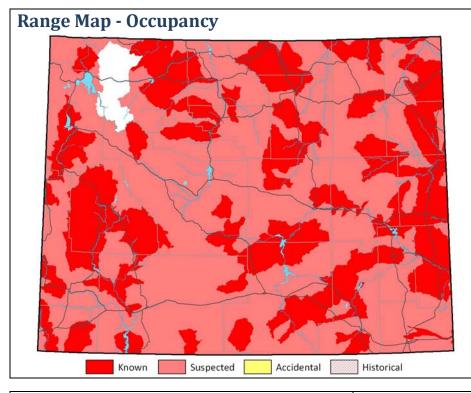

Elevation


Herbaceous Cover Index

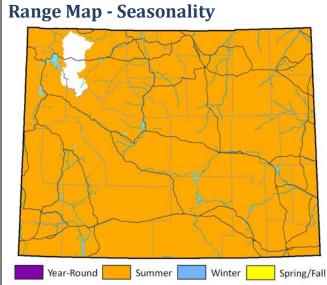

Annual number of Frost Days

Annual Radiation range

Precipitation of the wettest month


Coldest month mean minimum temperature

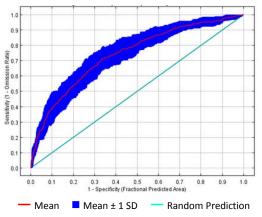
Long-billed Curlew (*Numenius americanus*) Range Map and Distribution Model Summary


August 20, 2010

This report presents range and distribution of Long-billed Curlew (ABNNF07070) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.319
- Details of range map creation noted in Keinath et al. (2010a).


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (7-Apr- 15-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3884580
- High-Probability Threshold Value: 0.5325363
- Low-Probability Threshold Value: 0.0507192

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Low Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.776 Regularized Training Gain: 0.454

- Average Test AUC: 0.741 ± 0.046
- Upper Bound on Test AUC: 0.746
- Average Test Gain: 0.410 ± 0.192
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.35± 0.09

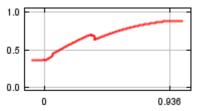
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 1,029
- Number of Occurrences used to create distribution model: 341
- Average Point Quality Index (highest quality is 12.00): 6.17 ± 1.77
- Most recent occurrence used: 2008
- Oldest occurrence used: 1961
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

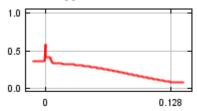
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state.

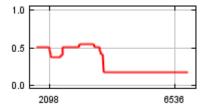
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

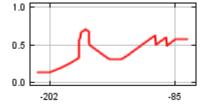

Percent Contribution (PC) to final model

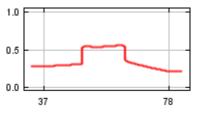
Environmental Variable	РС
Herbaceous Cover Index	27
Coldest month mean minimum temperature	22
Vector Ruggedness Measure	17
Radiation of the darkest month	16
Relative Humidity of least humid month	15
Warmest quarter mean temperature	3
· · · · · · · · · · · · · · · · · · ·	-

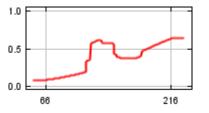

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

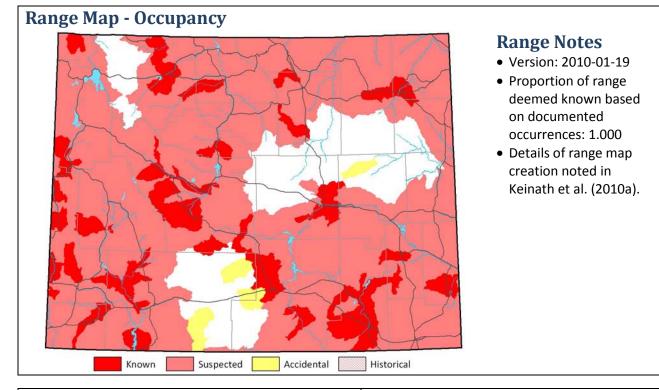

Herbaceous Cover Index

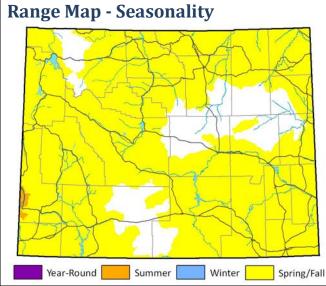

Vector Ruggedness Measure


Relative Humidity of least humid month


Coldest month mean minimum temperature

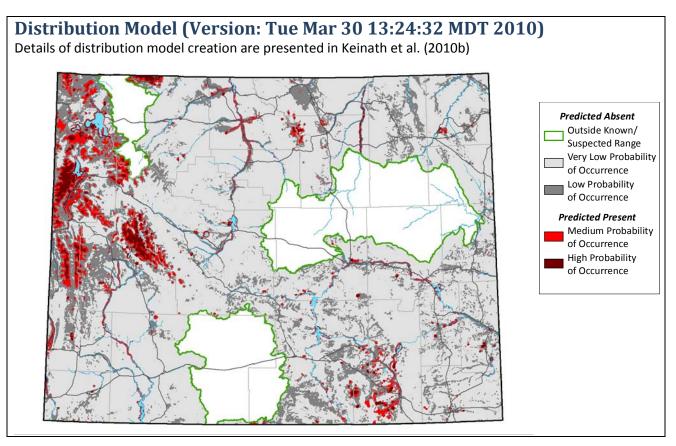
Radiation of the darkest month


Warmest quarter mean temperature

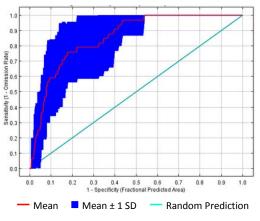


Franklin's Gull (*Larus pipixcan*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Franklin's Gull (ABNNM03020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

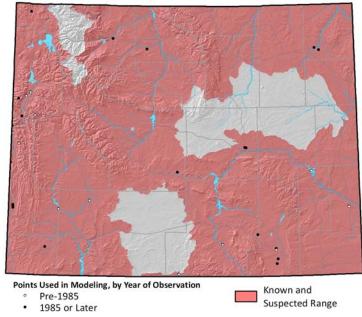
Model Parameters

- Season Modeled: Breeding (15-May- 25-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3535720
- High-Probability Threshold Value: 0.6410098
- Low-Probability Threshold Value: 0.1550175

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Low Positive Success Rate: Medium Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.912 Regularized Training Gain: 1.092

- Average Test AUC: 0.855 ± 0.079
- Upper Bound on Test AUC: 0.862
- Average Test Gain: 0.864 ± 0.584
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.29± 0.30

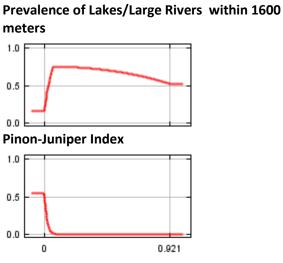
Occurrence Map

Occurrence Summary Statistics

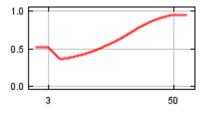
- Number of Occurrences in AWVED master dataset: 167
- Number of Occurrences used to create distribution model: 33
- Average Point Quality Index (highest quality is 12.00): 4.97 ± 1.33
- Most recent occurrence used: 2005
- Oldest occurrence used: 1969
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E_SAMPLES.csv

Comments

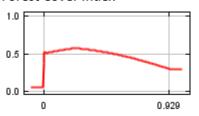
Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state.

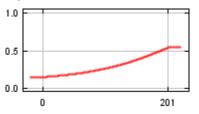

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

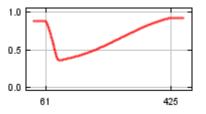
Percent Contribution (PC) to final model


Environmental Variable	РС
Prevalence of Lakes/Large Rivers within 1600 meters	57
Forest Cover Index	9
Pinon-Juniper Index	9
Depth to Shallowest Restrictive Layer	9
Precipitation of the driest month	8
Interannual variation in annual frost days	7

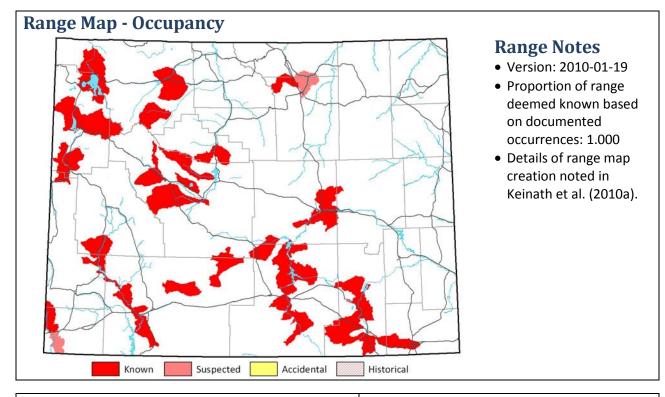
Response Curves

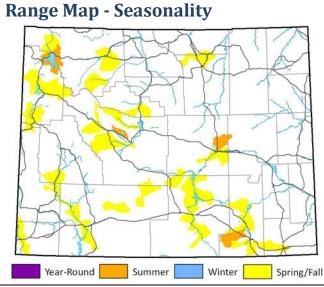

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).


Precipitation of the driest month


Forest Cover Index

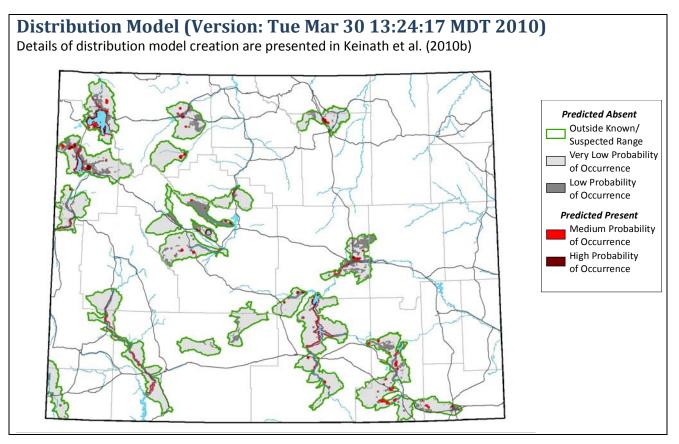
Depth to Shallowest Restrictive Layer


Interannual variation in annual frost days

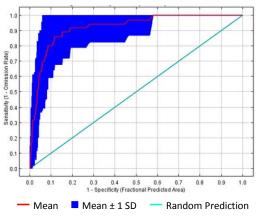


Caspian Tern (*Sterna caspia*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Caspian Tern (ABNNM08020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

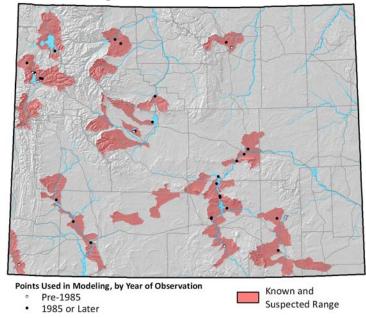
Model Parameters

- Season Modeled: Breeding (25-May- 15-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2383300
- High-Probability Threshold Value: 0.6224500
- Low-Probability Threshold Value: 0.0385278

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: High


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.956 Regularized Training Gain: 1.838

- Average Test AUC: 0.921 ± 0.068
- Upper Bound on Test AUC: 0.928
- Average Test Gain: 1.566 ± 0.911
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.17± 0.22

Occurrence Map

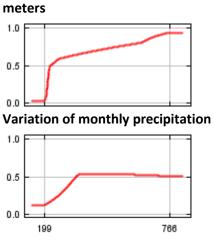
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 97
- Number of Occurrences used to create distribution model: 33
- Average Point Quality Index (highest quality is 12.00): 5.91 ± 2.10
- Most recent occurrence used: 2004
- Oldest occurrence used: 1955
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E_SAMPLES.csv

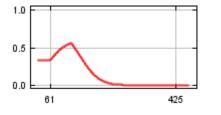
Comments

The range of Caspian Tern in Wyoming is highly fragmented and generally tied to localized features of water bodies, which makes environmental niche modeling difficult and could decrease the accuracy of the final model.Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state.

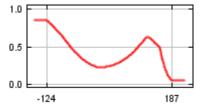
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

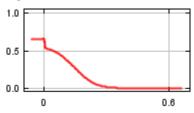

Percent Contribution (PC) to final model

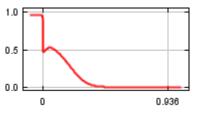
Environmental Variable	РС
Prevalence of Lakes/Large Rivers within 1600 meters	76
Wettest quarter mean temperature	7
Variation of monthly precipitation	6
Sagebrush Index	5
Interannual variation in annual frost days	4
Herbaceous Cover Index	2


Response Curves

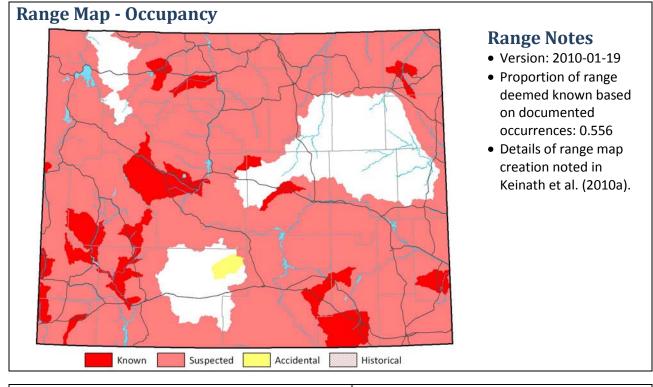
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).


Prevalence of Lakes/Large Rivers within 1600


Interannual variation in annual frost days


Wettest quarter mean temperature

Sagebrush Index

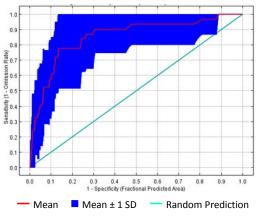

Herbaceous Cover Index



Forster's Tern (*Sterna forsteri*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Forster's Tern (ABNNM08090) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

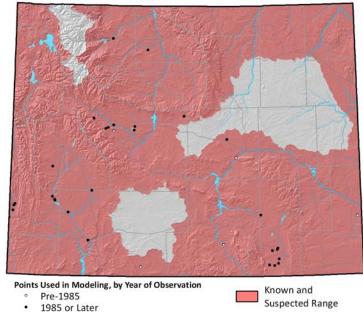
Model Parameters

- Season Modeled: Breeding (25-May- 15-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2007730
- High-Probability Threshold Value: 0.6233527
- Low-Probability Threshold Value: 0.0271948

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.933 Regularized Training Gain: 1.501

- Average Test AUC: 0.853 ± 0.134
- Upper Bound on Test AUC: 0.911
- Average Test Gain: 0.612 ± 1.846
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.28± 0.27

Occurrence Map

Occurrence Summary Statistics

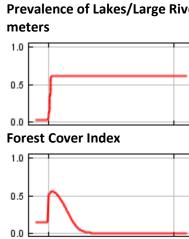
- Number of Occurrences in AWVED master dataset: 151
- Number of Occurrences used to create distribution model: 35
- Average Point Quality Index (highest quality is 12.00): 6.51 ± 2.13
- Most recent occurrence used: 2006
- Oldest occurrence used: 1981
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E_SAMPLES.csv

Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state.

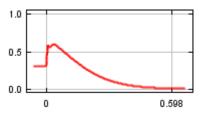
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

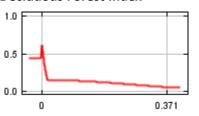

Environmental Variable	РС
Prevalence of Lakes/Large Rivers within 3200 meters	64
Deciduous Forest Index	14
Forest Cover Index	7
Precipitation of the coldest quarter	6
Shrub Cover Index	5
Elevation	4

Response Curves

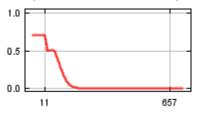
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

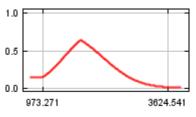

Prevalence of Lakes/Large Rivers within 3200

0.929

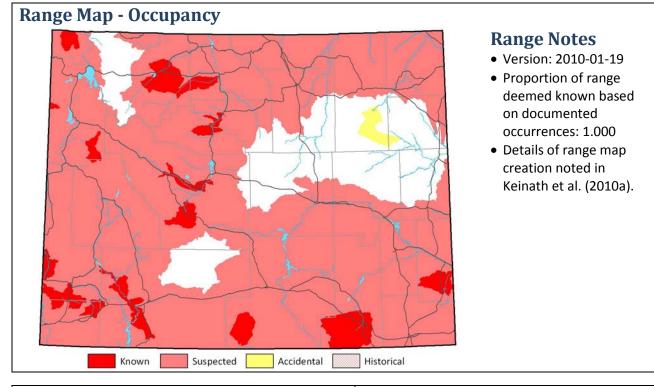


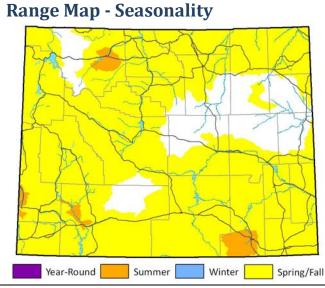
Shrub Cover Index


0


Deciduous Forest Index

Precipitation of the coldest quarter

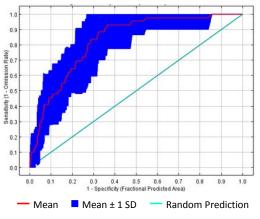

Elevation



Black Tern (*Chlidonias niger*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Black Tern (ABNNM10020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

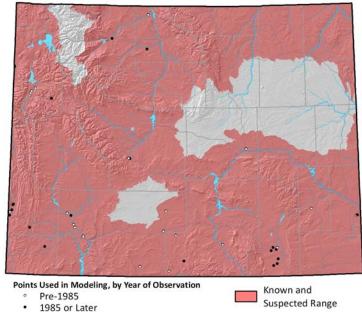
- Season Modeled: Breeding (25-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4022530
- High-Probability Threshold Value: 0.5854331
- Low-Probability Threshold Value: 0.0269066

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low Occurrence Sample Size: Medium Quality of Occurrences: Low Positive Success Rate: High

Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.855 Regularized Training Gain: 0.789

- Average Test AUC: 0.827 ± 0.096
- Upper Bound on Test AUC: 0.830
- Average Test Gain: 0.664 ± 0.836
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.17± 0.19

Occurrence Map

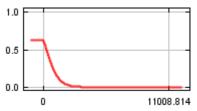
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 131
- Number of Occurrences used to create distribution model: 42
- Average Point Quality Index (highest quality is 12.00): 5.33 ± 1.48
- Most recent occurrence used: 2005
- Oldest occurrence used: 1962
- Occurrence File: DRAFT_3_RE_REVIEWED_OCCURRENC E_SAMPLES.csv

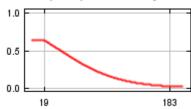
Comments

Water birds, particularly colonial-nesting species, are difficult to model because they use specific features of water bodies for which statewide data do not exist. This can sometimes result in low model quality because key habitat features are not mappable across the state.

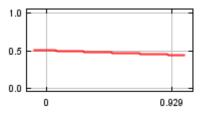
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

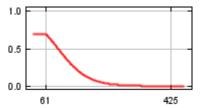

Percent Contribution (PC) to final model

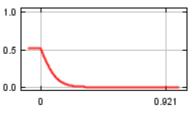
Environmental Variable	РС
Distance to Permanent Water	45
Interannual variation in annual frost days	34
Annual precipitation range (P3 – P2)	13
Pinon-Juniper Index	5
Forest Cover Index	3
Driest quarter mean temperature	1

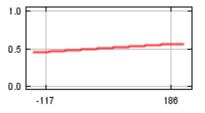

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

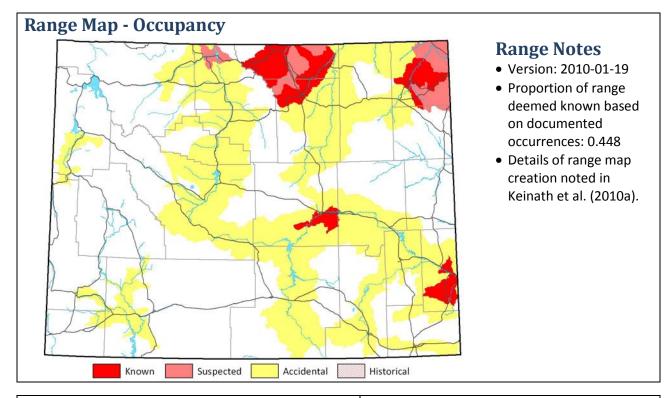

Distance to Permanent Water

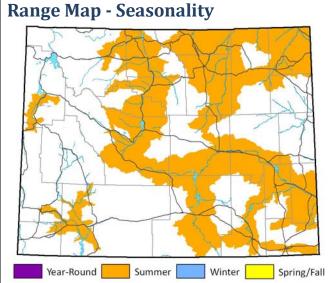

Annual precipitation range (P3 – P2)


Forest Cover Index


Interannual variation in annual frost days

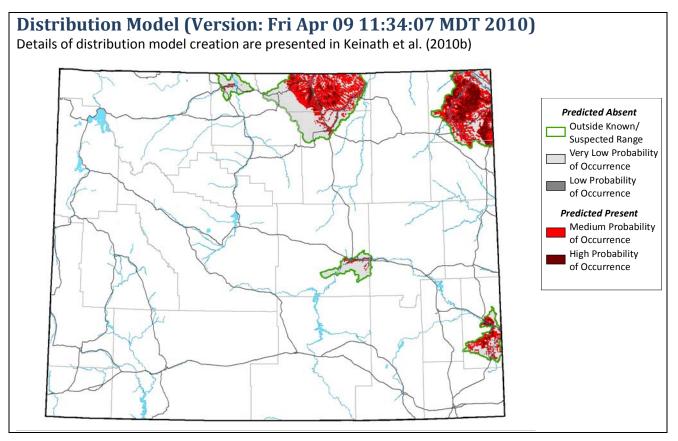
Pinon-Juniper Index


Driest quarter mean temperature

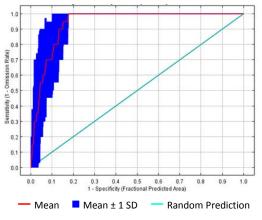


Yellow-billed Cuckoo (*Coccyzus americanus*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Yellow-billed Cuckoo (ABNRB02020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

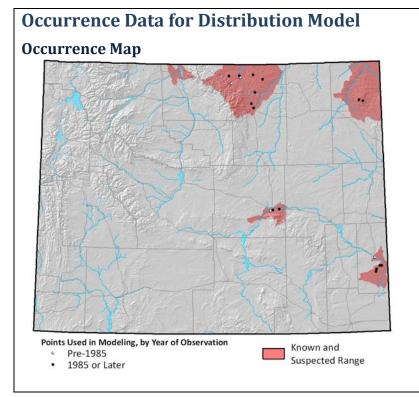
Model Parameters

- Season Modeled: Breeding (25-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: 10 percentile training presence
- Binary Threshold Value: 0.2370000
- High-Probability Threshold Value: 0.6374356
- Low-Probability Threshold Value: 0.1960513

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW


Expert Assessment: Low Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.970 Regularized Training Gain: 1.983

- Average Test AUC: 0.938 ± 0.038
- Upper Bound on Test AUC: 0.942
- Average Test Gain: 1.646 ± 0.836
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.25± 0.35

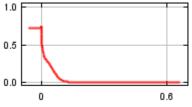
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 68
- Number of Occurrences used to create distribution model: 19
- Average Point Quality Index (highest quality is 12.00): 6.79 ± 2.18
- Most recent occurrence used: 2005
- Oldest occurrence used: 1978
- Occurrence File: DRAFT_3_SAGE_WATER_RERUNS.csv

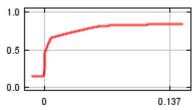
Comments

There are no additional comments specific to this species range map or distribution model.

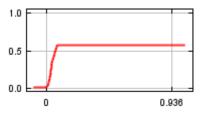
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.


Percent Contribution (PC) to final model

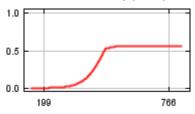
Environmental Variable	РС
Sagebrush Index	44
Elevation	22
Cottonwood Index	12
Variation of monthly precipitation	10
Herbaceous Cover Index	8
Radiation of the lightest month	4


Response Curves

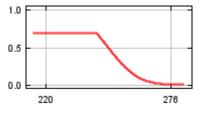
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).


Sagebrush Index

Cottonwood Index

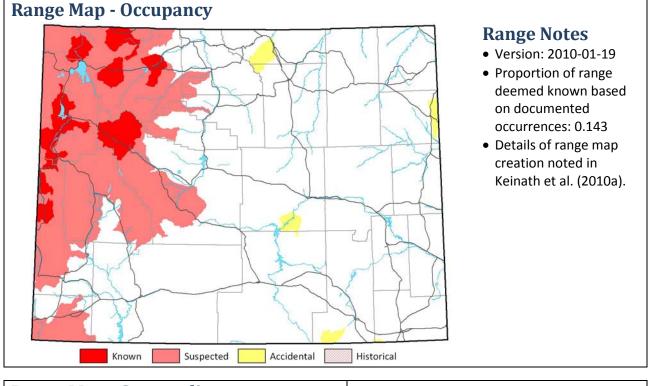


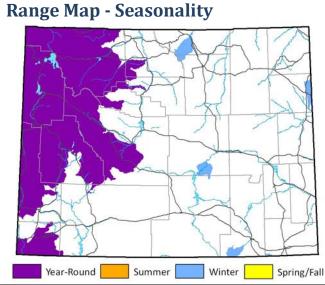
Herbaceous Cover Index



Elevation 1.0 0.5 0.0 973.271 3624.541

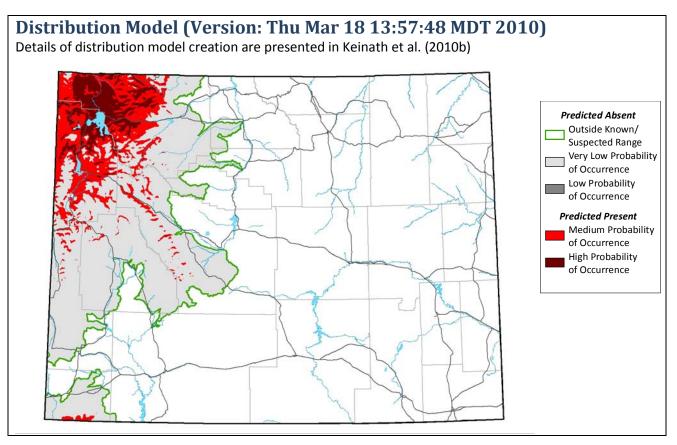
Variation of monthly precipitation


Radiation of the lightest month

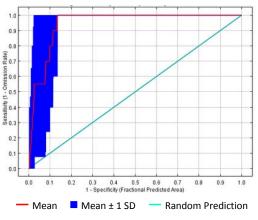


Northern Pygmy-Owl (*Glaucidium gnoma*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Northern Pygmy-Owl (ABNSB08010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

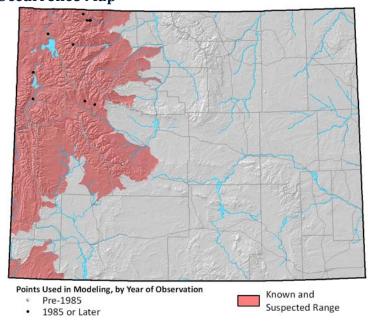
Model Parameters

- Season Modeled: Breeding (7-Apr- 30-Jun)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2707220
- High-Probability Threshold Value: 0.6835160
- Low-Probability Threshold Value: 0.2707220

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Very High Test AUC and Model Gain: High


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.955 Regularized Training Gain: 1.574

- Average Test AUC: 0.946 ± 0.047
- Upper Bound on Test AUC: 0.910
- Average Test Gain: 1.723 ± 0.948
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.10± 0.32

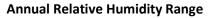
Occurrence Map

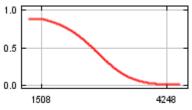
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 44
- Number of Occurrences used to create distribution model: 11
- Average Point Quality Index (highest quality is 12.00): 7.00 ± 1.41
- Most recent occurrence used: 2007
- Oldest occurrence used: 1981
- Occurrence File: LARGE_AREA_SAMPLE_POINTS_ALL_2. csv

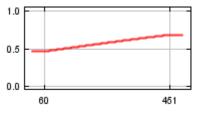
Comments

There are no additional comments specific to this species range map or distribution model.

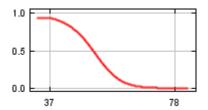

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

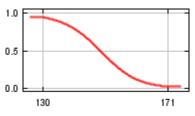

Percent Contribution (PC) to final model

Environmental Variable	РС
Annual Relative Humidity Range	43
Radiation of the darkest month	25
Interannual variation in annual frost days	15
Annual total radiation	8
Warmest quarter mean temperature	5
Variation in monthly Relative Humidity	4


Response Curves

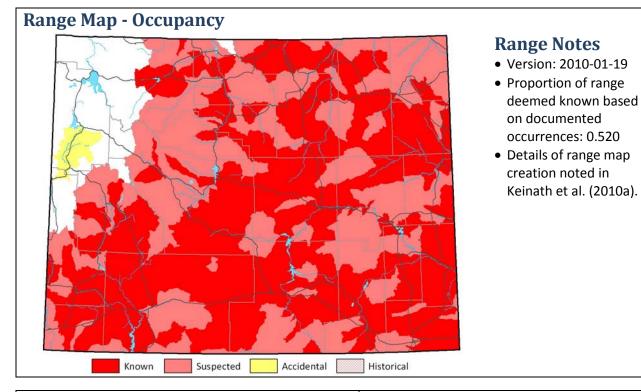
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

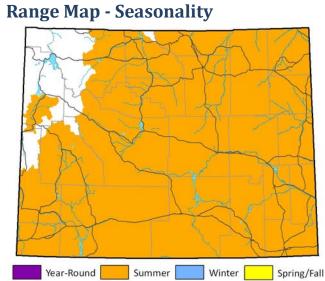

Interannual variation in annual frost days


Warmest quarter mean temperature


Radiation of the darkest month

Annual total radiation

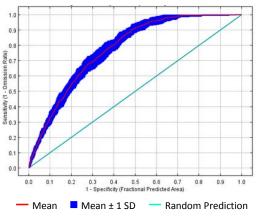

Variation in monthly Relative Humidity



Burrowing Owl (*Athene cunicularia*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Burrowing Owl (ABNSB10010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

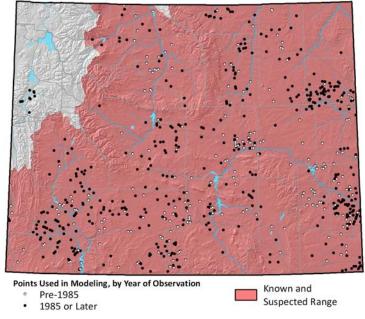
Model Parameters

- Season Modeled: Breeding (1-Apr- 15-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3791120
- High-Probability Threshold Value: 0.5433848
- Low-Probability Threshold Value: 0.0189194

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.795 Regularized Training Gain: 0.572

- Average Test AUC: 0.776 ± 0.020
- Upper Bound on Test AUC: 0.780
- Average Test Gain: 0.500 ± 0.182
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.22± 0.05

Occurrence Map

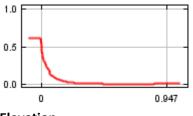
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 1,442
- Number of Occurrences used to create distribution model: 655
- Average Point Quality Index (highest quality is 12.00): 6.90 ± 2.41
- Most recent occurrence used: 2008
- Oldest occurrence used: 1974
- Occurrence File: DRAFT_3_ABNSB10010_RE_REVIEWED _OCCURRENCE_SAMPLES.csv

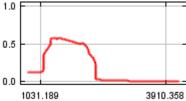
Comments

We discovered several occurrence points in unlikely locations for this an other species (e.g., river otter occurrences located in upland sagebrush several miles from water). Where possible, we removed or corrected evident errors. Given the number of errors detected, other points in the dataset are likely to be inaccurate, but there is no way to assess their accuracy due to lack of supporting location data. This is notably true for records from Wildlife Observation System. Since unidentified location errors negatively impact model quality, supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

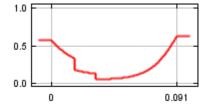
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

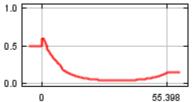

Percent Contribution (PC) to final model

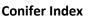
Environmental Variable	РС
Forest Cover Index	55
Degree Slope	13
Elevation	11
Conifer Index	10
Prevalence of flowing Water Wtihin 3200 meters	7
Annual Radiation range	4
5	

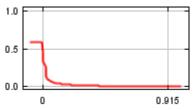

Response Curves

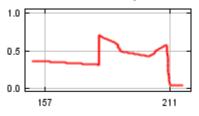
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

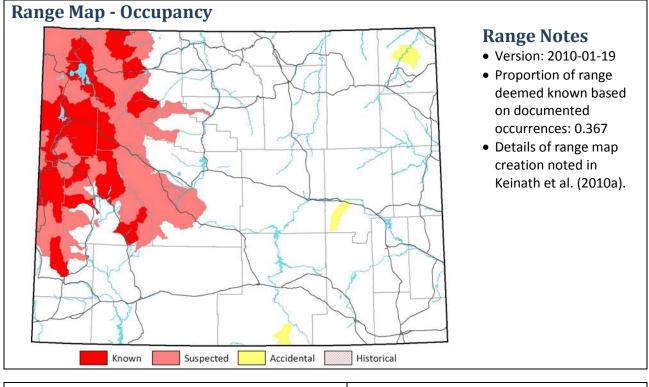

Forest Cover Index

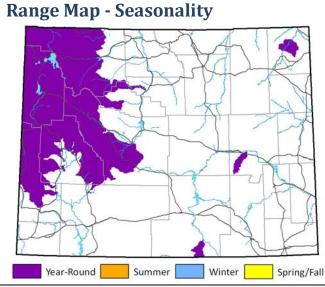





Prevalence of flowing Water Wtihin 3200 meters

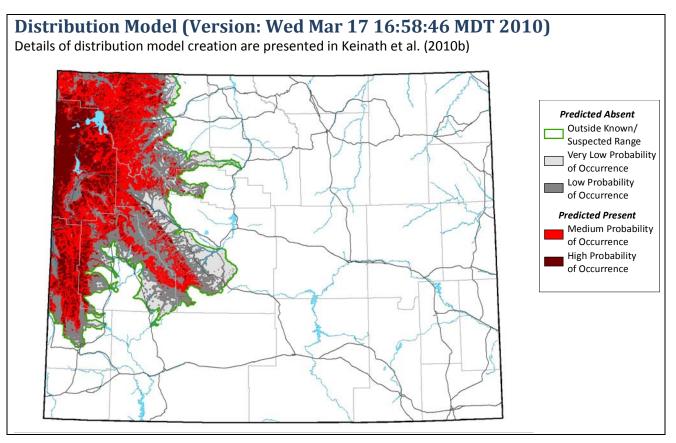

Degree Slope


Annual Radiation range

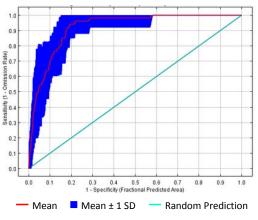


Great Gray Owl (*Strix nebulosa*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Great Gray Owl (ABNSB12040) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (25-Mar- 31-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2094810
- High-Probability Threshold Value: 0.5360051
- Low-Probability Threshold Value: 0.0482769

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH Expert Assessment: High

Occurrence Sample Size: Medium-High Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.926 Regularized Training Gain: 1.432

- Average Test AUC: 0.920 ± 0.050
- Upper Bound on Test AUC: 0.874
- Average Test Gain: 1.456 ± 0.615
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.11± 0.16

Points Used in Modeling, by Year of Observation

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 211
- Number of Occurrences used to create distribution model: 55
- Average Point Quality Index (highest quality is 12.00): 6.07 ± 1.74
- Most recent occurrence used: 2007
- Oldest occurrence used: 1969
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

Comments

Pre-1985

1985 or Later

There are no additional comments specific to this species range map or distribution model.

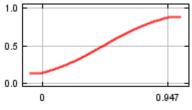
Known and

Suspected Range

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Forest Cover Index	39
Precipitation of the coldest quarter	37
Distance to Permanent Water	12
Conifer Index	9
Cottonwood Index	2
Deciduous Forest Index	2

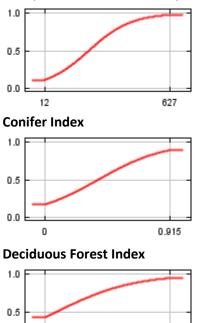

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

0.0

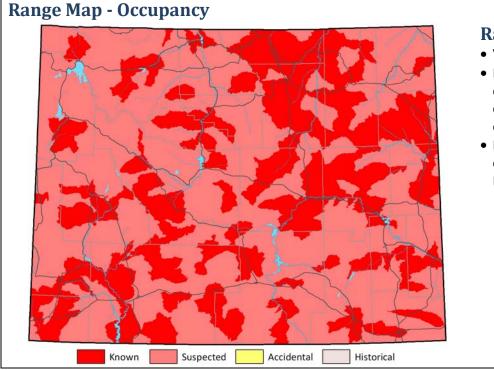
0

Forest Cover Index


Distance to Permanent Water

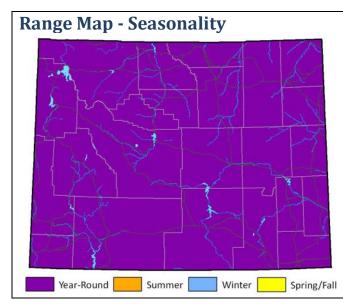
Cottonwood Index

Precipitation of the coldest quarter



0.415

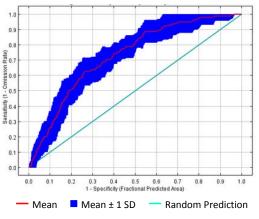
Short-eared Owl (*Asio flammeus*) Range Map and Distribution Model Summary


August 20, 2010

This report presents range and distribution of Short-eared Owl (ABNSB13040) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.291
- Details of range map creation noted in Keinath et al. (2010a).


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

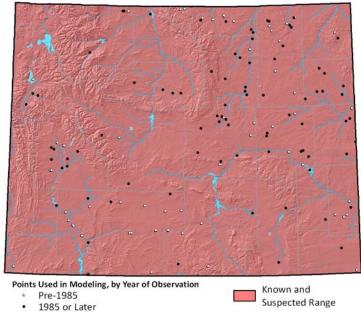
Model Parameters

- Season Modeled: Breeding (7-Mar- 15-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4355500
- High-Probability Threshold Value: 0.5333479
- Low-Probability Threshold Value: 0.0335475

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Low Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.742 Regularized Training Gain: 0.356

- Average Test AUC: 0.728 ± 0.046
- Upper Bound on Test AUC: 0.731
- Average Test Gain: 0.302 ± 0.224
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.35± 0.10

Occurrence Map

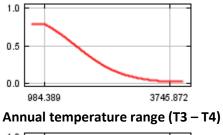
Occurrence Summary Statistics

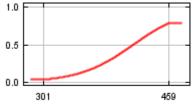
- Number of Occurrences in AWVED master dataset: 413
- Number of Occurrences used to create distribution model: 142
- Average Point Quality Index (highest quality is 12.00): 6.26 ± 1.81
- Most recent occurrence used: 2008
- Oldest occurrence used: 1968
- Occurrence File: LARGE_AREA_SAMPLE_POINTS_ALL_2. csv

Comments

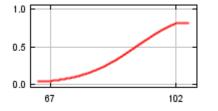
Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

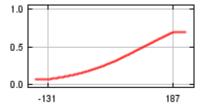

Percent Contribution (PC) to final model

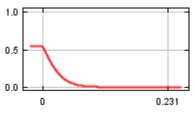

Environmental Variable	РС
Elevation	44
Wettest quarter mean temperature	31
Annual temperature range (T3 – T4)	14
Vector Ruggedness Measure	6
Standard deviation of monthly temperature	6
Distance to Permanent Water	0
	-

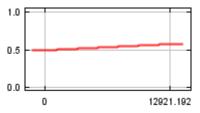
Response Curves


Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

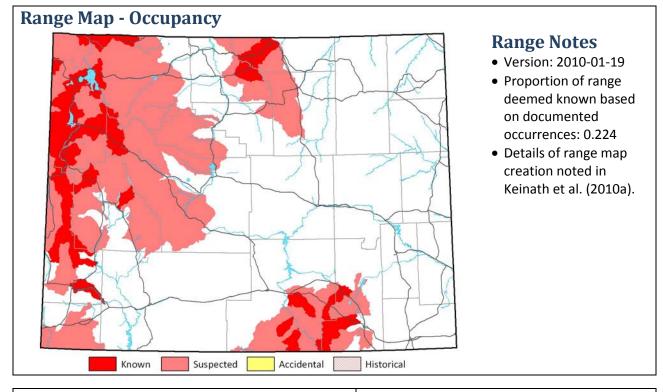
Elevation

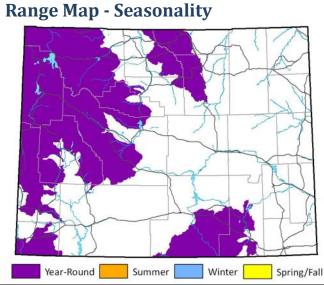



Standard deviation of monthly temperature


Wettest quarter mean temperature

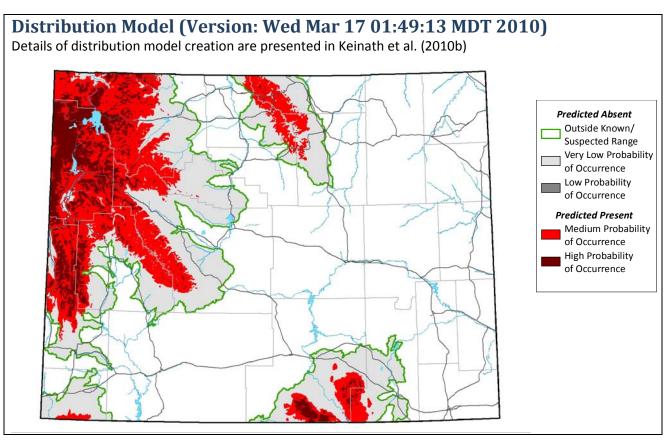
Vector Ruggedness Measure


Distance to Permanent Water

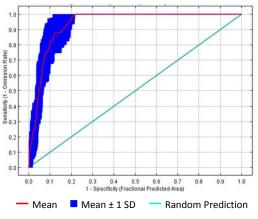


Boreal Owl (*Aegolius funereus*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Boreal Owl (ABNSB15010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

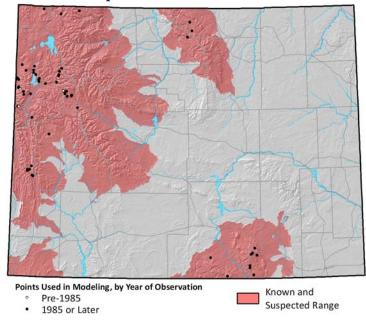
- Season Modeled: Breeding (1-Mar- 15-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1544870
- High-Probability Threshold Value: 0.5434354
- Low-Probability Threshold Value: 0.1544870

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH Expert Assessment: High

Occurrence Sample Size: Medium-High Quality of Occurrences: High Positive Success Rate: Very High Test AUC and Model Gain: High


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.942 Regularized Training Gain: 1.680

- Average Test AUC: 0.937 ± 0.026
- Upper Bound on Test AUC: 0.925
- Average Test Gain: 1.692 ± 0.402
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.05± 0.11

Occurrence Map

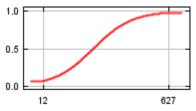
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 143
- Number of Occurrences used to create distribution model: 58
- Average Point Quality Index (highest quality is 12.00): 9.36 ± 1.98
- Most recent occurrence used: 2006
- Oldest occurrence used: 1976
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

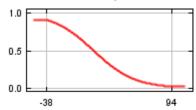
Comments

There are no additional comments specific to this species range map or distribution model.

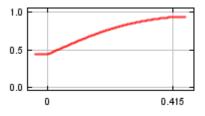
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

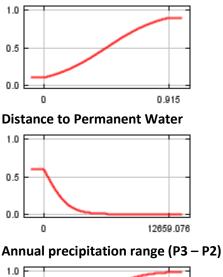

Percent Contribution (PC) to final model

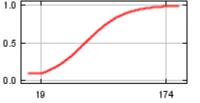
Environmental Variable	РС
Precipitation of the coldest quarter	45
Conifer Index	44
Annual mean temperature	8
Distance to Permanent Water	3
Deciduous Forest Index	0
Annual precipitation range (P3 – P2)	0


Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

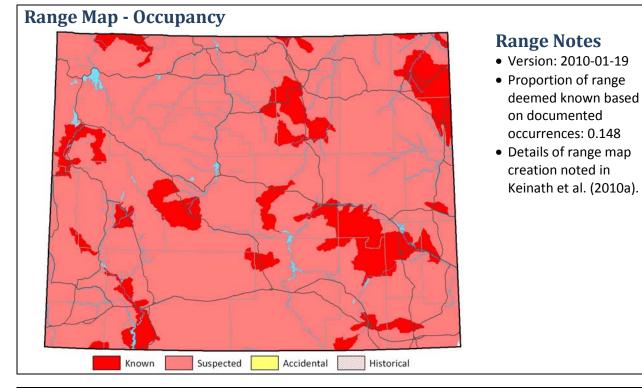

Precipitation of the coldest quarter

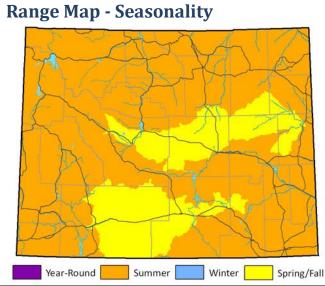

Annual mean temperature



Deciduous Forest Index

Conifer Index

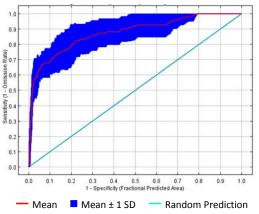




Lewis' Woodpecker (*Melanerpes lewis*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Lewis' Woodpecker (ABNYF04010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (15-May- 25-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1321160
- High-Probability Threshold Value: 0.7330925
- Low-Probability Threshold Value: 0.0167191

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics Training AUC: 0.921

Regularized Training Gain: 1.746

- Average Test AUC: 0.876 ± 0.057
- Upper Bound on Test AUC: 0.905
- Average Test Gain: 1.527 ± 0.484
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.24± 0.12

Points Used in Modeling, by Year of Observation

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 276
- Number of Occurrences used to create distribution model: 118
- Average Point Quality Index (highest quality is 12.00): 5.84 ± 1.55
- Most recent occurrence used: 2007
- Oldest occurrence used: 1978
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

Comments

Pre-1985

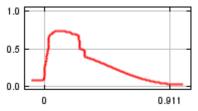
1985 or Later

There are no additional comments specific to this species range map or distribution model.

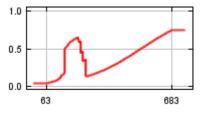
Known and

Suspected Range

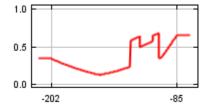
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

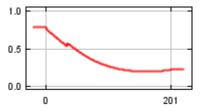

Percent Contribution (PC) to final model

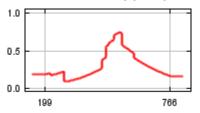
Environmental Variable	РС
Conifer Index	29
Depth to Shallowest Restrictive Layer	17
Precipitation of the wettest quarter	17
Variation of monthly precipitation	14
Coldest month mean minimum temperature	11
Herbaceous Cover Index	11

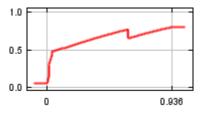

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

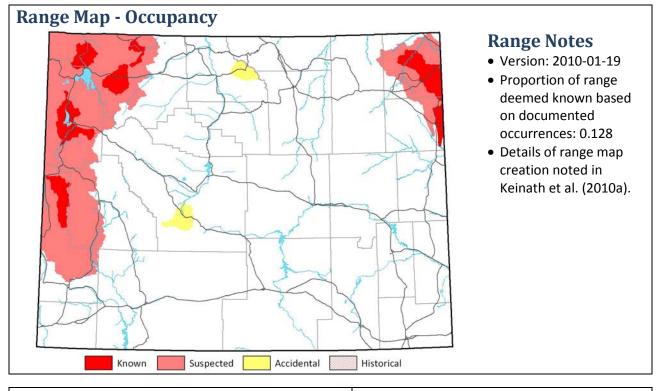

Conifer Index

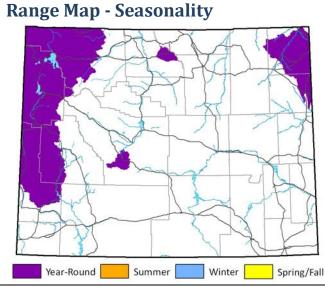

Precipitation of the wettest quarter


Coldest month mean minimum temperature


Depth to Shallowest Restrictive Layer

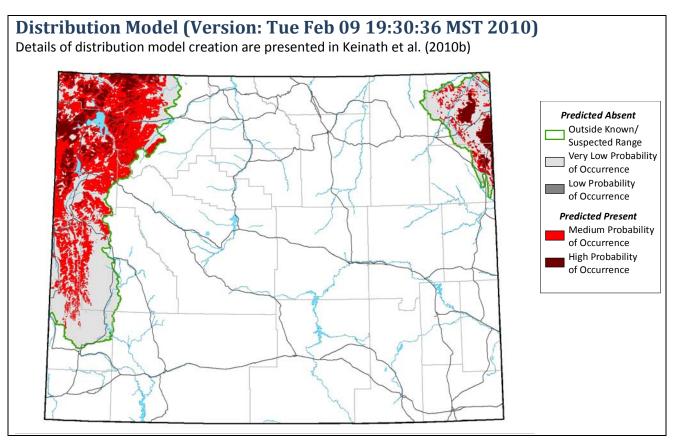
Variation of monthly precipitation


Herbaceous Cover Index

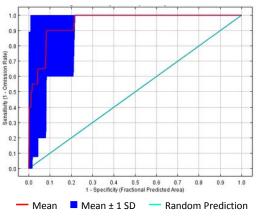


Black-backed Woodpecker (*Picoides arcticus*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Black-backed Woodpecker (ABNYF07090) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

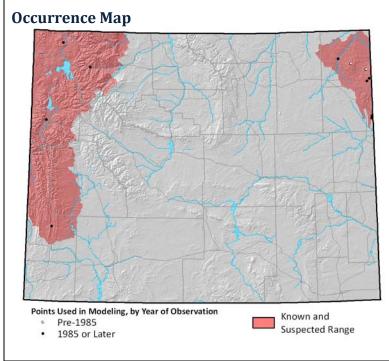

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (25-May- 15-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1340610
- High-Probability Threshold Value: 0.5891548
- Low-Probability Threshold Value: 0.1340610

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: Medium Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Very High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.975 Regularized Training Gain: 2.498

- Average Test AUC: 0.952 ± 0.066
- Upper Bound on Test AUC: 0.948
- Average Test Gain: 2.527 ± 2.157
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.10± 0.32

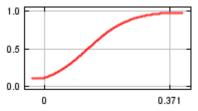
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 33
- Number of Occurrences used to create distribution model: 11
- Average Point Quality Index (highest quality is 12.00): 7.73 ± 2.69
- Most recent occurrence used: 2007
- Oldest occurrence used: 1980
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

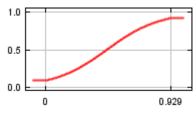
Comments

There are no additional comments specific to this species range map or distribution model.

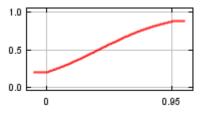
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

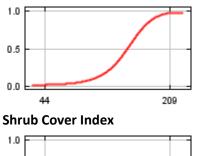

Percent Contribution (PC) to final model

Environmental Variable	РС
Deciduous Forest Index	29
Precipitation of the warmest quarter	27
Forest Cover Index	19
Shrub Cover Index	10
Percent Forest Cover	8
Herbaceous Cover Index	7

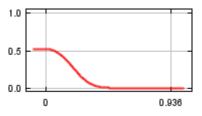

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

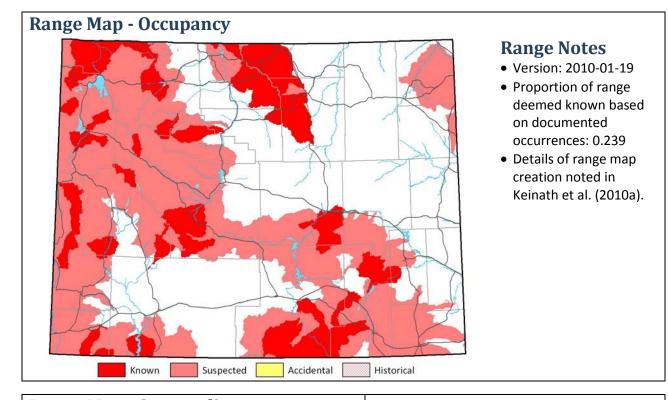

Deciduous Forest Index

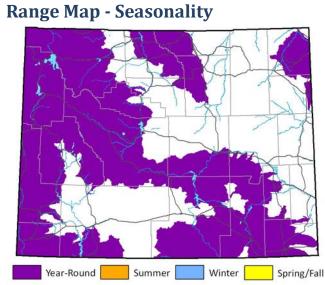

Forest Cover Index

Percent Forest Cover



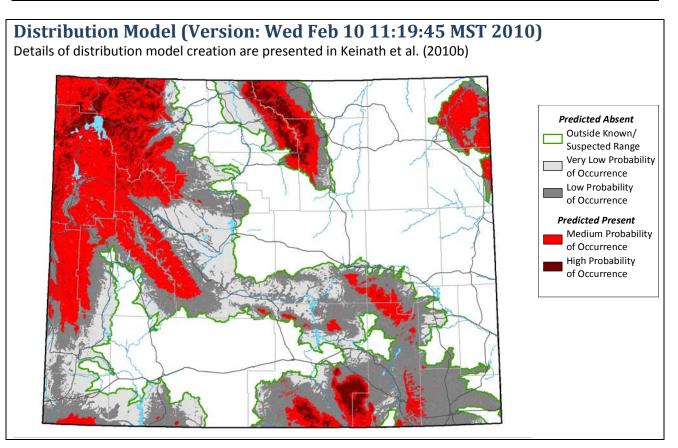
Precipitation of the warmest quarter


Herbaceous Cover Index

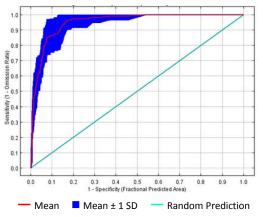


American Three-toed Woodpecker (*Picoides dorsalis*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of American Three-toed Woodpecker (ABNYF07110) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

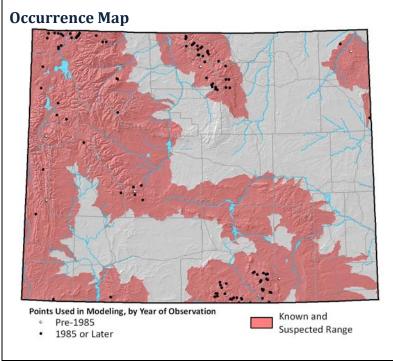
Model Parameters

- Season Modeled: Breeding (1-Jun- 31-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.0534900
- High-Probability Threshold Value: 0.6189264
- Low-Probability Threshold Value: 0.0005270

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: High


Positive Success Rate: Very High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.961 Regularized Training Gain: 2.358

- Average Test AUC: 0.952 ± 0.021
- Upper Bound on Test AUC: 0.960
- Average Test Gain: 2.083 ± 0.421
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.09± 0.14

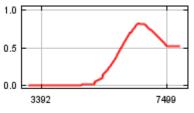
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 403
- Number of Occurrences used to create distribution model: 110
- Average Point Quality Index (highest quality is 12.00): 9.94 ± 2.72
- Most recent occurrence used: 2008
- Oldest occurrence used: 1964
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

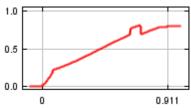
Comments

There are no additional comments specific to this species range map or distribution model.

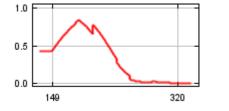
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

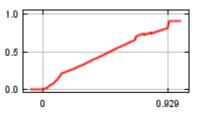

Percent Contribution (PC) to final model

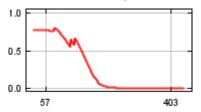
Environmental Variable	РС
Annual mean relative humidity	41
Forest Cover Index	19
Conifer Index	16
Variation in monthly Relative Humidity	12
Hottest month mean maximum temperature	9
Radiation Load	3

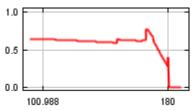

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

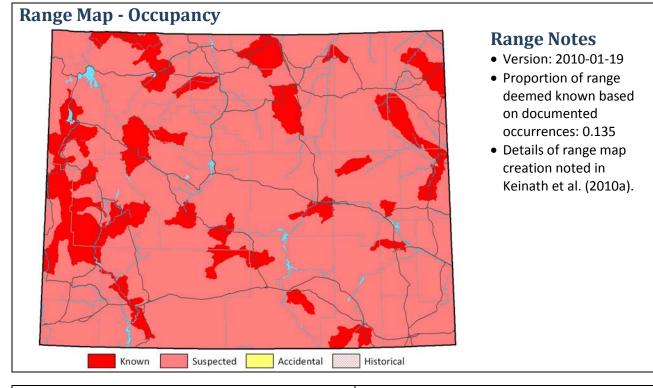


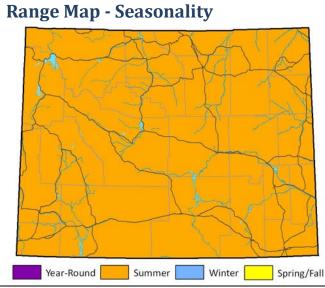

Conifer Index


Hottest month mean maximum temperature


Forest Cover Index

Variation in monthly Relative Humidity

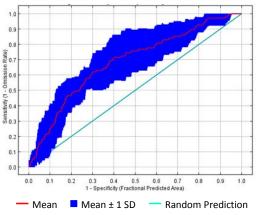

Radiation Load



Willow Flycatcher (*Empidonax traillii*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Willow Flycatcher (ABPAE33040Q) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

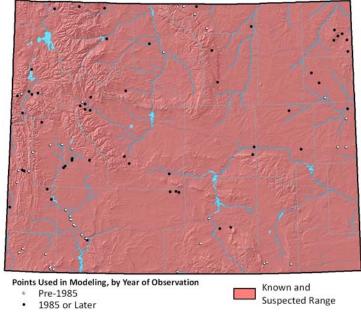
- Season Modeled: Breeding (1-Jun- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3951170
- High-Probability Threshold Value: 0.5532648
- Low-Probability Threshold Value: 0.0912954

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low Occurrence Sample Size: Medium-High Quality of Occurrences: Medium

Positive Success Rate: Low Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.772 Regularized Training Gain: 0.358

- Average Test AUC: 0.685 ± 0.079
- Upper Bound on Test AUC: 0.727
- Average Test Gain: 0.163 ± 0.255
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.45± 0.18

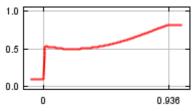
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 397
- Number of Occurrences used to create distribution model: 95
- Average Point Quality Index (highest quality is 12.00): 6.24 ± 1.91
- Most recent occurrence used: 2005
- Oldest occurrence used: 1974
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

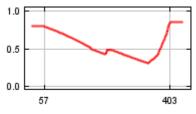
Comments

This species uses aspects of wetlands (e.g., dense emergent vegetation) for which statewide data are not available or reliable. This often results in low model quality because key habitat features are not mappable across the state. Great improvements in our ability to model this species distribution could be obtained by improving wetland maps. Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

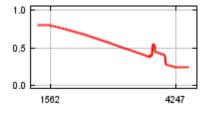
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

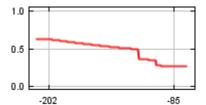

Percent Contribution (PC) to final model

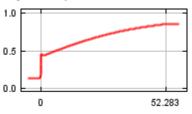
Environmental Variable	РС
Herbaceous Cover Index	33
Coldest month mean minimum temperature	16
Variation in monthly Relative Humidity	14
Degree Slope	14
Annual Relative Humidity Range	14
Variation of monthly precipitation	9

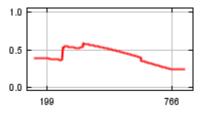

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

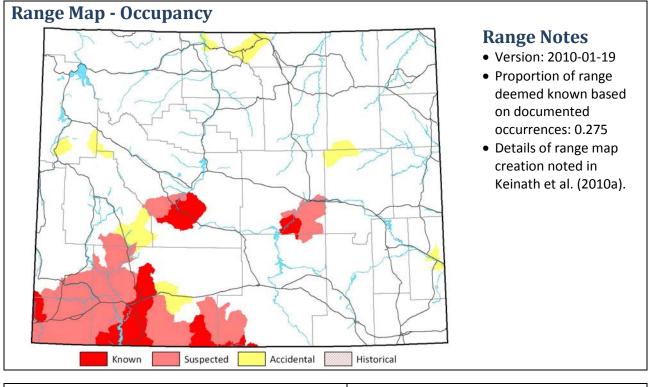

Herbaceous Cover Index

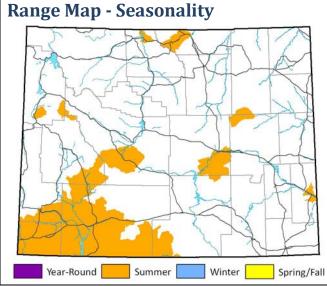

Variation in monthly Relative Humidity


Annual Relative Humidity Range


Coldest month mean minimum temperature

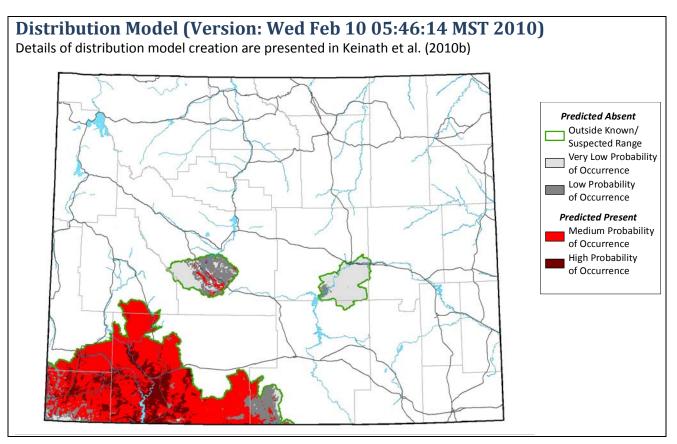
Degree Slope


Variation of monthly precipitation

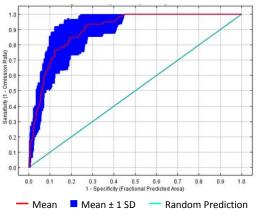


Ash-throated Flycatcher (*Myiarchus cinerascens*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Ash-throated Flycatcher (ABPAE43050) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

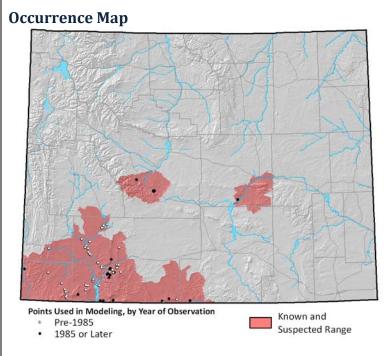
Model Parameters

- Season Modeled: Breeding (1-May- 15-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1695230
- High-Probability Threshold Value: 0.5834571
- Low-Probability Threshold Value: 0.0492604

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH


Expert Assessment: Medium Occurrence Sample Size: Medium-High Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.916 Regularized Training Gain: 1.349

- Average Test AUC: 0.900 ± 0.039
- Upper Bound on Test AUC: 0.901
- Average Test Gain: 1.294 ± 0.404
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.18± 0.17

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 131
- Number of Occurrences used to create distribution model: 60
- Average Point Quality Index (highest quality is 12.00): 6.55 ± 2.73
- Most recent occurrence used: 2008
- Oldest occurrence used: 1978
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

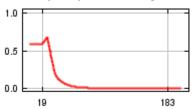
Comments

Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

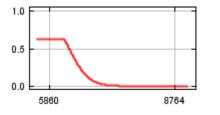
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

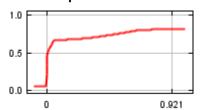
Percent Contribution (PC) to final model

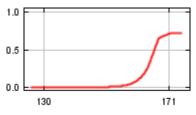
Environmental Variable	РС
Precipitation of the wettest month	43
Pinon-Juniper Index	29
Annual precipitation range (P3 – P2)	10
Annual total radiation	10
Relative Humidity of most humid month	7
Annual mean relative humidity	0

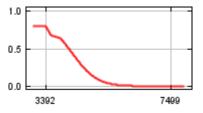

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

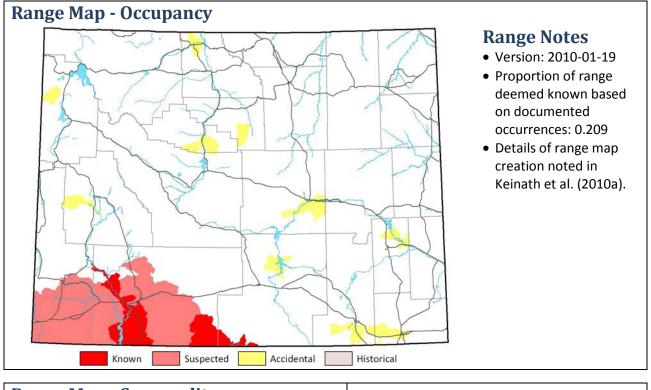

Precipitation of the wettest month

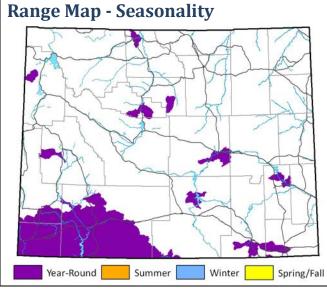

Annual precipitation range (P3 – P2)


Relative Humidity of most humid month


Pinon-Juniper Index

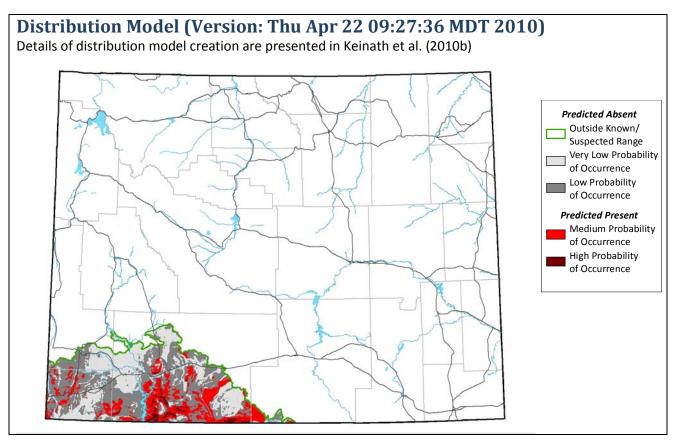
Annual total radiation


Annual mean relative humidity

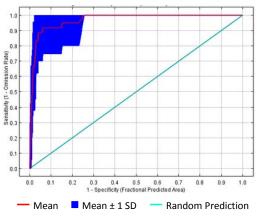


Western Scrub-Jay (*Aphelocoma californica*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Western Scrub-Jay (ABPAV06040) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

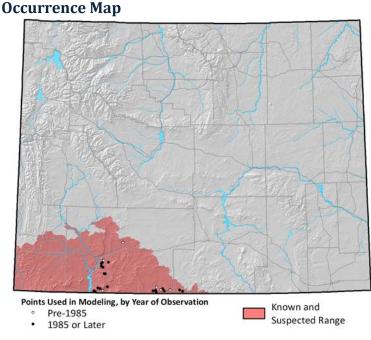

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (7-Mar- 15-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2043370
- High-Probability Threshold Value: 0.6629241
- Low-Probability Threshold Value: 0.0349851

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.985 Regularized Training Gain: 2.826

- Average Test AUC: 0.970 ± 0.036
- Upper Bound on Test AUC: 0.968
- Average Test Gain: 2.578 ± 1.123
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.12± 0.19

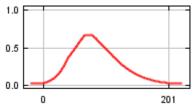
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 66
- Number of Occurrences used to create distribution model: 26
- Average Point Quality Index (highest quality is 12.00): 7.42 ± 2.80
- Most recent occurrence used: 2005
- Oldest occurrence used: 1977
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

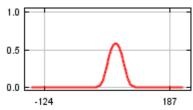
Comments

There are no additional comments specific to this species range map or distribution model.

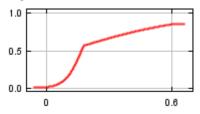
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

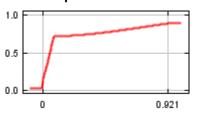

Percent Contribution (PC) to final model

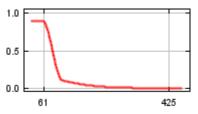
Environmental Variable	РС
Depth to Shallowest Restrictive Layer	28
Pinon-Juniper Index	26
Wettest quarter mean temperature	16
Interannual variation in annual frost days	15
Sagebrush Index	9
Radiation of the darkest month	6

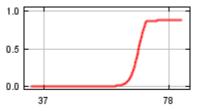

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

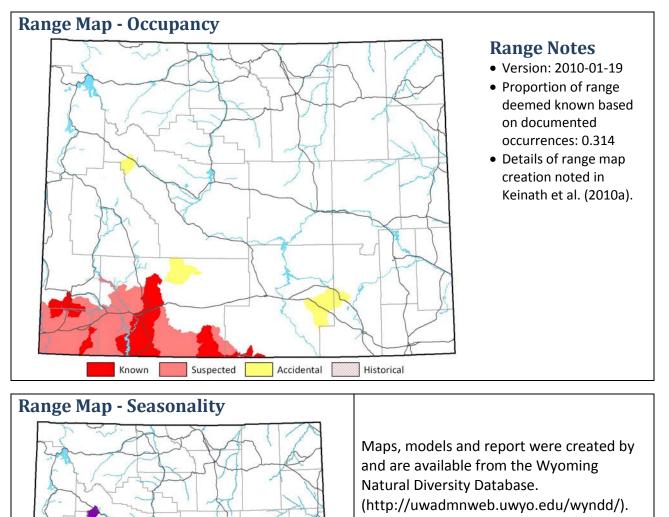



Wettest quarter mean temperature


Sagebrush Index


Pinon-Juniper Index

Interannual variation in annual frost days

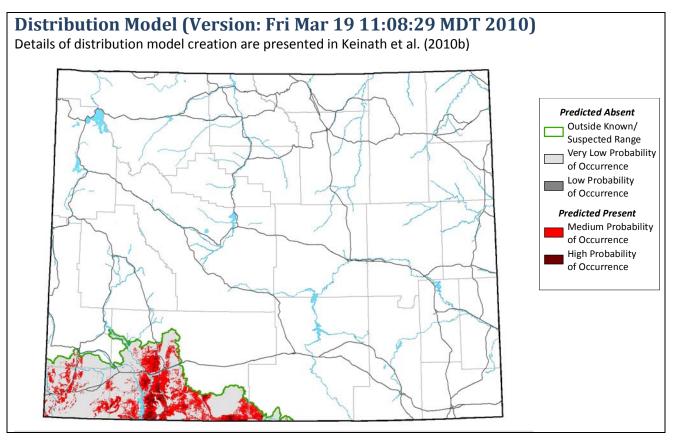

Radiation of the darkest month

Juniper Titmouse (*Baeolophus ridgwayi*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Juniper Titmouse (ABPAW01120) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

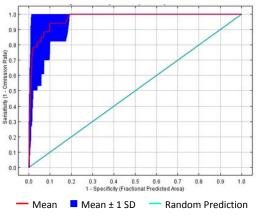
Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist


© 2010, WYNDD

Year-Round

Summer

Winter


Spring/Fall

Model Parameters

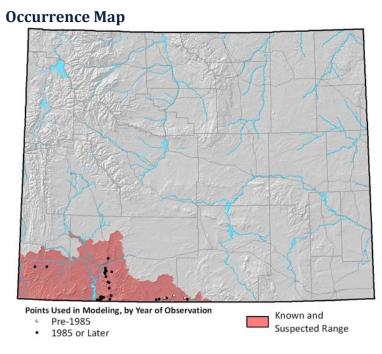
- Season Modeled: Breeding (7-Mar- 25-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.0534560
- High-Probability Threshold Value: 0.6493052
- Low-Probability Threshold Value: 0.0534560

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: High Positive Success Rate: High Test AUC and Model Gain: High


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.987 Regularized Training Gain: 3.055

- Average Test AUC: 0.973 ± 0.032
- Upper Bound on Test AUC: 0.975
- Average Test Gain: 2.788 ± 1.361
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.15± 0.25

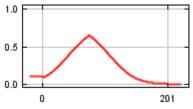
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 99
- Number of Occurrences used to create distribution model: 31
- Average Point Quality Index (highest quality is 12.00): 8.48 ± 3.03
- Most recent occurrence used: 2008
- Oldest occurrence used: 1981
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

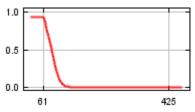
Comments

There are no additional comments specific to this species range map or distribution model.

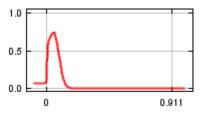
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

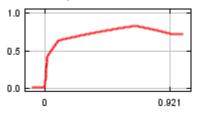

Percent Contribution (PC) to final model

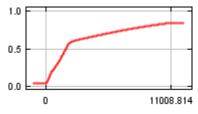
Environmental Variable	РС
Depth to Shallowest Restrictive Layer	29
Pinon-Juniper Index	26
Interannual variation in annual frost days	16
Distance to Permanent Water	11
Conifer Index	9
Degree Slope	8

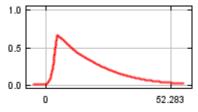

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

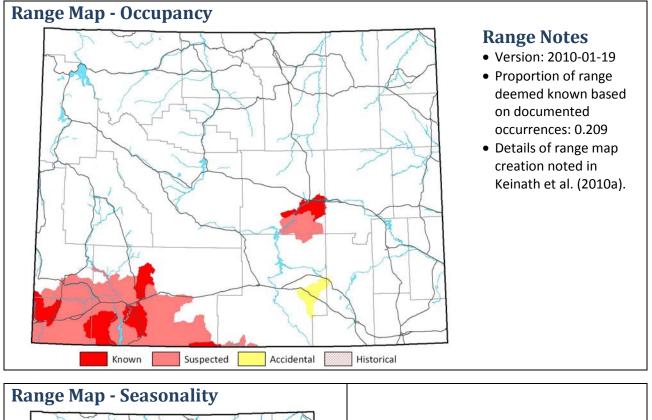


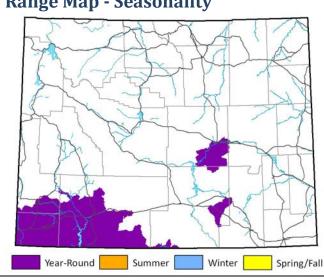

Interannual variation in annual frost days


Conifer Index


Pinon-Juniper Index

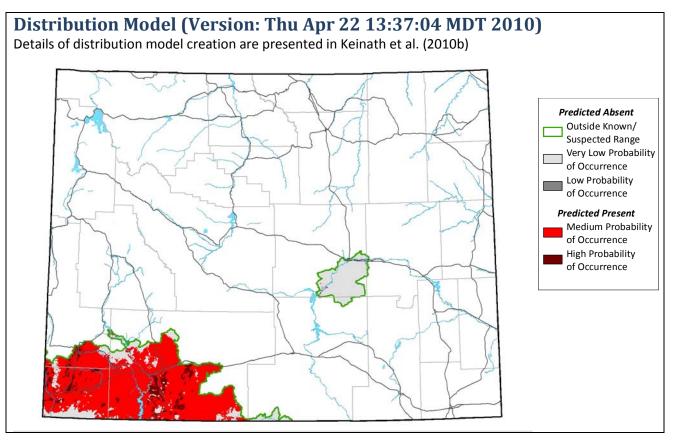
Distance to Permanent Water


Degree Slope

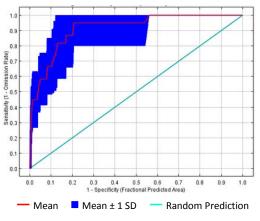


Bushtit (*Psaltriparus minimus*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Bushtit (ABPAY01010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

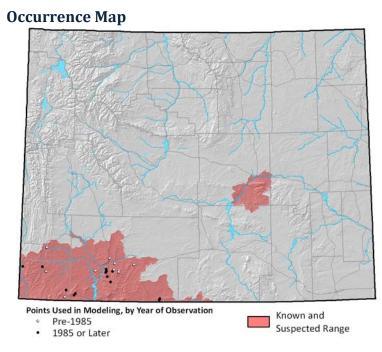
Model Parameters

- Season Modeled: Breeding (1-Mar- 25-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1913420
- High-Probability Threshold Value: 0.5365781
- Low-Probability Threshold Value: 0.1913420

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH


Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: High Positive Success Rate: Very High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.939 Regularized Training Gain: 1.660

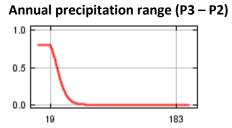
- Average Test AUC: 0.914 ± 0.073
- Upper Bound on Test AUC: 0.909
- Average Test Gain: 1.669 ± 0.648
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.10± 0.21

Occurrence Summary Statistics

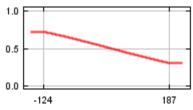
- Number of Occurrences in AWVED master dataset: 59
- Number of Occurrences used to create distribution model: 24
- Average Point Quality Index (highest quality is 12.00): 8.33 ± 3.67
- Most recent occurrence used: 2008
- Oldest occurrence used: 1979
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

Comments

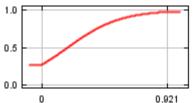
Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

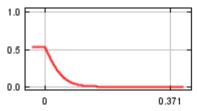

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

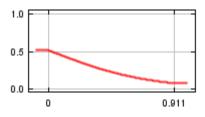
Percent Contribution (PC) to final model


Environmental Variable	РС
Annual precipitation range (P3 – P2)	53
Pinon-Juniper Index	37
Wettest quarter mean temperature	5
Deciduous Forest Index	3
Conifer Index	1

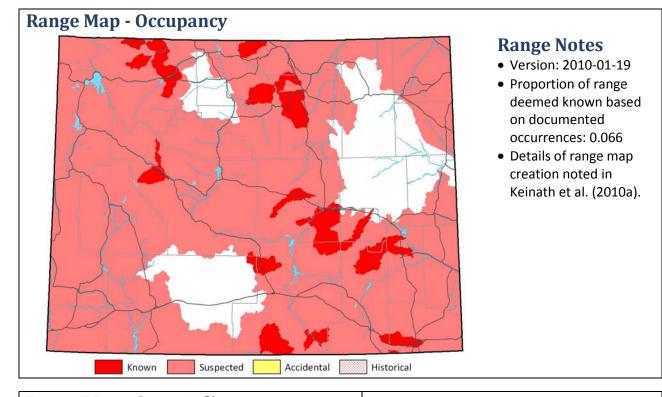
Response Curves

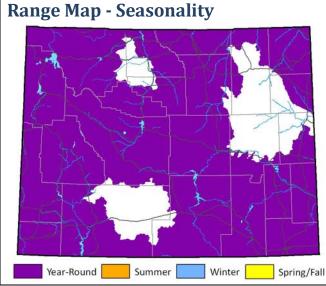

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).


Wettest quarter mean temperature


Pinon-Juniper Index

Deciduous Forest Index

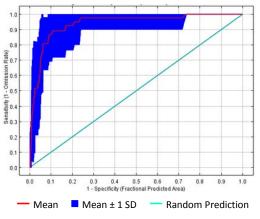

Conifer Index



Pygmy Nuthatch (*Sitta pygmaea*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Pygmy Nuthatch (ABPAZ01030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

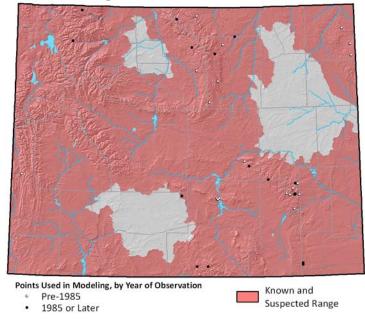
Model Parameters

- Season Modeled: Breeding (7-Mar- 25-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.0764950
- High-Probability Threshold Value: 0.6812938
- Low-Probability Threshold Value: 0.0075432

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: High


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.956 Regularized Training Gain: 1.953

- Average Test AUC: 0.938 ± 0.074
- Upper Bound on Test AUC: 0.946
- Average Test Gain: 1.883 ± 0.932
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.13± 0.19

Occurrence Map

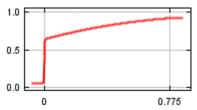
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 157
- Number of Occurrences used to create distribution model: 35
- Average Point Quality Index (highest quality is 12.00): 6.63 ± 2.66
- Most recent occurrence used: 2008
- Oldest occurrence used: 1975
- Occurrence File: PIPO_OBLIGATES.CSV

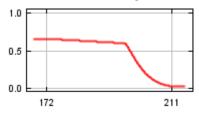
Comments

Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

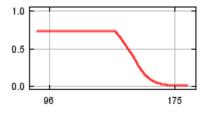
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

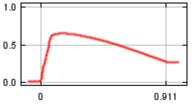

Percent Contribution (PC) to final model

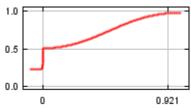
Environmental Variable	РС
Ponderosa pine Index	43
Conifer Index	36
Annual Radiation range	7
Pinon-Juniper Index	7
Mean diurnal temperature range	5
Variation in monthly radiation	2

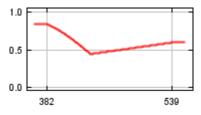

Response Curves

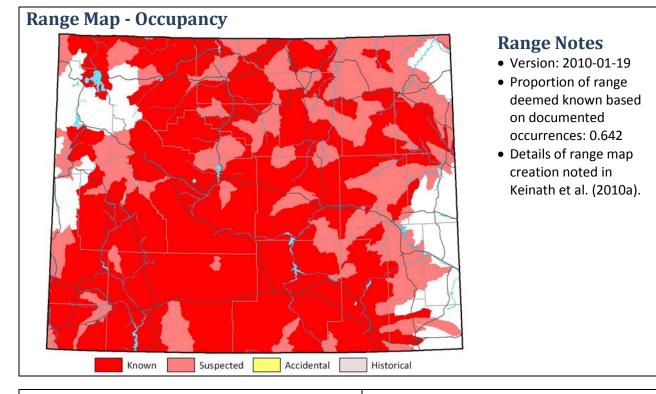
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

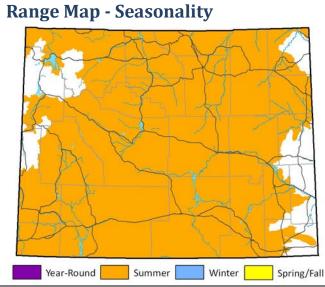

Ponderosa pine Index


Annual Radiation range


Mean diurnal temperature range

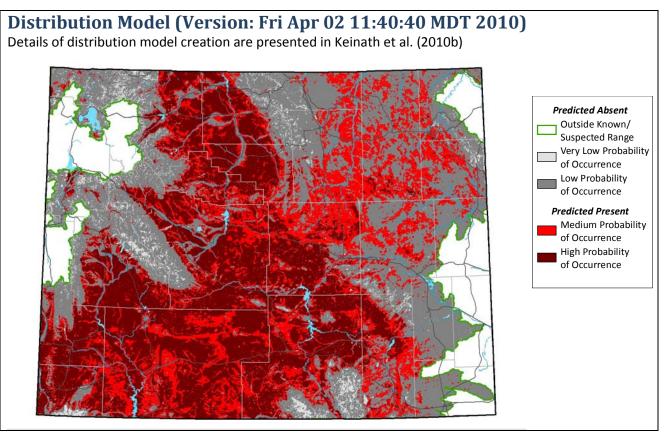

Conifer Index


Variation in monthly radiation

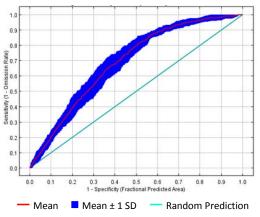


Sage Thrasher (*Oreoscoptes montanus*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Sage Thrasher (ABPBK04010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

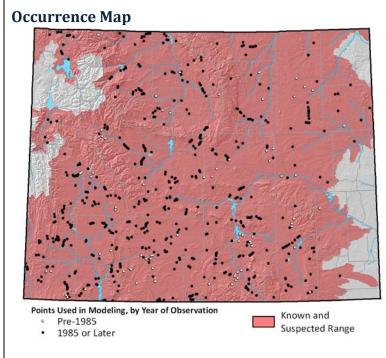
Model Parameters

- Season Modeled: Breeding (1-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4160040
- High-Probability Threshold Value: 0.5493645
- Low-Probability Threshold Value: 0.0619820

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: High


Positive Success Rate: High Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.706 Regularized Training Gain: 0.266

- Average Test AUC: 0.690 ± 0.029
- Upper Bound on Test AUC: 0.697
- Average Test Gain: 0.233 ± 0.072
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.19± 0.07

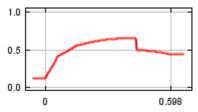
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 9,144
- Number of Occurrences used to create distribution model: 635
- Average Point Quality Index (highest quality is 12.00): 8.95 ± 2.50
- Most recent occurrence used: 2008
- Oldest occurrence used: 1971
- Occurrence File: DRAFT_3_SAGE_WATER_RERUNS.csv

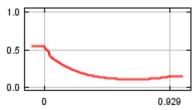
Comments

This is a sagebrush obligate species for which model quality would likely improve if an accurate statewide estimate of sagebrush structure (i.e., density and/or height) were available.

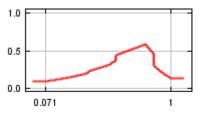
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

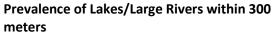

Percent Contribution (PC) to final model

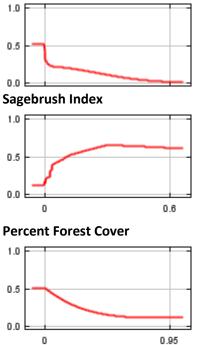
Environmental Variable	РС
Shrub Cover Index	29
Prevalence of Lakes/Large Rivers within 300 meters	21
Forest Cover Index	21
Sagebrush Index	21
Bare Ground Index	6
Percent Forest Cover	1


Response Curves

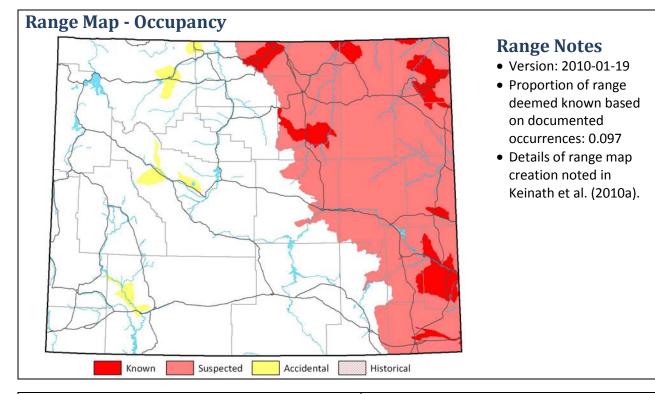
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

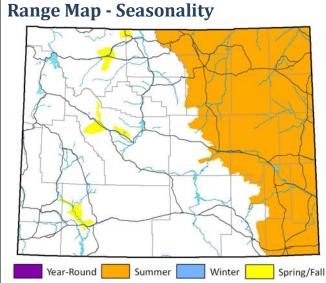

Shrub Cover Index




Forest Cover Index

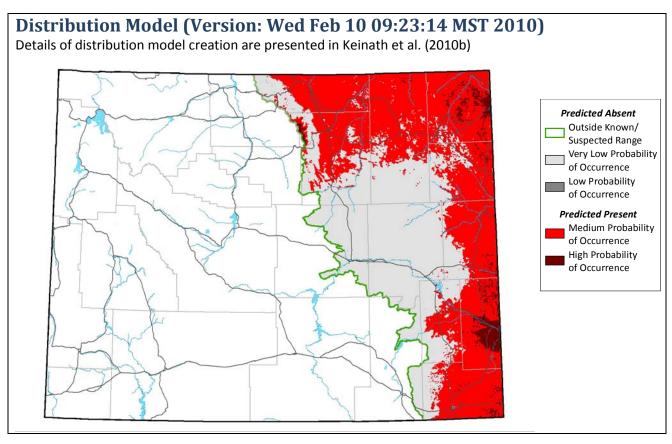
Bare Ground Index



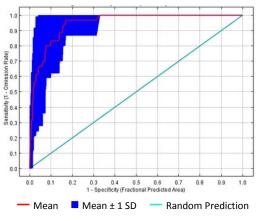


Dickcissel (*Spiza americana*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Dickcissel (ABPBX65010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

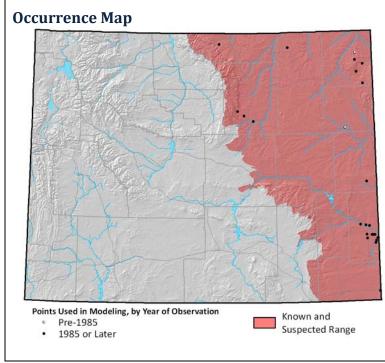

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (15-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1209480
- High-Probability Threshold Value: 0.6015590
- Low-Probability Threshold Value: 0.1209480

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: Very High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.962 Regularized Training Gain: 2.156

- Average Test AUC: 0.948 ± 0.049
- Upper Bound on Test AUC: 0.948
- Average Test Gain: 2.065 ± 1.122
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.00± 0.00

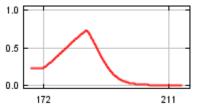
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 68
- Number of Occurrences used to create distribution model: 24
- Average Point Quality Index (highest quality is 12.00): 7.67 ± 2.32
- Most recent occurrence used: 2006
- Oldest occurrence used: 1969
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

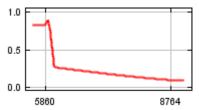
Comments

Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

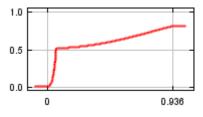
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

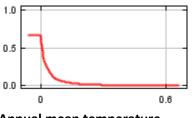

Percent Contribution (PC) to final model

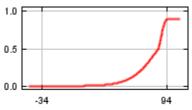
Environmental Variable	РС
Annual Radiation range	34
Sagebrush Index	22
Relative Humidity of most humid month	13
Annual mean temperature	10
Herbaceous Cover Index	10
Radiation of the lightest month	10

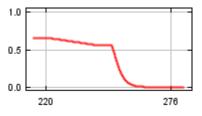

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

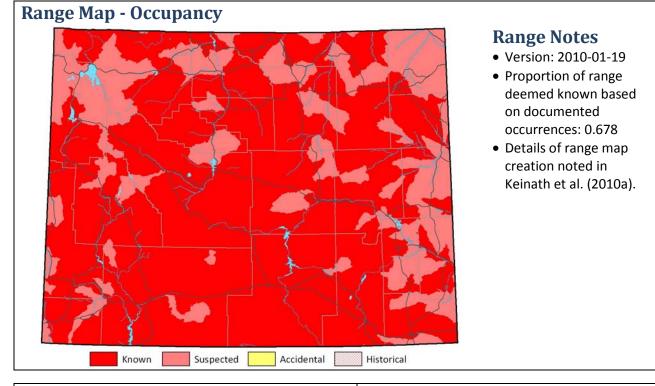

Annual Radiation range

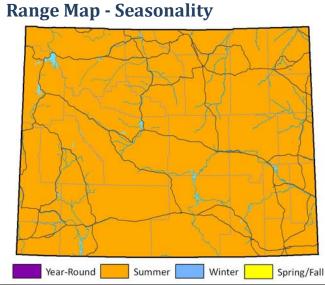

Relative Humidity of most humid month


Herbaceous Cover Index


Sagebrush Index

Annual mean temperature

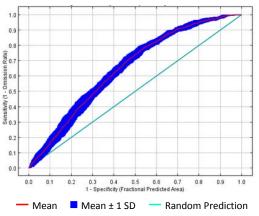

Radiation of the lightest month



Brewer's Sparrow (*Spizella breweri*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Brewer's Sparrow (ABPBX94040) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

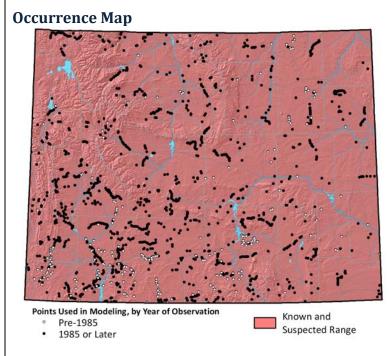
Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (15-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4265660
- High-Probability Threshold Value: 0.5391002
- Low-Probability Threshold Value: 0.0426718

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: High Positive Success Rate: Medium Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.668 Regularized Training Gain: 0.176

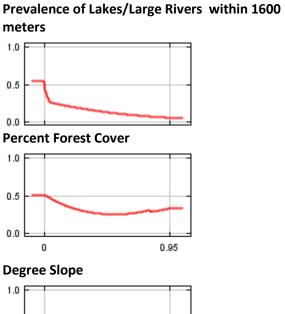
- Average Test AUC: 0.651 ± 0.024
- Upper Bound on Test AUC: 0.660
- Average Test Gain: 0.152 ± 0.041
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.26± 0.05

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 14,516
- Number of Occurrences used to create distribution model: 1,372
- Average Point Quality Index (highest quality is 12.00): 8.80 ± 2.54
- Most recent occurrence used: 2008
- Oldest occurrence used: 1950
- Occurrence File: DRAFT_3_SAGE_WATER_RERUNS.csv

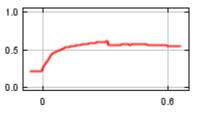
Comments

This is a sagebrush obligate species for which model quality would likely improve if an accurate statewide estimate of sagebrush structure (i.e., density and/or height) were available.

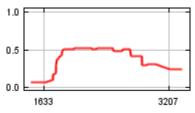

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

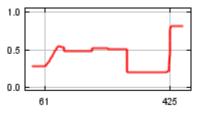
Percent Contribution (PC) to final model

Environmental Variable	РС
Prevalence of Lakes/Large Rivers within 1600 meters	36
Sagebrush Index	35
Percent Forest Cover	10
Annual number of Frost Days	8
Degree Slope	5
Interannual variation in annual frost days	5

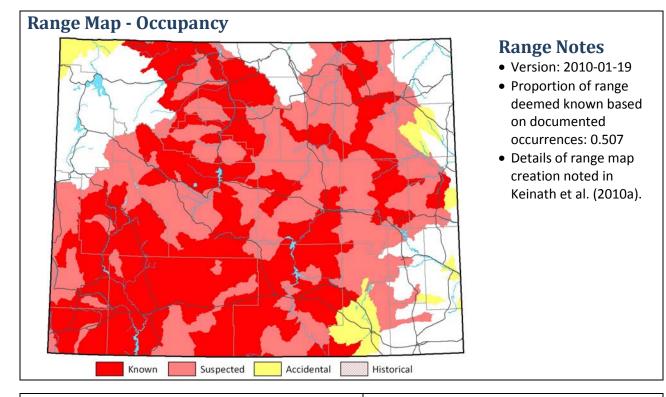

Response Curves

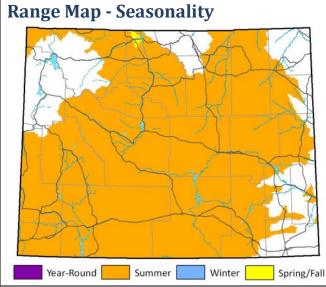
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).




einath et al 2010b for de Sagebrush Index

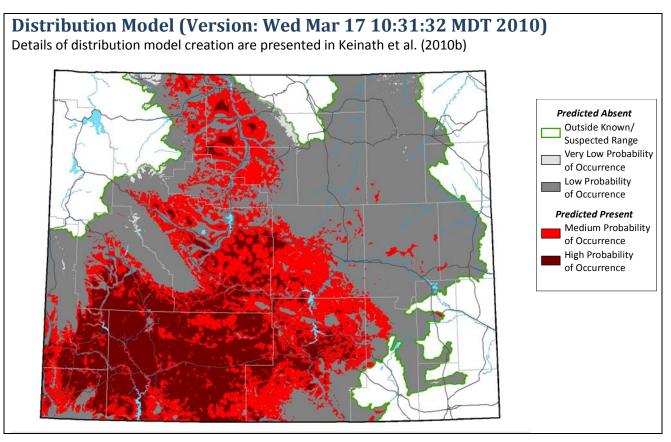
Annual number of Frost Days


Interannual variation in annual frost days

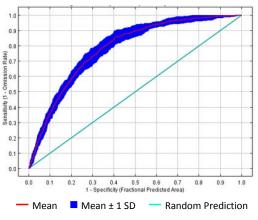


Sage Sparrow (*Amphispiza belli*) Range Map and Distribution Model Summary

August 20, 2010


This report presents range and distribution of Sage Sparrow (ABPBX97020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

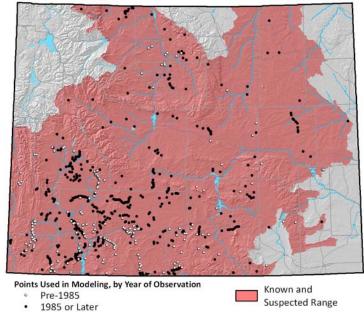
- Season Modeled: Breeding (24-Apr- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3224320
- High-Probability Threshold Value: 0.5488588
- Low-Probability Threshold Value: 0.0317627

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH Expert Assessment: High Occurrence Sample Size: High

Quality of Occurrences: High Positive Success Rate: High Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.784 Regularized Training Gain: 0.533

- Average Test AUC: 0.782 ± 0.022
- Upper Bound on Test AUC: 0.781
- Average Test Gain: 0.528 ± 0.096
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.19± 0.06

Occurrence Map

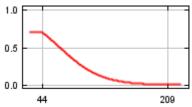
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 4,431
- Number of Occurrences used to create distribution model: 631
- Average Point Quality Index (highest quality is 12.00): 8.21 ± 2.83
- Most recent occurrence used: 2008
- Oldest occurrence used: 1975
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

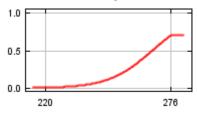
Comments

This is a sagebrush obligate species for which model quality would likely improve if an accurate statewide estimate of sagebrush structure (i.e., density and/or height) were available.

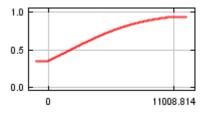
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

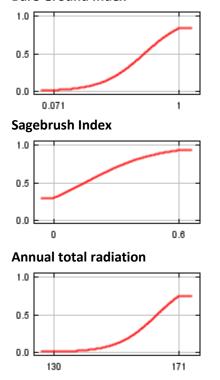

Percent Contribution (PC) to final model

Environmental Variable	РС
Precipitation of the warmest quarter	25
Bare Ground Index	23
Radiation of the lightest month	18
Sagebrush Index	14
Distance to Permanent Water	11
Annual total radiation	8

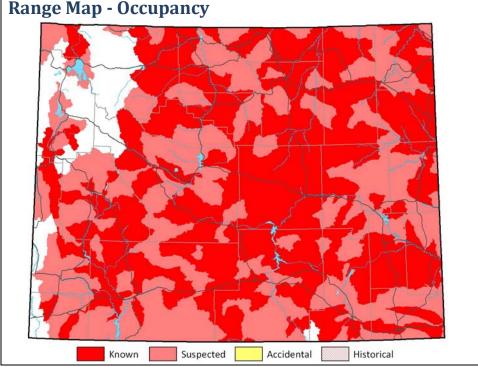

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

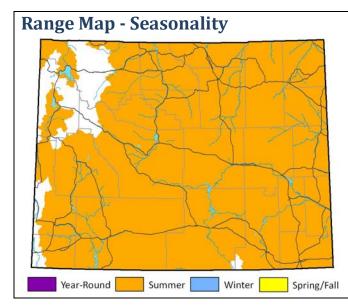



Radiation of the lightest month

Distance to Permanent Water


Bare Ground Index

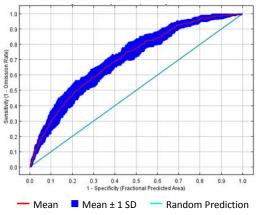
Lark Bunting (*Calamospiza melanocorys*) Range Map and Distribution Model Summary


August 20, 2010

This report presents range and distribution of Lark Bunting (ABPBX98010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.493
- Details of range map creation noted in Keinath et al. (2010a).


Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

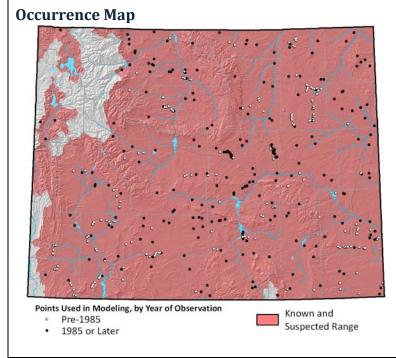
Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (25-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4106290
- High-Probability Threshold Value: 0.5331405
- Low-Probability Threshold Value: 0.0510781

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.733 Regularized Training Gain: 0.327

- Average Test AUC: 0.706 ± 0.025
- Upper Bound on Test AUC: 0.722
- Average Test Gain: 0.258 ± 0.102
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.28± 0.14

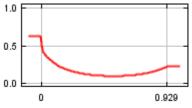
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 1,841
- Number of Occurrences used to create distribution model: 407
- Average Point Quality Index (highest quality is 12.00): 6.02 ± 1.50
- Most recent occurrence used: 2006
- Oldest occurrence used: 1968
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

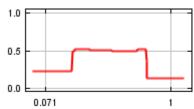
Comments

Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

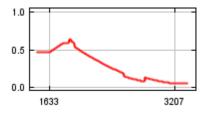
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

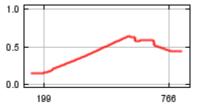

Percent Contribution (PC) to final model

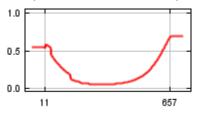
Environmental Variable	РС
Forest Cover Index	38
Variation of monthly precipitation	26
Bare Ground Index	10
Precipitation of the coldest quarter	10
Annual number of Frost Days	8
Precipitation of the driest quarter	8

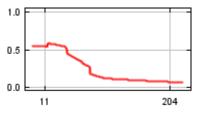

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

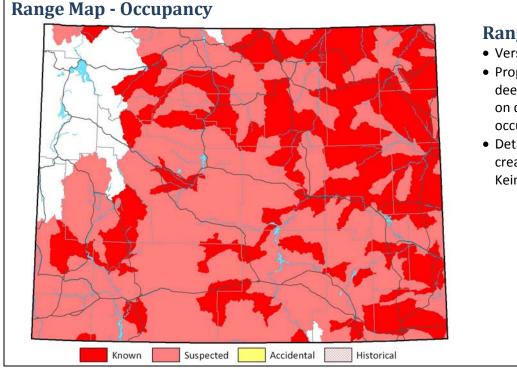

Forest Cover Index


Bare Ground Index

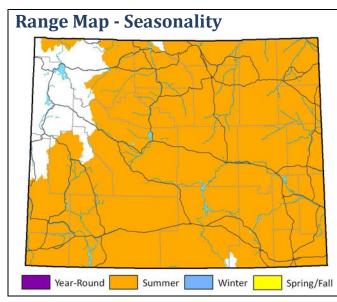

Annual number of Frost Days


Variation of monthly precipitation

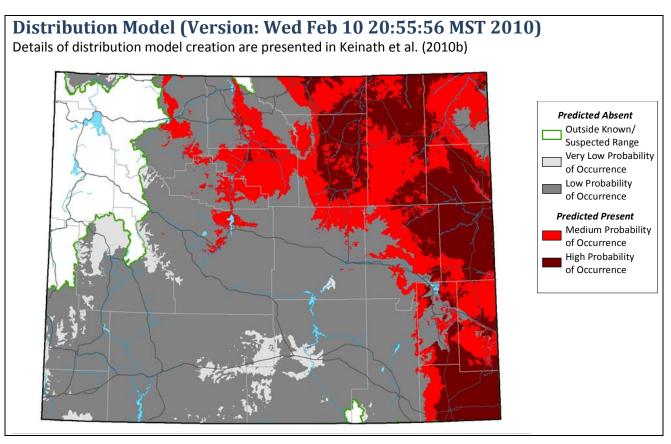
Precipitation of the coldest quarter


Precipitation of the driest quarter

Grasshopper Sparrow (Ammodramus savannarum) Range Map and Distribution Model Summary

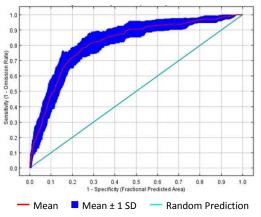

August 20, 2010

This report presents range and distribution of Grasshopper Sparrow (ABPBXA0020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.


Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.327
- Details of range map creation noted in Keinath et al. (2010a).

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

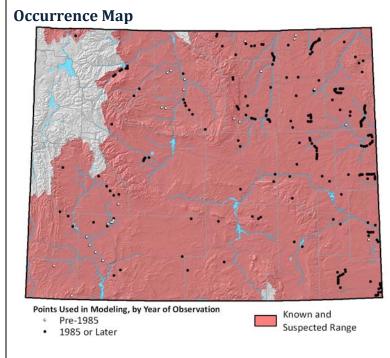

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Breeding (1-Jun- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3821470
- High-Probability Threshold Value: 0.6134398
- Low-Probability Threshold Value: 0.0271540

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.841 Regularized Training Gain: 0.774

- Average Test AUC: 0.815 ± 0.034
- Upper Bound on Test AUC: 0.824
- Average Test Gain: 0.728 ± 0.207
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.26± 0.06

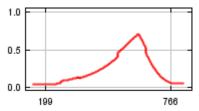
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 1,873
- Number of Occurrences used to create distribution model: 261
- Average Point Quality Index (highest quality is 12.00): 7.79 ± 1.75
- Most recent occurrence used: 2008
- Oldest occurrence used: 1976
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

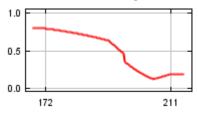
Comments

Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

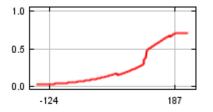
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

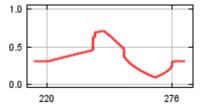

Percent Contribution (PC) to final model

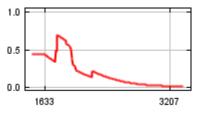
32
22
18
17
5
5

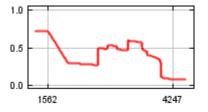

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

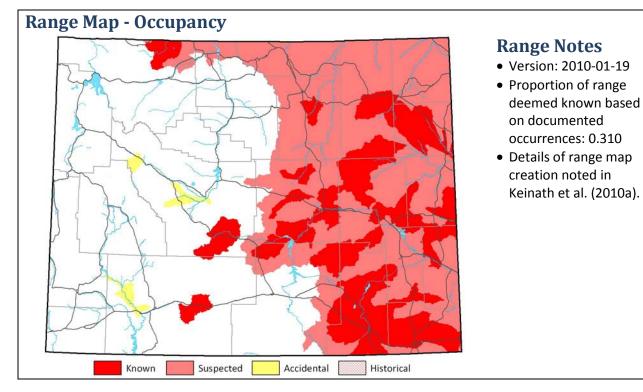

Variation of monthly precipitation


Annual Radiation range


Wettest quarter mean temperature


Radiation of the lightest month

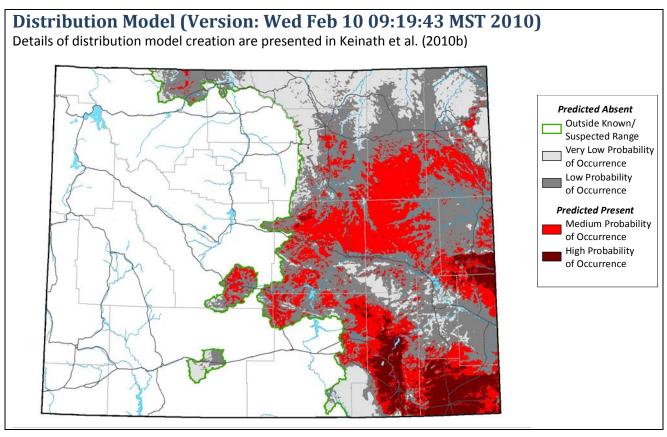
Annual number of Frost Days


Annual Relative Humidity Range

McCown's Longspur (*Calcarius mccownii*) Range Map and Distribution Model Summary

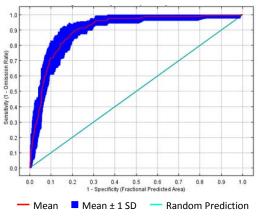
August 20, 2010

This report presents range and distribution of McCown's Longspur (ABPBXA6010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.



Range Map - Seasonality Image Map - S

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

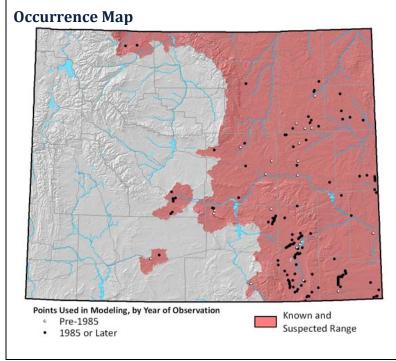

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

- Season Modeled: Breeding (1-May- 15-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2905470
- High-Probability Threshold Value: 0.5903443
- Low-Probability Threshold Value: 0.0406466

Model Evaluation - ROC Plot

Model Quality Summary


Overall Assessment of Model Quality: HIGH Expert Assessment: High Occurrence Sample Size: High Quality of Occurrences: High Positive Success Rate: High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.929 Regularized Training Gain: 1.417

- Average Test AUC: 0.902 ± 0.032
- Upper Bound on Test AUC: 0.906
- Average Test Gain: 1.255 ± 0.484
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.17± 0.11

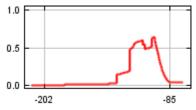
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 1,145
- Number of Occurrences used to create distribution model: 152
- Average Point Quality Index (highest quality is 12.00): 8.24 ± 2.63
- Most recent occurrence used: 2008
- Oldest occurrence used: 1959
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

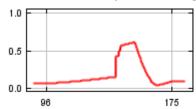
Comments

There are no additional comments specific to this species range map or distribution model.

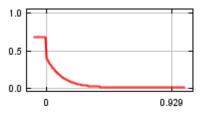
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

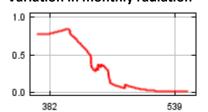

Percent Contribution (PC) to final model

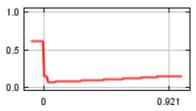
Environmental Variable	РС
Coldest month mean minimum temperature	44
Variation in monthly radiation	17
Mean diurnal temperature range	12
Pinon-Juniper Index	12
Forest Cover Index	8
Variation of monthly precipitation	7

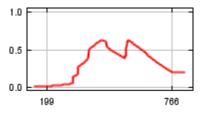

Response Curves

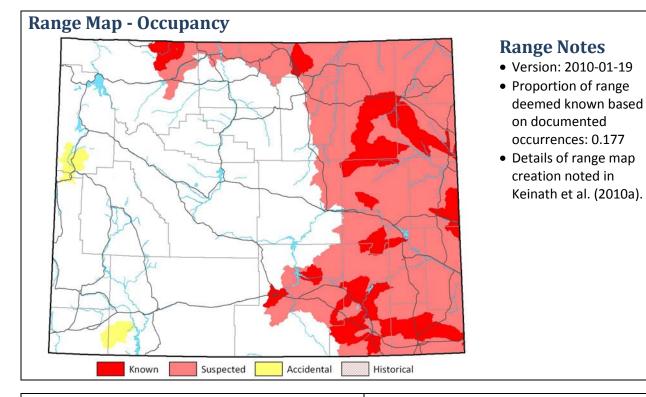
Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

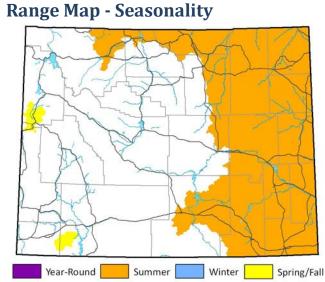

Coldest month mean minimum temperature


Mean diurnal temperature range


Forest Cover Index


Variation in monthly radiation

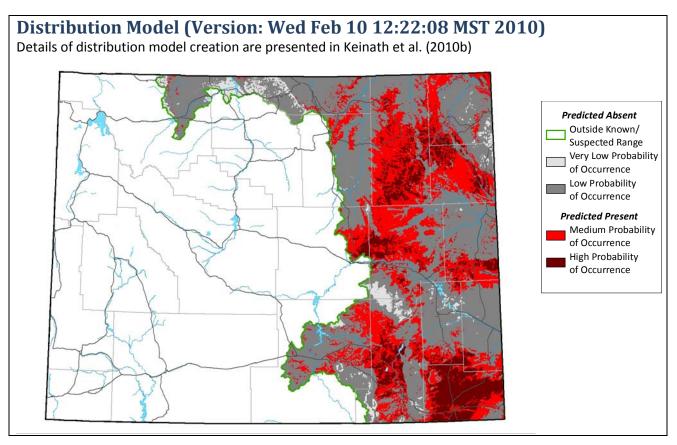

Variation of monthly precipitation



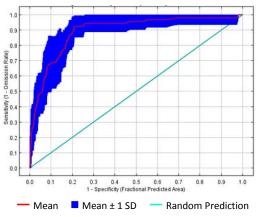
Chestnut-collared Longspur (*Calcarius ornatus*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Chestnut-collared Longspur (ABPBXA6040) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.



Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

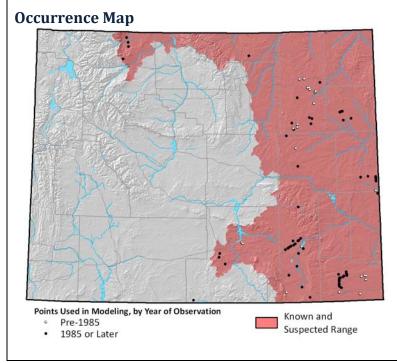

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

- Season Modeled: Breeding (1-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2622910
- High-Probability Threshold Value: 0.5850031
- Low-Probability Threshold Value: 0.0106719

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: High Occurrence Sample Size: Medium-High Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.936 Regularized Training Gain: 1.588

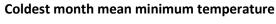
- Average Test AUC: 0.893 ± 0.046
- Upper Bound on Test AUC: 0.917
- Average Test Gain: 0.893 ± 0.046
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.22± 0.19

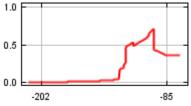
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 449
- Number of Occurrences used to create distribution model: 90
- Average Point Quality Index (highest quality is 12.00): 7.38 ± 2.31
- Most recent occurrence used: 2008
- Oldest occurrence used: 1975
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

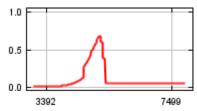
Comments

There are no additional comments specific to this species range map or distribution model.

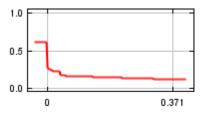

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

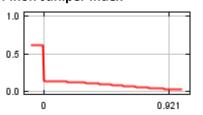

Percent Contribution (PC) to final model

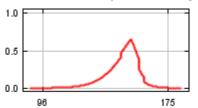
Environmental Variable	РС
Coldest month mean minimum temperature	35
Pinon-Juniper Index	22
Annual mean relative humidity	21
Mean diurnal temperature range	10
Deciduous Forest Index	9
Bare Ground Index	2

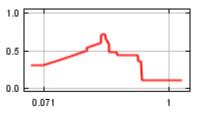

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).



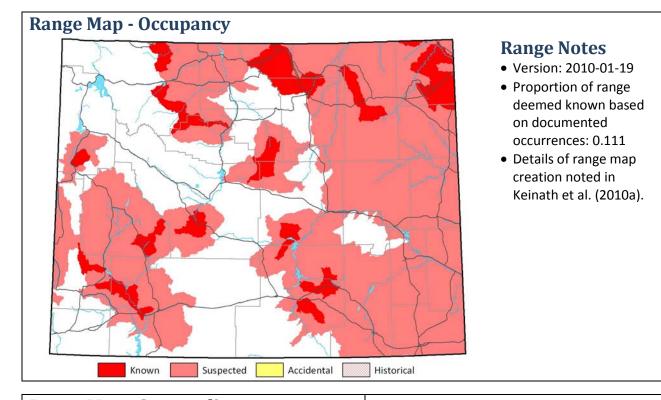

Annual mean relative humidity

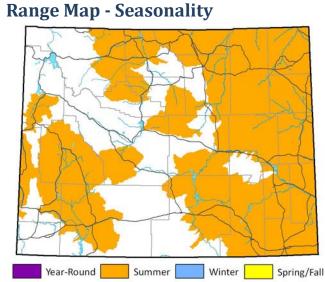

Deciduous Forest Index


Pinon-Juniper Index

Mean diurnal temperature range

Bare Ground Index

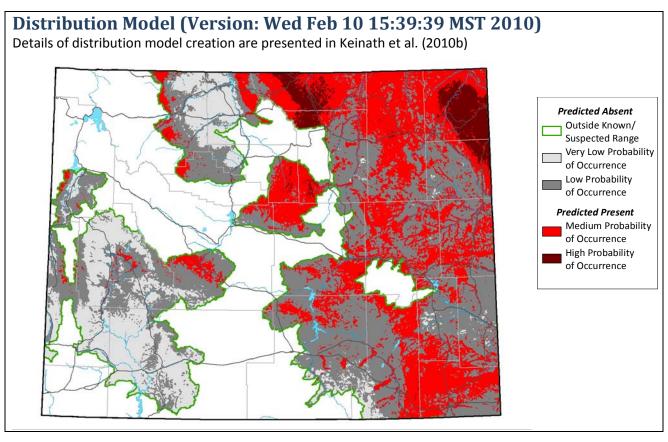



Page 4 of 4

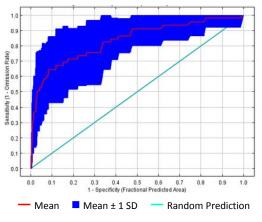
Bobolink (*Dolichonyx oryzivorus*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Bobolink (ABPBXA9010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.



Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

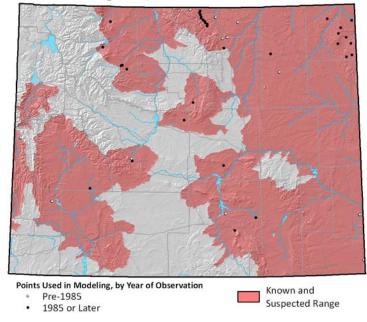
© 2010, WYNDD

- Season Modeled: Breeding (25-May- 31-Jul)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1795850
- High-Probability Threshold Value: 0.6739801
- Low-Probability Threshold Value: 0.0359934

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.888 Regularized Training Gain: 1.305

- Average Test AUC: 0.834 ± 0.106
- Upper Bound on Test AUC: 0.873
- Average Test Gain: 0.530 ± 2.372
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.27± 0.23

Occurrence Map

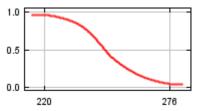
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 183
- Number of Occurrences used to create distribution model: 46
- Average Point Quality Index (highest quality is 12.00): 6.72 ± 1.80
- Most recent occurrence used: 2008
- Oldest occurrence used: 1974
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

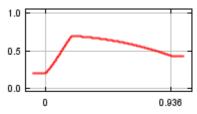
Comments

Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

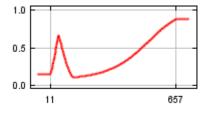
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

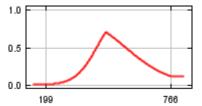

Percent Contribution (PC) to final model

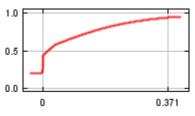
Environmental Variable	РС
Radiation of the lightest month	36
Variation of monthly precipitation	16
Herbaceous Cover Index	15
Deciduous Forest Index	14
Precipitation of the coldest quarter	10
Wettest quarter mean temperature	8
	0

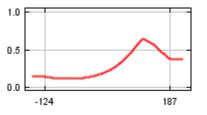

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).


Radiation of the lightest month


Herbaceous Cover Index


Precipitation of the coldest quarter


Variation of monthly precipitation

Deciduous Forest Index

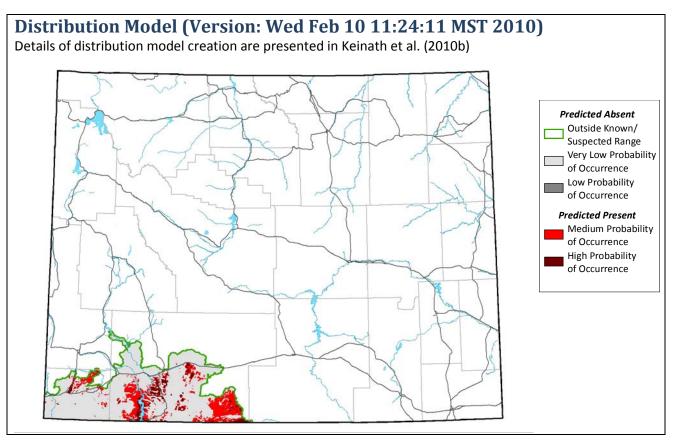
Wettest quarter mean temperature

Scott's Oriole (*Icterus parisorum*) Range Map and Distribution Model Summary

August 20, 2010

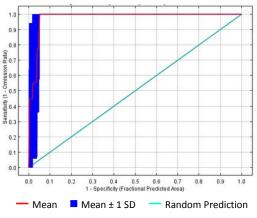
This report presents range and distribution of Scott's Oriole (ABPBXB9200) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist


© 2010, WYNDD

Year-Round

Summer

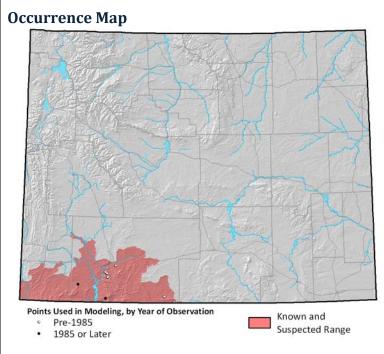

Winter

Spring/Fall

- Season Modeled: Breeding (15-May- 7-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3370420
- High-Probability Threshold Value: 0.5373816
- Low-Probability Threshold Value: 0.3370420

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM


Expert Assessment: Medium Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.984 Regularized Training Gain: 2.325

- Average Test AUC: 0.880 ± 0.310
- Upper Bound on Test AUC: 0.951
- Average Test Gain: 0.880 ± 0.310
- Omission Error (fraction of test points omitted during 9-fold cross validation): 0.22± 0.44

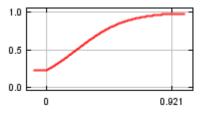
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 19
- Number of Occurrences used to create distribution model: 9
- Average Point Quality Index (highest quality is 12.00): 6.56 ± 3.21
- Most recent occurrence used: 2005
- Oldest occurrence used: 1967
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

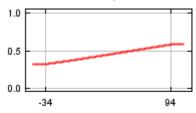
Comments

The model for this species is based on a small sample size of occurrence locations, which often results in low model quality. Collection of additional, high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

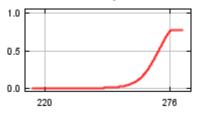

Percent Contribution (PC) to final model

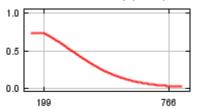
Environmental Variable	РС
Pinon-Juniper Index	33
Radiation of the lightest month	31
Annual mean temperature	15
Variation of monthly precipitation	8
Herbaceous Cover Index	7
Cottonwood Index	6

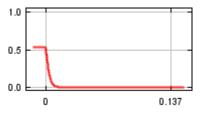

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

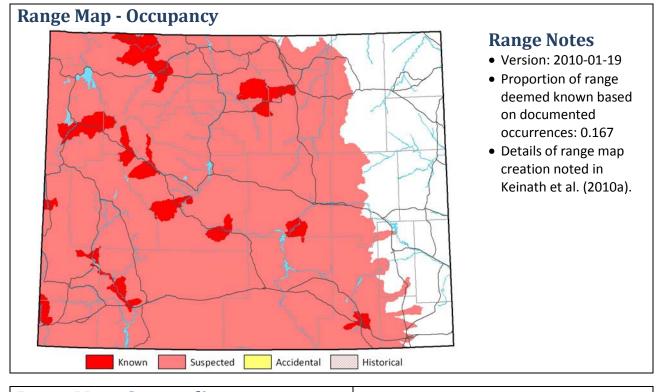
Pinon-Juniper Index

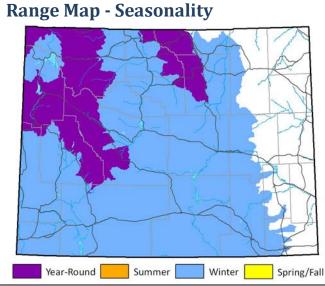

Annual mean temperature


Herbaceous Cover Index


Radiation of the lightest month

Variation of monthly precipitation

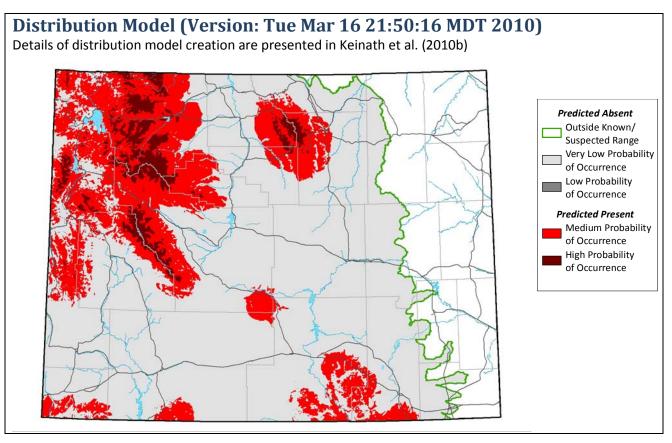

Cottonwood Index



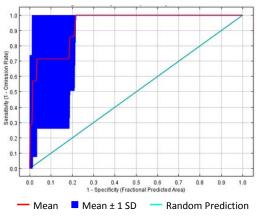
Black Rosy-Finch (*Leucosticte atrata*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Black Rosy-Finch (ABPBY02010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.



Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

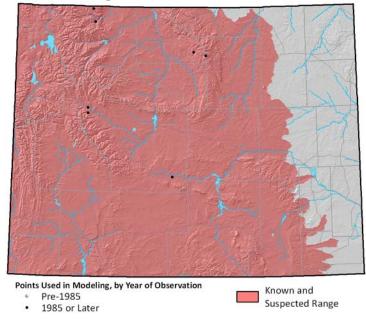
- Season Modeled: Breeding (25-Jun- 31-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1482200
- High-Probability Threshold Value: 0.7402744
- Low-Probability Threshold Value: 0.1482196

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low

Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Low


Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.951 Regularized Training Gain: 1.837

- Average Test AUC: 0.655 ± 0.458
- Upper Bound on Test AUC: 0.926
- Average Test Gain: 1.370 ± 1.857
- Omission Error (fraction of test points omitted during 7-fold cross validation): 0.29± 0.49

Occurrence Map

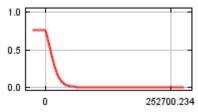
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 167
- Number of Occurrences used to create distribution model: 7
- Average Point Quality Index (highest quality is 12.00): 7.86 ± 2.19
- Most recent occurrence used: 2005
- Oldest occurrence used: 1997
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP_2.csv

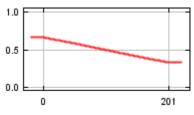
Comments

The model for this species is based on a small sample size of occurrence locations, which often results in low model quality. Collection of additional, high-quality occurrence locations could greatly improve the modeled distribution for this species. Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

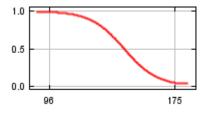
- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

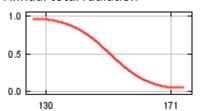

Percent Contribution (PC) to final model

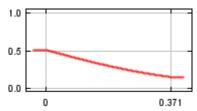
Environmental Variable	РС
Distance to Permanent Snow	58
Annual total radiation	24
Depth to Shallowest Restrictive Layer	10
Deciduous Forest Index	8
Mean diurnal temperature range	1
Distance to Water	0

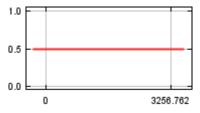

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

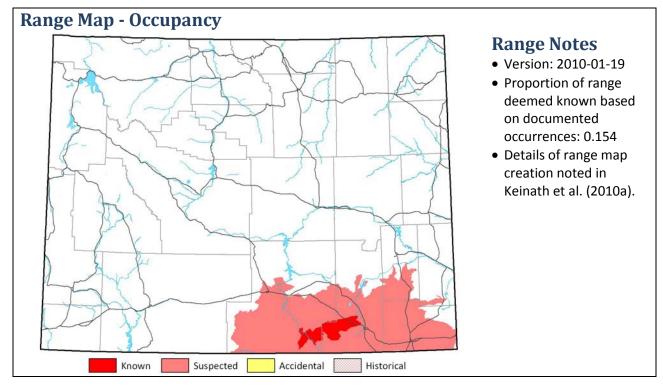

Distance to Permanent Snow

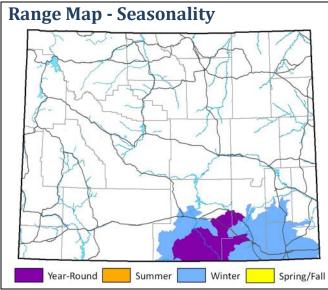

Depth to Shallowest Restrictive Layer


Mean diurnal temperature range


Annual total radiation

Deciduous Forest Index

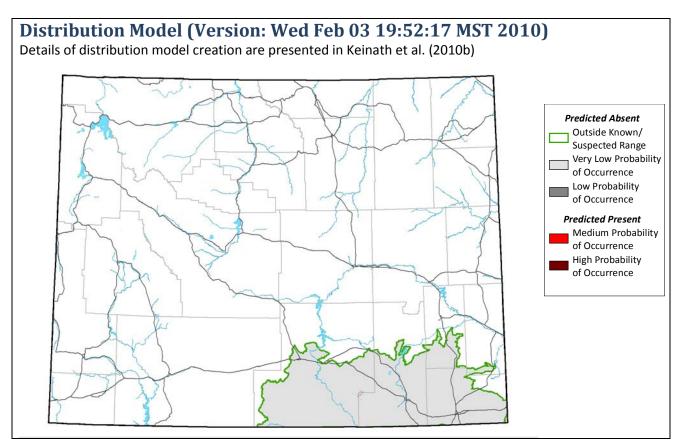

Distance to Water



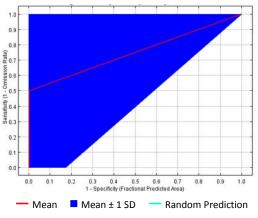
Brown-capped Rosy Finch (*Leucosticte australis*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Brown-capped Rosy Finch (ABPBY02020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.



Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).


Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

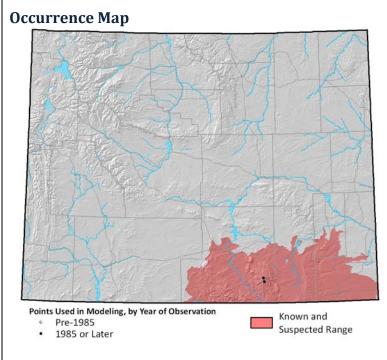
© 2010, WYNDD

- Season Modeled: Breeding (25-Jun- 31-Aug)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.5528675
- High-Probability Threshold Value: 0.5880093
- Low-Probability Threshold Value: 0.5528675

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low


Occurrence Sample Size: Very Low Quality of Occurrences: High Positive Success Rate: Low Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 1.000 Regularized Training Gain: 8.106

- Average Test AUC: 0.150 ± 0.337
- Upper Bound on Test AUC: 1.000
- Average Test Gain: 0.139 ± 0.440
- Omission Error (fraction of test points omitted during 2-fold cross validation): 0.50± 0.71

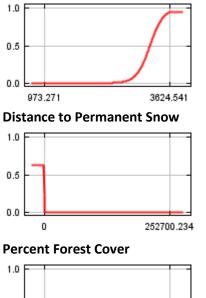
Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 8
- Number of Occurrences used to create distribution model: 2
- Average Point Quality Index (highest quality is 12.00): 9.00 ± 2.83
- Most recent occurrence used: 2006
- Oldest occurrence used: 1991
- Occurrence File: BIRD_SAMPLE_POINTS_ALL_SPP.csv

Comments

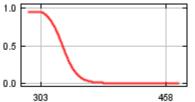
The model for this species is based on a small sample size of occurrence locations, which often results in low model quality. Collection of additional, high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

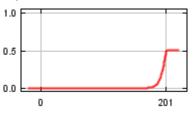

Percent Contribution (PC) to final model

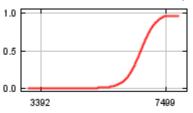
Environmental Variable	РС
Elevation	39
Annual temperature range (T3 – T4)	31
Distance to Permanent Snow	19
Depth to Shallowest Restrictive Layer	6
Percent Forest Cover	5
Annual mean relative humidity	0

Response Curves


Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Elevation




Annual temperature range (T3 – T4)

Depth to Shallowest Restrictive Layer

Annual mean relative humidity

