Western Painted Turtle (*Chrysemys picta bellii*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Western Painted Turtle (ARAAD01010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2444950
- High-Probability Threshold Value: 0.6528385
- Low-Probability Threshold Value: 0.0956548

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Low Occurrence Sample Size: Medium Quality of Occurrences: High Positive Success Rate: High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.960 Regularized Training Gain: 1.839

- Average Test AUC: 0.926 ± 0.057
- Upper Bound on Test AUC: 0.936
- Average Test Gain: 1.495 ± 0.959
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.20± 0.35

Occurrence Data for Distribution Model

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 25
- Number of Occurrences used to create distribution model: 21
- Average Point Quality Index (highest quality is 12.00): 9.43 ± 2.48
- Most recent occurrence used: 2008
- Oldest occurrence used: 1982
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

Comments

This species uses aspects of wetlands (e.g., dense emergent vegetation) for which statewide data are not available or reliable. This often results in low model quality because key habitat features are not mappable across the state. Great improvements in our ability to model this species distribution could be obtained by improving wetland maps.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Herbaceous Cover Index	27
Elevation	19
Cottonwood Index	19
Variation of monthly precipitation	14
Conifer Index	14
Distance to Permanent Water	7

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Herbaceous Cover Index

Cottonwood Index

Conifer Index

Elevation

Variation of monthly precipitation

Distance to Permanent Water

Ornate Box Turtle (*Terrapene ornata ornata*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Ornate Box Turtle (ARAAD08020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Comments

There were too few occurrence points to construct a distribution model for this species. Collection of additional, high-quality occurrence locations are necessary for assessment of potential distribution within Wyoming.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Western Spiny Softshell (*Apalone spinifera hartwegi*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Western Spiny Softshell (ARAAG01030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2861360
- High-Probability Threshold Value: 0.6534006
- Low-Probability Threshold Value: 0.1815232

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW

Expert Assessment: Low Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.958 Regularized Training Gain: 1.456

- Average Test AUC: 0.854 ± 0.159
- Upper Bound on Test AUC: 0.893
- Average Test Gain: 0.643 ± 2.249
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.25± 0.35

Occurrence Data for Distribution Model

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 23
- Number of Occurrences used to create distribution model: 19
- Average Point Quality Index (highest quality is 12.00): 7.42 ± 2.67
- Most recent occurrence used: 2006
- Oldest occurrence used: 1979
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

Comments

This species uses aspects of wetlands (e.g., dense emergent vegetation) for which statewide data are not available or reliable. This often results in low model quality because key habitat features are not mappable across the state. Great improvements in our ability to model this species distribution could be obtained by improving wetland maps.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Cottonwood Index	33
Variation of monthly precipitation	18
Herbaceous Cover Index	16
Wettest quarter mean temperature	16
Sagebrush Index	10
Distance to Permanent Water	7

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Cottonwood Index

Herbaceous Cover Index

Sagebrush Index

Variation of monthly precipitation

Wettest quarter mean temperature

Distance to Permanent Water

Great Plains Earless Lizard (Holbrookia maculata) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Great Plains Earless Lizard (ARACF08020) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4525850
- High-Probability Threshold Value: 0.6520455
- Low-Probability Threshold Value: 0.4525850

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low

Occurrence Sample Size: Low Quality of Occurrences: Low Positive Success Rate: Low Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.989 Regularized Training Gain: 2.535

- Average Test AUC: 0.687 ± 0.474
- Upper Bound on Test AUC: 0.961
- Average Test Gain: 1.904 ± 1.637
- Omission Error (fraction of test points omitted during 7-fold cross validation): 0.43± 0.53

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 11
- Number of Occurrences used to create distribution model: 7
- Average Point Quality Index (highest quality is 12.00): 5.43 ± 1.40
- Most recent occurrence used: 1987
- Oldest occurrence used: 1940
- Occurrence File: LOCAL_SAMPLE_POINTS.csv

Comments

The model for this species is based on a small sample size of occurrence locations, which often results in low model quality. Collection of additional, high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Coldest quarter mean temperature	63
Variation in monthly radiation	15
Herbaceous Cover Index	13
Contagion Index	9
Radiation of the darkest month	0
Wettest quarter mean temperature	0

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Coldest quarter mean temperature

Herbaceous Cover Index

Radiation of the darkest month

Variation in monthly radiation

Contagion Index

Wettest quarter mean temperature

Greater Short-horned Lizard (*Phrynosoma hernandesi*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Greater Short-horned Lizard (ARACF12080) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Notes

- Version: 2010-01-19
- Proportion of range deemed known based on documented occurrences: 0.285
- Details of range map creation noted in Keinath et al. (2010a).

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3602060
- High-Probability Threshold Value: 0.5386674
- Low-Probability Threshold Value: 0.0295598

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH Expert Assessment: High

Occurrence Sample Size: High Quality of Occurrences: High Positive Success Rate: High Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.829 Regularized Training Gain: 0.729

- Average Test AUC: 0.808 ± 0.045
- Upper Bound on Test AUC: 0.817
- Average Test Gain: 0.605 ± 0.296
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.19± 0.13

Occurrence Data for Distribution Model

Occurrence Map

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 184
- Number of Occurrences used to create distribution model: 148
- Average Point Quality Index (highest quality is 12.00): 8.11 ± 2.47
- Most recent occurrence used: 2008
- Oldest occurrence used: 1890
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

Comments

There are no additional comments specific to this species range map or distribution model.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Bare Ground Index	37
Precipitation of the warmest quarter	19
Sagebrush Index	19
Forest Cover Index	10
Distance to Permanent Standing Water	8
Variation in monthly Relative Humidity	6

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Bare Ground Index

Sagebrush Index

Distance to Permanent Standing Water

Precipitation of the warmest quarter

Forest Cover Index

Variation in monthly Relative Humidity

Northern Sagebrush Lizard (*Sceloporus graciosus graciosus*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Northern Sagebrush Lizard (ARACF14030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2881990
- High-Probability Threshold Value: 0.5325928
- Low-Probability Threshold Value: 0.0050249

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: High Positive Success Rate: High Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.902 Regularized Training Gain: 1.163

- Average Test AUC: 0.861 ± 0.051
- Upper Bound on Test AUC: 0.870
- Average Test Gain: 0.974 ± 0.419
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.19± 0.13

Occurrence Data for Distribution Model

Occurrence Map

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 263
- Number of Occurrences used to create distribution model: 112
- Average Point Quality Index (highest quality is 12.00): 9.54 ± 3.00
- Most recent occurrence used: 2008
- Oldest occurrence used: 1910
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

Comments

This is a sagebrush obligate species for which model quality would likely improve if an accurate statewide estimate of sagebrush structure (i.e., density and/or height) were available. Conclusive identification of this species is difficult unless the observer is experienced with the species. We suspect numerous occurrences could be in error, thus resulting in lower than expected model quality. The lack of supporting data provided with many occurrences (notably those from the Wildlife Observation System) makes it impossible to assess the accuracy of such observations. Supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Precipitation of the wettest month	53
Vector Ruggedness Measure	21
Pinon-Juniper Index	12
Contagion Index	8
Annual temperature range (T3 – T4)	3
Warmest quarter mean temperature	2
Warmest quarter mean temperature	2

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Pinon-Juniper Index

Annual temperature range (T3 – T4)

Vector Ruggedness Measure

Warmest quarter mean temperature

Plateau Fence Lizard (*Sceloporus tristichus*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Plateau Fence Lizard (ARACF14130Q) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3227750
- High-Probability Threshold Value: 0.6046611
- Low-Probability Threshold Value: 0.0660673

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW

Expert Assessment: Low Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.953 Regularized Training Gain: 1.674

- Average Test AUC: 0.919 ± 0.036
- Upper Bound on Test AUC: 0.921
- Average Test Gain: 1.431 ± 0.434
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.29± 0.23

Occurrence Data for Distribution Model

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 155
- Number of Occurrences used to create distribution model: 34
- Average Point Quality Index (highest quality is 12.00): 7.26 ± 3.60
- Most recent occurrence used: 2006
- Oldest occurrence used: 1907
- Occurrence File: LOCAL_SAMPLE_POINTS.csv

Comments

Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming. Conclusive identification of this species is difficult unless the observer is experienced with the species. We suspect numerous occurrences could be in error, thus resulting in lower than expected model quality. The lack of supporting data provided with many occurrences (notably those from the Wildlife Observation System) makes it impossible to assess the accuracy of such observations. Supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Pinon-Juniper Index	38
Radiation of the darkest month	19
Annual precipitation range (P3 – P2)	14
Conifer Index	12
Contagion Index	8
Coldest month mean minimum temperature	8

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Pinon-Juniper Index

Annual precipitation range (P3 – P2)

Contagion Index

Radiation of the darkest month

Conifer Index

Coldest month mean minimum temperature

Prairie Lizard (*Sceloporus consobrinus*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Prairie Lizard (ARACF14135) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3366590
- High-Probability Threshold Value: 0.8023145
- Low-Probability Threshold Value: 0.3366590

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low

Occurrence Sample Size: Very Low Quality of Occurrences: Medium Positive Success Rate: Low Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.995 Regularized Training Gain: 3.634

- Average Test AUC: 0.298 ± 0.480
- Upper Bound on Test AUC: 0.987
- Average Test Gain: 0.948 ± 1.918
- Omission Error (fraction of test points omitted during 3-fold cross validation): 0.33± 0.58

Occurrence Data for Distribution Model

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 5
- Number of Occurrences used to create distribution model: 3
- Average Point Quality Index (highest quality is 12.00): 7.00 ± 1.73
- Most recent occurrence used: 2000
- Oldest occurrence used: 1941
- Occurrence File: LOCAL_SAMPLE_POINTS.csv

Comments

The model for this species is based on a small sample size of occurrence locations, which often results in low model quality. Collection of additional, high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Coldest quarter mean temperature	52
Isothermality (T2/T5)	16
Depth to Shallowest Restrictive Layer	13
Coldest month mean minimum temperature	10
Distance to Water	6
Vector Ruggedness Measure	4

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Coldest quarter mean temperature

Depth to Shallowest Restrictive Layer

Distance to Water

Isothermality (T2/T5)

Coldest month mean minimum temperature

Vector Ruggedness Measure

Northern Tree Lizard (*Urosaurus ornatus wrighti*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Northern Tree Lizard (ARACF16030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2181800
- High-Probability Threshold Value: 0.5923660
- Low-Probability Threshold Value: 0.2181796

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Very High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.988 Regularized Training Gain: 2.768

- Average Test AUC: 0.986 ± 0.015
- Upper Bound on Test AUC: 0.967
- Average Test Gain: 3.105 ± 0.986
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.05± 0.16

<section-header><section-header>

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 62
- Number of Occurrences used to create distribution model: 13
- Average Point Quality Index (highest quality is 12.00): 7.62 ± 3.25
- Most recent occurrence used: 2006
- Oldest occurrence used: 1939
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

Comments

Conclusive identification of this species is difficult unless the observer is experienced with the species. We suspect numerous occurrences could be in error, thus resulting in lower than expected model quality. The lack of supporting data provided with many occurrences (notably those from the Wildlife Observation System) makes it impossible to assess the accuracy of such observations. Supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Radiation of the darkest month	63
Relative Humidity of most humid month	14
Wettest quarter mean temperature	11
Pinon-Juniper Index	7
Annual mean temperature	5
Warmest quarter mean temperature	0

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Radiation of the darkest month

Wettest quarter mean temperature

Annual mean temperature

Relative Humidity of most humid month

Pinon-Juniper Index

Warmest quarter mean temperature

Northern Many-lined Skink (*Eumeces multivirgatus*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Northern Many-lined Skink (ARACH01090) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.5308380
- High-Probability Threshold Value: 0.5563779
- Low-Probability Threshold Value: 0.5308380

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low

Occurrence Sample Size: Low Quality of Occurrences: Low Positive Success Rate: Low Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.982 Regularized Training Gain: 2.660

- Average Test AUC: 0.973 ± 0.503
- Upper Bound on Test AUC: 0.974
- Average Test Gain: 1.600 ± 1.422
- Omission Error (fraction of test points omitted during 6-fold cross validation): 0.50± 0.55

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 6
- Number of Occurrences used to create distribution model: 6
- Average Point Quality Index (highest quality is 12.00): 4.17 ± 0.41
- Most recent occurrence used: 1983
- Oldest occurrence used: 1940
- Occurrence File: LOCAL SAMPLE POINTS.csv

Comments

The model for this species is based on a small sample size of occurrence locations, which often results in low model quality. Collection of additional, high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Wettest quarter mean temperature	41
Depth to Shallowest Restrictive Layer	22
Sagebrush Index	20
Variation in monthly radiation	13
Pinon-Juniper Index	4
Precipitation of the warmest quarter	0

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Depth to Shallowest Restrictive Layer

Variation in monthly radiation

Precipitation of the warmest quarter

Great Basin Skink (*Plestiodon skiltonianus utahensis*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Great Basin Skink (ARACH01113) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Mark Andersen, GIS Specialist

© 2010, WYNDD

Page 1 of 2

Year-Round

Summer

Winter

Spring/Fall

Comments

This species was first discovered in Wyoming in June 2010. There were too few occurrence points to construct a distribution model. Collection of additional, high-quality occurrence locations are necessary for assessment of potential distribution within Wyoming.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Prairie Racerunner (*Aspidoscelis sexlineatus viridis*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Prairie Racerunner (ARACJ02110) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.5061240
- High-Probability Threshold Value: 0.6158926
- Low-Probability Threshold Value: 0.5061240

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW

Expert Assessment: Low Occurrence Sample Size: Very Low Quality of Occurrences: Low Positive Success Rate: Low Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.996 Regularized Training Gain: 3.749

- Average Test AUC: 0.396 ± 0.511
- Upper Bound on Test AUC: 0.990
- Average Test Gain: 1.241 ± 1.770
- Omission Error (fraction of test points omitted during 4-fold cross validation): 0.50± 0.58

Occurrence Data for Distribution Model Occurrence Map

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 44
- Number of Occurrences used to create distribution model: 4
- Average Point Quality Index (highest quality is 12.00): 4.50 ± 1.00
- Most recent occurrence used: 1987
- Oldest occurrence used: 1941
- Occurrence File: LOCAL_SAMPLE_POINTS.csv

Comments

The model for this species is based on a small sample size of occurrence locations, which often results in low model quality. Collection of additional, high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Coldest quarter mean temperature	72
Depth to Shallowest Restrictive Layer	12
Distance to Permanent Water	8
Isothermality (T2/T5)	3
Cottonwood Index	3
Coldest month mean minimum temperature	1

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

0.0

320

Coldest quarter mean temperature

Distance to Permanent Water

Cottonwood Index

Depth to Shallowest Restrictive Layer

Coldest month mean minimum temperature

422

Rubber Boa (*Charina bottae*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Rubber Boa (ARADA01010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3208680
- High-Probability Threshold Value: 0.5875406
- Low-Probability Threshold Value: 0.1024961

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium-High Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.933 Regularized Training Gain: 1.412

- Average Test AUC: 0.901 ± 0.044
- Upper Bound on Test AUC: 0.903
- Average Test Gain: 1.343 ± 0.458
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.25± 0.20

Occurrence Data for Distribution Model

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 80
- Number of Occurrences used to create distribution model: 51
- Average Point Quality Index (highest quality is 12.00): 6.90 ± 2.09
- Most recent occurrence used: 2002
- Oldest occurrence used: 1921
- Occurrence File: LOCAL SAMPLE POINTS.csv

Comments

The map of range seasonality for rubber boa is likely inaccurate. Despite the fact that this is the map that was approved by state experts, all hyrdologic units within it's range should probably be labled "year-round". We have left the range as shown until formal review reveiw results in an official change to the approved map.Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Conifer Index	25
Precipitation of the coldest quarter	17
Wettest quarter mean temperature	16
Forest Cover Index	16
Vector Ruggedness Measure	14
Pinon-Juniper Index	12

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

0.0

0

Conifer Index

Wettest quarter mean temperature

Vector Ruggedness Measure

Precipitation of the coldest quarter

0.848

Eastern Yellow-bellied Racer (*Coluber constrictor flaviventris*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Eastern Yellow-bellied Racer (ARADB07014) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2922430
- High-Probability Threshold Value: 0.5871243
- Low-Probability Threshold Value: 0.1192337

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium-High Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.886 Regularized Training Gain: 1.017

- Average Test AUC: 0.856 ± 0.057
- Upper Bound on Test AUC: 0.865
- Average Test Gain: 0.912 ± 0.418
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.13±0.15

Occurrence Data for Distribution Model

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 83
- Number of Occurrences used to create distribution model: 60
- Average Point Quality Index (highest quality is 12.00): 7.63 ± 3.20
- Most recent occurrence used: 2008
- Oldest occurrence used: 1906
- Occurrence File: LOCAL_SAMPLE_POINTS.csv

Comments

Qualitative expert review of this model suggests that the binary version may over-predict the distribution of this species in Wyoming.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Variation of monthly precipitation	49
Distance to Permanent Water	15
Elevation	12
Cottonwood Index	10
Precipitation of the wettest month	8
Herbaceous Cover Index	7

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Variation of monthly precipitation

Precipitation of the wettest month

Distance to Permanent Water

Cottonwood Index

Herbaceous Cover Index

Plains Hog-nosed Snake (*Heterodon nasicus*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Plains Hog-nosed Snake (ARADB17010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3387860
- High-Probability Threshold Value: 0.5649360
- Low-Probability Threshold Value: 0.2126335

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: Very High Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.884 Regularized Training Gain: 0.911

- Average Test AUC: 0.829 ± 0.133
- Upper Bound on Test AUC: 0.845
- Average Test Gain: 0.697 ± 1.029
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.00± 0.00

Occurrence Data for Distribution Model

Occurrence Map

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 24
- Number of Occurrences used to create distribution model: 22
- Average Point Quality Index (highest quality is 12.00): 7.32 ± 3.05
- Most recent occurrence used: 2008
- Oldest occurrence used: 1980
- Occurrence File: LOCAL SAMPLE POINTS.csv

Comments

There are no additional comments specific to this species range map or distribution model.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Variation of monthly precipitation	47
Elevation	31
Standard deviation of monthly temperature	14
Warmest quarter mean temperature	5
Percent Forest Cover	2

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Variation of monthly precipitation

Standard deviation of monthly temperature

Elevation

Warmest quarter mean temperature

Percent Forest Cover

Pale Milksnake (Lampropeltis triangulum multistriata) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Pale Milksnake (ARADB19050) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3225460
- High-Probability Threshold Value: 0.6715417
- Low-Probability Threshold Value: 0.1259588

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW

Expert Assessment: Low Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.950 Regularized Training Gain: 1.427

- Average Test AUC: 0.898 ± 0.099
- Upper Bound on Test AUC: 0.880
- Average Test Gain: 1.502 ± 1.133
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.30± 0.26

Occurrence Data for Distribution Model

Points Used in Modeling, by Year of Observation

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 21
- Number of Occurrences used to create distribution model: 19
- Average Point Quality Index (highest quality is 12.00): 6.26 ± 1.79
- Most recent occurrence used: 2006
- Oldest occurrence used: 1856
- Occurrence File: LOCAL_SAMPLE_POINTS.csv

Comments

Pre-1985

1985 or Later

There are no additional comments specific to this species range map or distribution model.

Known and

Suspected Range

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Variation of monthly precipitation	44
Contagion Index	13
Herbaceous Cover Index	12
Coldest month mean minimum temperature	12
Conifer Index	11
Interannual variation in annual frost days	8

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Variation of monthly precipitation

Herbaceous Cover Index

Conifer Index

Contagion Index

Coldest month mean minimum temperature

Interannual variation in annual frost days

Great Basin Gophersnake (*Pituophis catenifer deserticola*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Great Basin Gophersnake (ARADB26022) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

A4-61

Year-Round

Summer

Winter

Spring/Fall

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2571420
- High-Probability Threshold Value: 0.6456544
- Low-Probability Threshold Value: 0.1021669

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Very High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.953 Regularized Training Gain: 1.644

- Average Test AUC: 0.944 ± 0.053
- Upper Bound on Test AUC: 0.926
- Average Test Gain: 1.854 ± 0.640
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.10± 0.21

Occurrence Data for Distribution Model

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 28
- Number of Occurrences used to create distribution model: 15
- Average Point Quality Index (highest quality is 12.00): 6.93 ± 2.79
- Most recent occurrence used: 2006
- Oldest occurrence used: 1980
- Occurrence File: REVISED_SAMPLE_POINTS_ALL_SPP.cs

Comments

There are no additional comments specific to this species range map or distribution model.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Precipitation of the wettest month	53
Interannual variation in annual frost days	19
Potential for Rock Outcrop	14
Percent Forest Cover	13
Distance to Permanent Water	0
Pinon-Juniper Index	0

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Precipitation of the wettest month

Potential for Rock Outcrop

Distance to Permanent Water

Interannual variation in annual frost days

Bullsnake (*Pituophis catenifer sayi*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Bullsnake (ARADB26024) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3167540
- High-Probability Threshold Value: 0.5373218
- Low-Probability Threshold Value: 0.1010481

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: High Positive Success Rate: Medium Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.867 Regularized Training Gain: 0.896

- Average Test AUC: 0.822 ± 0.028
- Upper Bound on Test AUC: 0.843
- Average Test Gain: 0.779 ± 0.179
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.21± 0.10

Occurrence Data for Distribution Model

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 181
- Number of Occurrences used to create distribution model: 145
- Average Point Quality Index (highest quality is 12.00): 8.67 ± 2.82
- Most recent occurrence used: 2008
- Oldest occurrence used: 1981
- Occurrence File: REVISED_SAMPLE_POINTS_ALL_SPP.cs
 v

Comments

There are no additional comments specific to this species range map or distribution model.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Annual number of Frost Days	41
Variation of monthly precipitation	27
Cottonwood Index	15
Warmest quarter mean temperature	12
Elevation	5
Annual Radiation range	0

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Annual number of Frost Days

Elevation

Variation of monthly precipitation

Annual Radiation range

Black Hills Redbelly Snake (Storeria occipitomaculata pahasapae) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Black Hills Redbelly Snake (ARADB34030) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

© 2010, WYNDD

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.0559810
- High-Probability Threshold Value: 0.7559857
- Low-Probability Threshold Value: 0.0559810

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW

Expert Assessment: Low Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.983 Regularized Training Gain: 2.889

- Average Test AUC: 0.780 ± 0.415
- Upper Bound on Test AUC: 0.943
- Average Test Gain: 2.663 ± 2.336
- Omission Error (fraction of test points omitted during 8-fold cross validation): 0.13± 0.35

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 8
- Number of Occurrences used to create distribution model: 8
- Average Point Quality Index (highest quality is 12.00): 7.75 ± 3.06
- Most recent occurrence used: 1994
- Oldest occurrence used: 1962
- Occurrence File: LOCAL_SAMPLE_POINTS.csv

Comments

The model for this species is based on a small sample size of occurrence locations, which often results in low model quality. Collection of additional, high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Deciduous Forest Index	77
Radiation of the lightest month	9
Potential for Rock Outcrop	7
Soil - Fraction Sand	3
Driest quarter mean temperature	3
Wettest quarter mean temperature	2

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Deciduous Forest Index

Potential for Rock Outcrop

Driest quarter mean temperature

Radiation of the lightest month

Wettest quarter mean temperature

Plains Black-headed Snake (*Tantilla nigriceps*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Plains Black-headed Snake (ARADB35050) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Comments

There were too few occurrence points to construct a distribution model for this species. Collection of additional, high-quality occurrence locations are necessary for assessment of potential distribution within Wyoming.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Wandering Gartersnake (*Thamnophis elegans vagrans*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Wandering Gartersnake (ARADB36050) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Range Map - Seasonality

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

Model Parameters

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.4359750
- High-Probability Threshold Value: 0.5259595
- Low-Probability Threshold Value: 0.0137789

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW Expert Assessment: Low Occurrence Sample Size: High

Quality of Occurrences: High Positive Success Rate: Low Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.737 Regularized Training Gain: 0.312

- Average Test AUC: 0.696 ± 0.075
- Upper Bound on Test AUC: 0.713
- Average Test Gain: 0.137 ± 0.393
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.36± 0.14

Occurrence Data for Distribution Model

Occurrence Map

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 198
- Number of Occurrences used to create distribution model: 129
- Average Point Quality Index (highest quality is 12.00): 8.19 ± 3.08
- Most recent occurrence used: 2008
- Oldest occurrence used: 1934
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

Comments

This species uses aspects of wetlands (e.g., dense emergent vegetation) for which statewide data are not available or reliable. This often results in low model quality because key habitat features are not mappable across the state. Great improvements in our ability to model this species distribution could be obtained by improving wetland maps. Conclusive identification of this species is difficult unless the observer is experienced with the species. We suspect numerous occurrences could be in error, thus resulting in lower than expected model quality. The lack of supporting data provided with many occurrences (notably those from the Wildlife Observation System) makes it impossible to assess the accuracy of such observations. Supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Distance to Permanent Water	39
Annual mean relative humidity	36
Precipitation of the driest quarter	10
Forest Cover Index	7
Conifer Index	7
Deciduous Forest Index	1

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Distance to Permanent Water

Precipitation of the driest quarter

Conifer Index

Annual mean relative humidity

Forest Cover Index

Deciduous Forest Index

Plains Gartersnake (*Thamnophis radix*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Plains Gartersnake (ARADB36100) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.2583430
- High-Probability Threshold Value: 0.6876158
- Low-Probability Threshold Value: 0.2583428

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Low Quality of Occurrences: Medium Positive Success Rate: Low Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.934 Regularized Training Gain: 1.077

- Average Test AUC: 0.796 ± 0.201
- Upper Bound on Test AUC: 0.870
- Average Test Gain: 0.272 ± 1.876
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.35± 0.41

Occurrence Data for Distribution Model

Occurrence Map

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 28
- Number of Occurrences used to create distribution model: 18
- Average Point Quality Index (highest quality is 12.00): 6.50 ± 2.92
- Most recent occurrence used: 2008
- Oldest occurrence used: 1906
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

Comments

This species uses aspects of wetlands (e.g., dense emergent vegetation) for which statewide data are not available or reliable. This often results in low model quality because key habitat features are not mappable across the state. Great improvements in our ability to model this species distribution could be obtained by improving wetland maps. Conclusive identification of this species is difficult unless the observer is experienced with the species. We suspect numerous occurrences could be in error, thus resulting in lower than expected model quality. The lack of supporting data provided with many occurrences (notably those from the Wildlife Observation System) makes it impossible to assess the accuracy of such observations. Supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species. Due to timing of range map edits, the distribution model for plains gartersnake was created before final edits were made to the range map. As a result, several datapoints used in the model fall outside the accepted range of the species. Future versions of the model should eliminate these occurrences, as they are likely miss-identified records of other gartersnakes.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Conifer Index	29
Precipitation of the wettest quarter	18
Herbaceous Cover Index	17
Isothermality (T2/T5)	15
Cottonwood Index	13
Depth to Shallowest Restrictive Layer	8

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Conifer Index

Herbaceous Cover Index

Cottonwood Index

Precipitation of the wettest quarter

Depth to Shallowest Restrictive Layer

Red-sided Gartersnake (*Thamnophis sirtalis parietalis*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Red-sided Gartersnake (ARADB3613C) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3157210
- High-Probability Threshold Value: 0.6146828
- Low-Probability Threshold Value: 0.0806229

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: Medium Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.917 Regularized Training Gain: 1.172

- Average Test AUC: 0.847 ± 0.069
- Upper Bound on Test AUC: 0.879
- Average Test Gain: 0.868 ± 0.641
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.27± 0.22

Occurrence Data for Distribution Model

Occurrence Map

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 39
- Number of Occurrences used to create distribution model: 32
- Average Point Quality Index (highest quality is 12.00): 7.78 ± 1.91
- Most recent occurrence used: 2008
- Oldest occurrence used: 1981
- Occurrence File: REVISED_SAMPLE_POINTS_ALL_SPP.cs

Comments

Conclusive identification of this species is difficult unless the observer is experienced with the species. We suspect numerous occurrences could be in error, thus resulting in lower than expected model quality. The lack of supporting data provided with many occurrences (notably those from the Wildlife Observation System) makes it impossible to assess the accuracy of such observations. Supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Radiation of the lightest month	49
Wettest quarter mean temperature	15
Annual temperature range (T3 – T4)	15
Pinon-Juniper Index	9
Deciduous Forest Index	7
Annual total radiation	5

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Annual temperature range (T3 – T4)

Deciduous Forest Index

Wettest quarter mean temperature

Pinon-Juniper Index

Annual total radiation

Valley Gartersnake (*Thamnophis sirtalis fitchi*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Valley Gartersnake (ARADB3613X) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.5960850
- High-Probability Threshold Value: 0.6662462
- Low-Probability Threshold Value: 0.5960850

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: LOW

Expert Assessment: Low Occurrence Sample Size: Very Low Quality of Occurrences: High Positive Success Rate: Very High Test AUC and Model Gain: Low

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.995 Regularized Training Gain: 3.415

- Average Test AUC: 0.100 ± 0.211
- Upper Bound on Test AUC: 0.986
- Average Test Gain: 0.000 ± 0.000
- Omission Error (fraction of test points omitted during 2-fold cross validation): 0.00± 0.00

Occurrence Data for Distribution Model

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 5
- Number of Occurrences used to create distribution model: 2
- Average Point Quality Index (highest quality is 12.00): 9.00 ± 1.41
- Most recent occurrence used: 2006
- Oldest occurrence used: 2004
- Occurrence File: DRAFT 3 SAGE WATER RERUNS.csv

Comments

The model for this species is based on a small sample size of occurrence locations, which often results in low model quality. Collection of additional, high-quality occurrence locations could greatly improve the modeled distribution for this species. Conclusive identification of this species is difficult unless the observer is experienced with the species. We suspect numerous occurrences could be in error, thus resulting in lower than expected model quality. The lack of supporting data provided with many occurrences (notably those from the Wildlife Observation System) makes it impossible to assess the accuracy of such observations. Supplementation/replacement of the existing data set with high-quality occurrence locations could greatly improve the modeled distribution for this species.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Wettest quarter mean temperature	48
Interannual variation in annual frost days	17
Percent Cover of sagebrush	14
Prevalence of Lakes/Large Rivers within 300 meters	14
Annual temperature range (T3 – T4)	3
Hottest month mean maximum temperature	3

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Percent Cover of sagebrush

Annual temperature range (T3 – T4)

Interannual variation in annual frost days

Prevalence of Lakes/Large Rivers within 300 meters

Hottest month mean maximum temperature

Smooth Green Snake (*Opheodrys vernalis*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Smooth Green Snake (ARADB47010) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Quadratic, Hinge
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1173890
- High-Probability Threshold Value: 0.7417376
- Low-Probability Threshold Value: 0.0276957

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: Medium Positive Success Rate: High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.975 Regularized Training Gain: 2.349

- Average Test AUC: 0.921 ± 0.156
- Upper Bound on Test AUC: 0.946
- Average Test Gain: 1.933 ± 2.110
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.13± 0.32

<section-header><section-header>

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 34
- Number of Occurrences used to create distribution model: 24
- Average Point Quality Index (highest quality is 12.00): 7.50 ± 2.99
- Most recent occurrence used: 2006
- Oldest occurrence used: 1938
- Occurrence File: LOCAL_SAMPLE_POINTS.csv

Comments

There are no additional comments specific to this species range map or distribution model.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Deciduous Forest Index	66
Wettest quarter mean temperature	10
Vector Ruggedness Measure	10
Precipitation of the wettest quarter	6
Pinon-Juniper Index	4
Conifer Index	4

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Deciduous Forest Index

Vector Ruggedness Measure

Pinon-Juniper Index

Wettest quarter mean temperature

Precipitation of the wettest quarter

Conifer Index

Prairie Rattlesnake (*Crotalus viridis*) Range Map and Distribution Model Summary

August 20, 2010

This report presents range and distribution of Prairie Rattlesnake (ARADE02120) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Maps, models and report were created by and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist *Mark Andersen*, GIS Specialist

- Season Modeled: Year-Round
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product, Quadratic, Hinge, Threshold
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.3930900
- High-Probability Threshold Value: 0.5525965
- Low-Probability Threshold Value: 0.0351664

Model Evaluation - ROC Plot

Model Quality Summary Overall Assessment of Model Quality: MEDIUM

Expert Assessment: Medium Occurrence Sample Size: High Quality of Occurrences: Medium Positive Success Rate: Low Test AUC and Model Gain: Medium

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.816 Regularized Training Gain: 0.630

- Average Test AUC: 0.777 ± 0.028
- Upper Bound on Test AUC: 0.795
- Average Test Gain: 0.573 ± 0.134
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.36± 0.10

Occurrence Data for Distribution Model

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 359
- Number of Occurrences used to create distribution model: 281
- Average Point Quality Index (highest quality is 12.00): 6.88 ± 2.07
- Most recent occurrence used: 2008
- Oldest occurrence used: 1935
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

Comments

There are no additional comments specific to this species range map or distribution model.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Wettest quarter mean temperature	31
Coldest month mean minimum temperature	19
Annual number of Frost Days	17
Mean diurnal temperature range	13
Precipitation of the warmest quarter	11
Relative Humidity of most humid month	9

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

Wettest quarter mean temperature

Annual number of Frost Days

Precipitation of the warmest quarter

Coldest month mean minimum temperature

Mean diurnal temperature range

Relative Humidity of most humid month

Midget Faded Rattlesnake (Crotalus oreganus concolor) **Range Map and Distribution Model Summary**

August 20, 2010

This report presents range and distribution of Midget Faded Rattlesnake (ARADE02123) in Wyoming (see Keinath et al. 2010b). Similar reports were developed by the Wyoming Natural Diversity Database for terrestrial vertebrate species of conservation need in Wyoming's State Wildlife Action Plan. This effort was supported by the Wyoming Game and Fish Department and the U.S. Geological Survey.

Spring/Fall

and are available from the Wyoming Natural Diversity Database. (http://uwadmnweb.uwyo.edu/wyndd/).

Doug Keinath, Senior Zoologist Mark Andersen, GIS Specialist

© 2010, WYNDD

Summer

Winter

Year-Round

- Season Modeled: Summer (1-May- 30-Sep)
- Algorithm: Maxent version 3.3.1
- Feature Types: Linear, Product
- Binary Threshold Rule: Maximum training sensitivity plus specificity
- Binary Threshold Value: 0.1603490
- High-Probability Threshold Value: 0.5274099
- Low-Probability Threshold Value: 0.1603490

Model Evaluation - ROC Plot

Model Quality Summary

Overall Assessment of Model Quality: HIGH

Expert Assessment: Medium Occurrence Sample Size: Medium Quality of Occurrences: High Positive Success Rate: Very High Test AUC and Model Gain: High

Model Evaluation Statistics

Final Model Statistics

Training AUC: 0.984 Regularized Training Gain: 2.886

- Average Test AUC: 0.973 ± 0.032
- Upper Bound on Test AUC: 0.978
- Average Test Gain: 2.572 ± 1.272
- Omission Error (fraction of test points omitted during 10-fold cross validation): 0.03± 0.11

Occurrence Summary Statistics

- Number of Occurrences in AWVED master dataset: 315
- Number of Occurrences used to create distribution model: 35
- Average Point Quality Index (highest quality is 12.00): 9.60 ± 3.28
- Most recent occurrence used: 2006
- Oldest occurrence used: 1946
- Occurrence File: LOCAL_SAMPLE_POINTS_W_PDOG_2. csv

Comments

There are no additional comments specific to this species range map or distribution model.

- Keinath, D.A., M.D. Andersen, and G.P Beauvais. 2010a. Range maps for Wyoming's species of greatest conservation need. Report prepared for the Wyoming Game and Fish Department by the Wyoming Natural Diversity Database, Laramie, Wyoming. January 19, 2010.
- Keinath, D.A., M.D. Andersen, and G.P. Beauvais. 2010b. Range and modeled distribution of Wyoming's species of greatest conservation need. Report prepared by the Wyoming Natural Diversity Database, Laramie Wyoming for the Wyoming Game and Fish Department, Cheyenne, Wyoming and the U.S. Geological Survey, Fort Collins, Colorado. August 20, 2010.

Percent Contribution (PC) to final model

Environmental Variable	РС
Annual Relative Humidity Range	47
Precipitation of the wettest month	46
Herbaceous Cover Index	5
Distance to Permanent Water	1
Vector Ruggedness Measure	1
Pinon-Juniper Index	0

Response Curves

Each curve shows dependence of predicted suitability on input values of a single predictor variable considering correlations with others. Suitability is on the vertical axis (units: probability). Variable values are on the horizontal axis (units based on inputs; see Keinath et al 2010b for details).

0.0

0

4245

Herbaceous Cover Index

1466

Vector Ruggedness Measure

Precipitation of the wettest month

0.848