AGGREGATES

Section 1 – Physical Properties

Physical Properties

- Texture appearance
 Particle Size
 Density mass per unit volume
 Cohesion attraction of particles
 Consistency variability of bards
- Consistency variability of hardness or softness

Physical Properties (continued)

- Durability the ability to resist abrasion or degradation
- Permeability ability to conduct or discharge water
- Strength ability to carry load or resist deformation
- Compressibility ability to compact

We will discuss the nature of the properties now and the specific tests in Section 3

Texture

```
Function of:
```

Particle surface profile

- Color Minerology, Wetness
- Surface Roughness
- Particle Shape Angular, rounded, bulky, flat and elongated, etc.
 - ► Determined by:
 - 1) Visual
 - 2) measurement

Coarse Aggregate Examination

³/₄ in.

Particle Shape

Angular – most edges square or sharp

Crushing and Grinding

- Rounded most edges rounded, water washed
- Bulky all dimensions of the same order of magnitude; generally used to describe soils

Particle Shape (continued)

Flat and Elongated – one dimension significantly different

SHRP greatest dimension at least five times the smallest dimension

Particle Size

- Particle Size the smallest square hole through which it will pass, i.e., a Sieve
 - ► Fine for Bulky Material
 - Difficult for Irregular
 - Determined by
 - 1) Fractionation
 - •2) Gradation

Particle Size

Particle size also defines soil types:

Size	AASHTO	ASTM
Gravel	> #10	> #4
Sand	#10 to #200	#4 to #200
Silt	0.075mm to 0.005mm	Consistency
Clay	< 0.005 mm	Consistency

Earth's Formation

Magma Under Heat and Pressure Flows to the Surface and Solidifies to make the Rocks which Break Down to form Boulders, Cobbles, Gravel, Sand and Silt (and Clay)

Physical Weathering

- Physical Weathering
 - Forms the coarse particles
 - · Gravel
 - · Sand
 - · Silt
 - Change in Size but not in Form
 - Crushing, Grinding, Impact and Tumbling, Splitting (ice wedging), Temperature Gradient, etc.
 - Smaller Particles are like the parent material

Chemical Weathering

- Chemical Weathering
 - Forms Clay
 - Change in Form
 - Acid Rain (Sulfuric acid, H₂SO₄, Nitric acid HNO₃, Carbonic acid, H₂CO₃, etc.), Decomposing Organic Material and Organisms seeps through the coarse particles.
 - Dissolves the outer layers of the coarse particles and creates a slurry rich in free atoms which create Crystals.
 - Remember, the common atoms are Oxygen, Silicon and Aluminum.

Chemical Weathering

- Chemical Weathering
 - That Slurry allows those atoms to form Crystals.
 - Two Common Types
 - Silicon Tetrahedrals:

Aluminum Octahedrals

O Silicon (S_i) Oxygen (O) (a) Silica tetrahedral sheet

Three Major Clays

Particle Size

Particle Size

Section 1 - 16

Fractionation

> Definition:

- Physical separations of a sample into 2 or more fractions
 - Stockpiling
- 2) The determination of amounts larger or smaller than certain sizes of significance
 - % Retained on the #4 Sieve
 - rock, coarse aggregate, +#4 fraction
 - % Passing the #4 Sieve fines,
 - fine aggregate, #4 fraction
 - % Passing the #200 sieve
 - binder, #200 fraction

Gradation

> Definition:

Determination of manner in which size variation occurs over a full range of particle sizes

➢ Gradation vs. Fractionation

- Fractionation looks at critical sizes
- Gradation looks at many sizes

Gradation (continued)

- Good; Bad depends on intended engineering use
- Well Graded some material in all sizes; also called dense graded
- Uniform or Poorly Graded primarily composed of particles of a single size; also called one-sized material (i.e., all passing one sieve and retained on the next)
- Gap Graded– little or no material within a given size range (i.e., mix of two uniform soils)
- Open high percentage of coarse sizes and small percentage of fines

Aggregate Gradation

Well Graded Soil

Uniformly Graded Soil

Fine Aggregate Examination

Phases of a Soil or Aggregate

- Soil (Aggregate) is a blend of Solid, Liquid and Gas
 - Solid Minerals
 - Liquid Water
 - ► Gas Air

Easier to think about the Individual Phases rather than the blend

Important Phase Relationships

Example – Unit Weights and Water Content

Sand Cone Test: Removed 7.00 pounds of soil which dried to 5.75 pounds. The volume of the hole was 0.05 ft^3

Water Content

$$=\frac{W_{water}}{W_{solid}} = \frac{lbs}{5.75 \ lbs} x100\%$$

Water Content = 21.7%

(Wet) Unit Weight =
$$\frac{W}{V} = \frac{7.00 \ lbs}{0.05 \ ft^3} = 140 \ pcf$$

Dry Unit Weight = $\frac{W_{solid}}{V} = \frac{5.75 \ lbs}{ft^3} = 115 \ pcf$

Example – Relative Density

- Relative Density the ratio of the weight of material in the field to the maximum compacted weight of equal volume. %
 - Maximum Dry Unit Weight = 120 pcf (Lab Test)
 - Field Dry Unit Weight (previous page) = 115 pcf
 - Relative Density

= <u>115 pcf*100%</u> 120 pcf

► = 96% Relative Density

Density (continued)

 Unit Wt. of Water = 62.4 lb/ft³ @ 77°F
 Specific Gravity – ratio of the weight of a given volume of material to the weight of an equal volume of water.

s.g. =
$$\frac{\text{Unit Wt. Of Material}}{\text{Unit Wt. Of Water}}$$

Unit Wt of Quartz = $\frac{167 \ lbs}{1 \ ft^3}$ = 167 pcf
s.g. = $\frac{167 \ pcf}{62.4 \ pcf}$ = 2.67

Cohesion

Function of:

Particle size and shape and type of material

Two Types of Cohesion:

<u>Apparent Cohesion</u> - is the attraction between sand particles caused by water

Generalities:

- Maximum when sand is moist
- Does not exist when sand is dry or very wet
- Change causes collapse and bulking
- Can be very dangerous in construction

Cohesion

Function of:

Particle size and shape and type of material

Two Types of Cohesion:

True Cohesion - is the attraction between clay particles

Generalities:

- Decreasing size = increased cohesion
- Increased clay = increased cohesion
- Angularity or Bulkiness = decreased cohesion

Consistency

➤ Function of:

Type of material and moisture content or degree of saturation

Primary use:Fine grained soils

>Atterburg System:

 Developed to define consistency in terms of moisture content and behavior

Atterburg System

Atterburg System (continued)

Atterburg Limits

> Definition:

- The moisture content at which a material changes states:
 - Liquid Limit (LL) the moisture content at the transition from liquid to plastic
 - Plastic Limit (PL) the moisture content at the transition from plastic to semi-solid
 - Shrinkage Limit (SL) the moisture content at the transition from semi-solid to solid

Atterburg System (continued)

Atterburg Indexes

> Definition:

The difference in moisture content at the Atterburg Limits

Plastic Index (PI) – difference in moisture contents at LL and PL

Shrinkage Index (SI) – difference in moisture contents at PL and SL

Atterburg System

Plasticity Index = Liquid Limit – Plastic Limit

Liquid Liquid Limit (=27) Plastic Index, PI Plastic (=10) Plastic Limit (=17) Semi-Solid

PI = LL - PL PI = 27 - 17 = 10 (for example) The range over which a soil is plastic

Plasticity Index (PI)

- It is an indicator of the ability of the soil to hold water.
 - Soil that has a large PI can absorb a lot of water and still remain plastic.
- >It indicates the soil's moisture susceptibility.
 - Some soils can absorb a lot of water, others become easily saturated, then water flows through them.
 - Swelling soils...

Atterburg System (continued)

Generalities:

Increased clay content = increased LL and PI

Increased clay content = less desirability

Most important properties are LL, PL and PI in defining behavior

Atterburg System (continued)

Decreased PI = increased permeability and reduced compressibility

Many granular materials do not have a plastic or liquid phase and are NP, NV

In PMP aggregates, any LL or PI is undesirable but may be tolerable in base/subbase depending upon use

Permeability

Definition:

Ease with which water will flow through the soil

Function of:

Soil type, particle size, density, cohesion, and particle shape

Permeability (continued)

Generalities:

- High clay content = low permeability
- High % coarse aggregate = high permeability
- High relative density = low permeability
- Bulky, angular aggregate = higher permeability than flat or rounded aggregate

Strength

➤ Function of:

Soil type, particle size and shape, density, moisture content, state of compaction and durability

>Measures of Strength:

- Shear strength geotechnical /foundation engineer
- Bearing capacity foundation engineer
- ► California Bearing Ratio (CBR)
- "R" Value used by WYDOT and a few other DOTs for strength and moisture sensitivity
- Unconfined compressive strength treated material

> Definition:

A measure of the resistance of a material to lateral deformation under an applied vertical load

Test – AASHTO T 190, Resistance Rvalue and Expansion Pressure of Compacted Soils

Lateral Deformation

"R" Value (continued)

- ≻ Theoretical Range 0(Water) to 100(Steel)
- ➢ Practical Range 5 to 80
- ≻Aggregate Range 40 to 80
- ≻Minimum Values:
 - ► Subbase and gravel roads 60
 - ▶ Base 75

Durability

> Function of:

► Parent rock, degree of weathering

Generalities:

- The closer to the top of the surfacing layers, the more durable the aggregate required
- Resistance to abrasion or degradation (Durability) is required during manufacture, placement, compaction and service
- ► AASHTO T96 Los Angeles Machine
- ► AASHTO T104 Soundness
- Others