AGGREGATES

Section 7 – Quality Assurance and Quality Acceptance

Quality Assurance

Definition: a systematic method for sampling, testing and evaluating material to assure specification compliance. Includes incentives and disincentives

Composed of:

- Quality Control (QC)
- ► Quality Acceptance (QA)

Quality Assurance (continued)

Quality Control – A systematic procedure to sample, test and monitor production. Generally a contractor responsibility.

- Quality Acceptance A statistical method for evaluating compliance.
 - Gradation "Percent within limits" approach
 - Quality Index > Quality Level > Pay Factor
 - Compaction "Percent above limit" approach
 - Quality Index > Pay Factor

Acceptance Methods

Representative Sample - Traditional

Pass-Fail

Limited Information

Ex.30 pound Sample for 1000 tons, How much material is really out-ofspecification?

• 2,000,000 lbs/30lbs = 66,667 samples

► No Information on Variability

- >Sample Average
 - ▶ 5 (3 to 7) Gradation Samples
 - Pass-Fail based on multiple Samples & percent within limits
 - Shows Distribution
 - Rewards Consistency in Practice
 - Use Tighter Specs for Job Mix Design

Example - Grading A Plant Mix Paving

Normal Range for #4 is 45-65%

Have Reduced Acceptance Limits on Specific Jobs based on JMF Target ± 5%,

For example $52 \pm 5\%$ (47 - 52 - 57)

So, the Narrow Band is: Upper Specification Limit = 57 Lower Specification Limit = 47

Acceptance Methods (continued)

- Statistical Method
 - Determine $\overline{\mathbf{x}}$ and \mathbf{s} from data
 - Define Material Assuming It Has a "Normal Probability" Distribution
 - Contractor Gets Paid for % of Materials within the Upper and Lower Specification Limits

Acceptance Methods (continued)

Historically, basis from W. Edwards Deming (A Wyoming native from Cody and Powell, UW Graduate in Engineering in 1921)

WYDOT has used procedure since 1984 in field 1974 in lab

>How does the System work?

Quality Acceptance for Gradations

- For Gradations, Quality is based on the "Percentage of aggregate within specification limits".
- > Example:
 - Grading W
 - **#4 45-65%**
 - **#8 33-53%**
 - **#200 3-12%**
 - Based on #4
 - If all of the stockpile was between 45% and 65%, Full Pay

Table 803.4.4-1

Section 4-9

Gradation Requirements: Subbase and Base

			Grading		
	J	GR	L	K	W
			%		
Sieve			Passing		
2 in	100	-	-	-	-
	90-				
1 1/2 in	100	-	100	100	100
				90-	90-
1 in _	-	100	90-100	100	100
		90-			
3/4 in	-	100	-	-	
1/2 in	-	65-85	60-85	-	60-85
3/8 in	-	-	-	-	
No. 4	35-75	50-78	35-55	40-65	45-65
No. 8	-	37-67	25-50	30-55	33-53
No. 30	-	13-35	10-30	-	-
No. 200	0-15	4-15	3-15	3-15	3-12

Quality Acceptance for Gradations

- How do we determine if a stockpile has between 45% and 65% passing the #4?
- We could go out and obtain 1000 samples and test them. This would give a very accurate picture of the -#4 fraction of the pile.
- We could draw a picture of this distribution of -#4 values, shown as the green boxes.

- The red lines are the upper and lower specification limits of 45% and 65%
- There are 110 samples out of 1000 (11%) that fall outside of the limits.
- Since Quality is defined 200 as the percentage of 150 material within the 100 specification limits, 50 The Contractor would 0

Quality Acceptance for Gradations

- However, it is not feasible to obtain 1000 samples of a pile, so another technique is needed.
- If the width of the bins was smaller, say 2% instead of 5%, we would see a much smoother curve develop.
- It has a "bell" like shape and is known as the "Normal Probability Distribution Curve"
- It can be defined by two values, the "average" or "mean" and the "standard deviation".

Properties of the Normal Probability Curve

- The total area under the curve is 100%, which means that all the tests will be included under the curve mathematically.
- The x value at the peak is the mean or average value. Half the area is above the mean and half is below.
- 34.1% of the area is under the curve from zero to one Standard Deviation.
- About 2/3 of the data is between +1 and -1 SD
- 84.1% (50% + 34.1%) of the area is below the curve and less than 1.0 Standard Deviation.
- We will assume this curve represents the pile.

Normal Probability Curve

Section 7 - 14

Quality Assurance

- We now have the Mean (x = 51.4) and Standard Deviation (s = 5.46) to describe the "Normal Probability Distribution Curve"
- >We need to relate the area under the curves in both diagrams.
- > The upper and lower Specification Limits are $SL_u = 65$ and $SL_l = 45$.

Normal Probability Curve

Section 7 - 15

We can relate the specification limits to the standard deviations by the Quality Index.

➤The area less than the upper specification limit is a function of the Upper Quality Index, Q_u = 2.49.

➤ Table 113.1-1 relates Quality Indices to the remaining area, P_u.

Quality Level		able 113 by the Sta		eviation N	<i>l</i> lethod					
P _U or P _L percent Within Limits for Positive Values	Upper Q	Upper Quality Index Q _U or Lower Quality Index								
of Q or QL	n = 3	n = 4	n = 5	n = 6	n = 7					
100	1.16	1.50	1.79	2.03	2.23					
99		1.47	1.87	1.80	1.89					
98	1.15	1.44	1.60	1.70	1.76					
97		1.41	1.54	1.62	1.67					
96	1.14	1.38	1.49	1.55	1.59					
95		1.35	1.44	1.49	1.52					
94	1.13	1.32	1.39	1.43	1.46					
93		1.29	1.35	1.38	1.40					
92	1.12	1.26	1.31	1.33	1.35					
91	1.11	1.23	1.27	1.29	1.30					
90	1. 10	1.20	1.23	1.24	1.25					
89	1.09	1.17	1,19	1.20	1.20					
88	1.07	1.14	1.15	1.16	1.16					
87	1.06	1.11	L 1.12	1.12	1.12					
86	1.04	1.08	1.08	1.08	1.08					
85	1.03	1.05	1.05	1.04	1.04					
84	1.01	1.02	1.01	1.01	1.00					
83	1.00	0.99	0.98	0.97	0.97					
82	0.97	0.96	0.95	0.94	0.93					
81	0.96	0.93	0.91	0.90	0.90					
80	0.93	0.90	0.88	0.87	0.86					
79	0.91	0.87	0.85	0.84	0.83					
78	0.89	0.84	0.82	0.80	0.80					
77	0.87	0.81	0.78	0.77	0.76					
76	0.84	0.78	0.75	0.74	0.73					
75	0.82	0.75	0.72	0.71	0.70					
74	0.79	0.72	0.69	0.68	0.67					
73	0.76	0.69	0.66	0.65	0.64					
72	0.74	0.66	0.63	0.62	0.61					
71	0.71	0.63	0.60	0.59	0.58					
70	0.68	0.60	0.57	0.56	0.55					
69	0.65	0.57	0.54	0.53	0.52					
68	0.62	0.54	0.51	0.50	0.49					
67	0.59	0.51	0.47	0.47	0.46					
66	0.56	0.48	0.45	0.44	0.44					

P _U or P _L percent Within Limits for Positive Values of	Upper Quality Index \mathbf{Q}_{U} or Lower Quality Index \mathbf{Q}_{L}								
Q_U or Q_L	n = 3	n = 4	n = 5	n = 6	n = 7				
65	0.52	0.45	0.43	0.41	0.41				
64	0.49	0.42	0.40	0.39	0.38				
63	0.46	0.39	0.37	0.36	0.35				
62	0.43	0.36	0.34	0.33	0.32				
61	0.39	0.33	0.31	0.30	0.30				
60	0.36	0.30	0.28	0.27	0.27				
59	0.32	0.27	0.25	0.25	0.24				
58	0.29	0.24	0.23	0.22	0.21				
57	0.25	0.21	0.20	0.19	0.19				
56	0.22	0.18	0.17	0.16	0.16				
55	0.18	0.15	0.14	0.13	0.13				
54	0.14	0.12	0.11	0.11	0.11				
53	0.11	0.09	0.08	0.08	0.08				
52	0.07	0.06	0.06	0.05	0.05				
51	0.04	0.03	0.03	0.03	0.03				
50	0.00	0.00	0.00	0.00	0.00				

Quality Level		able 113 by the St		eviation N	<i>l</i> ethod				
P _U or P _L percent Within Limits for Positive Values	Upper Q	Upper Quality Index Q _U or Lower Quality Index							
of Q_U or Q_L	n = 3	n = 4	n = 5	n = 6	n = 7				
100	1.16	1.50	1.79	2.03	2.23				
99		1.47	1.67	1.80	1.89				
98	1.15	1.44	1.60	1.70	1.76				
97		1.41	1.54	1.62	1.67				
96	1.14	1.38	1.49	1.55	1.59				
95		1.35	1.44	1.49	1.52				
94	1.13	1.32	1.39	1.43	1.46				
93		1.29	1.35	1.38	1.40				
92	1.12	1.26	1.31	1.33	1.35				
91	1.11	1.23	1.27	1.29	1.30				
90	1.10	1.20	1.23	1.24	1.25				
89	1.09	1.17	1.19	1.20	1.20				
88	1.07	1.14	1.15	1.16	1.16				
87	1.06	1.11	112	1.12	1.12				
86	1.04	1.08	1.08	1.08	1.08				
85	1.03	1.05	1.05	1.04	1.04				
84	1.01	1.02	1.01	1.01	1.00				
83	1.00	0.99	0.98	0.97	0.97				
82	0.97	0.96	0.95	0.94	0.93				
81	0.96	0.93	0.91	0.90	0.90				
80	0.93	0.90	0.88	0.87	0.86				
79	0.91	0.87	0.85	0.84	0.83				
78	0.89	0.84	0.82	0.80	0.80				
77	0.87	0.81	0.78	0.77	0.76				
76	0.84	0.78	0.75	0.74	0.73				
75	0.82	0.75	0.72	0.71	0.70				
74	0.79	0.72	0.69	0.68	0.67				
73	0.76	0.69	0.66	0.65	0.64				
72	0.74	0.66	0.63	0.62	0.61				
71	0.71	0.63	0.60	0.59	0.58				
70	0.68	0.60	0.57	0.56	0.55				
69	0.65	0.57	0.54	0.53	0.52				
68	0.62	0.54	0.51	0.50	0.49				
67	0.59	0.51	0.47	0.47	0.46				
66	0.56	0.48	0.45	0.44	0.44				

P _U or P _L percent Within Limits for Positive Values of	Upper Quality Index \mathbf{Q}_{U} or Lower Quality Index \mathbf{Q}_{L}								
Q_U or Q_L	n = 3	n = 4	n = 5	n = 6	n = 7				
65	0.52	0.45	0.43	0.41	0.41				
64	0.49	0.42	0.40	0.39	0.38				
63	0.46	0.39	0.37	0.36	0.35				
62	0.43	0.36	0.34	0.33	0.32				
61	0.39	0.33	0.31	0.30	0.30				
60	0.36	0.30	0.28	0.27	0.27				
59	0.32	0.27	0.25	0.25	0.24				
58	0.29	0.24	0.23	0.22	0.21				
57	0.25	0.21	0.20	0.19	0.19				
56	0.22	0.18	0.17	0.16	0.16				
55	0.18	0.15	0.14	0.13	0.13				
54	0.14	0.12	0.11	0.11	0.11				
53	0.11	0.09	0.08	0.08	0.08				
52	0.07	0.06	0.06	0.05	0.05				
51	0.04	0.03	0.03	0.03	0.03				
50	0.00	0.00	0.00	0.00	0.00				

- Lower Percent Area = 89%
- The Total Area, the Quality Level, is equal to:

$$QL = P_u + P_l - 100\%$$

= 100% + 89% - 100%

QL = 89%

Note that was the same area as we found with the 1000 samples!

Pay Factor Calculations

Finally, we use the Quality Level to determine <u>Pay Factors</u> for the contractor.

Table 113.1-2 in the Standard Specifications Book shows a Pay Factor of 1.03 for a QL = 89%.

Table 113.1-2 Pay Factors

Factor	n = 3	n = 4	n = 5	n = 6	n = 7
1.05	100	100	100	100	100
1.04	90	91	92	93	93
1.03	80	85	87	88	89
1.02	75	80	83	85	86
1.01	71	77	80	82	84
1.00	68	74	78	80	81
0.99	66	72	75	77	79
0.98	64	70	73	75	77
0.97	62	68		74	75
0.96	60	66	69	72	73
0.95	59	64	68	70	72
0.94	57	63	66	68	70
0.93	56	61	65	67	69
0.92	55	60	63	65	67
0.91	53	58	62	64	66
0.90	52	57	60	63	64
0.89	51	55	59	61	63
0.88	50	54	57	60	62
0.87	48	53		58	60
0.86	47	51	55	57	59
0.85	46	50	53	56	58
0.84	45	49	52	55	56
0.83	44	48	51	53	55
0.82	42	46	50	52	54
0.81	41	45	48	51	53
0.80	40	44	47	50	52
0.79	38	43	46	48	50
0.78	37	41	45	47	49
0.77	36	40	43	46	48
0.76	34	39	42	45	47

Maximum Pay Factor

- Base and Subbase 1.00
- > Treated Base 1.00
- Plant Mix Pavement 1.05
- Plant Mix Wearing Course
 1.05
- Seal Coat Aggregate 1.05
- > PCCP 1.00

Pay Factor Calculation (continued)

TERMS

- x an individual test value
- Σx the summation of test values
- > x the average of a series of test values
- N the number of test values
- s the standard deviation
- > SL_U the upper specification limit
- SL_L the lower specification limit
- $> Q_U$ the Upper Quality Index
- ➤ Q_L the Lower Quality Index
- $> P_{U}$ the percent of material within SL_U
- $> P_L$ the percent of material within SL_L
- QL Quality Level the total percent of material within specifications

Pay Factor Worksheet - #1

Aggregate Specification:	Crushed Bas	se Gra	ding W	_	Tes	t Value:	#4
Test Results: n	= 5						
Test Values:	53	50	60	46	48		
Average Value: x	51.4		St	andard D	eviation:	s =	5.46
			_			(σ _{n-1})	
Upper Speci	fication Limit,	, SL _U :	= 65				
Lower Spec	ification Limit	;, SL _L :	= 45	_			
Upper Quality Index, Q _U =	<u>SL</u> - x	_	65	- 51.4	_	2	.49
opper quality index, q ₀ -	s	-	5	.46			
Percent Material Within SL_U	P _U =	1	100	_	(From Tal	ble 113.1-	1)
(If SL _U is not specifie	d, P _U = 100)						
Lower Quality Index, Q _L =	x - SL	_	51.	4 - 45		1	.17
Lower Quanty muex, Q	S	-	5	.46	_		
Percent Material Within SLL	P _L =		89	_	(From Tal	ble 113.1-	1)
(If SL _L is not specified	l, P _L = 100)						
Quality Level = Percent Within	Specification	Linnite					
$QL = (P_{11} + P_{1}) - 100 =$	100	+	89	-100 =	89		
Pay Factor = PF =	1.03			_	(From Tal	blo 113 1	2)
	1.05		Minim	um Pay Fa	-		.00
Max Pay Factor=	1.00			\rightarrow			
Pay Adjustment Fac	or = PAF						
	= Min Pay I	Factor	- 1.00 =	1.00	-1.00 =	0	.00

Quality Level		able 113 by the St		eviation N	<i>l</i> lethod					
P _U or P _L percent Within Limits for Positive Values	Upper Q	Upper Quality Index Q _U or Lower Quality Index Q _L								
of Q _U or Q _L	n = 3	n = 4	n = 5	n = 6	n = 7					
100	1.16	1.50	1.79	2.03	2.23					
99		1.47	1.67	1.80	1.89					
98	1.15	1.44	1.60	1.70	1.76					
97		1.41	1.54	1.62	1.67					
96	1.14	1.38	1.49	1.55	1.59					
95		1.35	1.44	1.49	1.52					
94	1.13	1.32	1.39	1.43	1.46					
93		1.29	1.35	1.38	1.40					
92	1.12	1.26	1.31	1.33	1.35					
91	1.11	1.23	1.27	1.29	1.30					
90	1. 10	1.20	1.23	1.24	1.25					
89	1.09	1.17	1.19	1.20	1.20					
88	1.07	1.14	1.15	1.16	1.16					
87	1.06	1.11	L 1.12	1.12	1.12					
86	1.04	1.08	1.08	1.08	1.08					
85	1.03	1.05	1.05	1.04	1.04					
84	1.01	1.02	1.01	1.01	1.00					
83	1.00	0.99	0.98	0.97	0.97					
82	0.97	0.96	0.95	0.94	0.93					
81	0.96	0.93	0.91	0.90	0.90					
80	0.93	0.90	0.88	0.87	0.86					
79	0.91	0.87	0.85	0.84	0.83					
78	0.89	0.84	0.82	0.80	0.80					
77	0.87	0.81	0.78	0.77	0.76					
76	0.84	0.78	0.75	0.74	0.73					
75	0.82	0.75	0.72	0.71	0.70					
74	0.79	0.72	0.69	0.68	0.67					
73	0.76	0.69	0.66	0.65	0.64					
72	0.74	0.66	0.63	0.62	0.61					
71	0.71	0.63	0.60	0.59	0.58					
70	0.68	0.60	0.57	0.56	0.55					
69	0.65	0.57	0.54	0.53	0.52					
68	0.62	0.54	0.51	0.50	0.49					
67	0.59	0.51	0.47	0.47	0.46					
66	0.56	0.48	0.45	0.44	0.44					

P _U or P _L percent Within Limits for Positive Values of	Upper Quality Index \mathbf{Q}_{U} or Lower Quality Index \mathbf{Q}_{L}								
\mathbf{Q}_{U} or \mathbf{Q}_{L}	n = 3	n = 4	n = 5	n = 6	n = 7				
65	0.52	0.45	0.43	0.41	0.41				
64	0.49	0.42	0.40	0.39	0.38				
63	0.46	0.39	0.37	0.36	0.35				
62	0.43	0.36	0.34	0.33	0.32				
61	0.39	0.33	0.31	0.30	0.30				
60	0.36	0.30	0.28	0.27	0.27				
59	0.32	0.27	0.25	0.25	0.24				
58	0.29	0.24	0.23	0.22	0.21				
57	0.25	0.21	0.20	0.19	0.19				
56	0.22	0.18	0.17	0.16	0.16				
55	0.18	0.15	0.14	0.13	0.13				
54	0.14	0.12	0.11	0.11	0.11				
53	0.11	0.09	0.08	0.08	0.08				
52	0.07	0.06	0.06	0.05	0.05				
51	0.04	0.03	0.03	0.03	0.03				
50	0.00	0.00	0.00	0.00	0.00				

Table 113.1-2 Pay Factors

Factor	n = 3	n = 4	n = 5	n = 6	n = 7
1.05	100	100	100	100	100
1.04	90	91	92	93	93
1.03	80	85	87	88	89
1.02	75	80	83	85	86
1.01	71	77	80	82	84
1.00	68	74	78	80	81
0.99	66	72	75	77	79
0.98	64	70	73	75	77
0.97	62	68		74	75
0.96	60	66	69	72	73
0.95	59	64	68	70	72
0.94	57	63	66	68	70
0.93	56	61	65	67	69
0.92	55	60	63	65	67
0.91	53	58	62	64	66
0.90	52	57	60	63	64
0.89	51	55	59	61	63
0.88	50	54	57	60	62
0.87	48	53		58	60
0.86	47	51	55	57	59
0.85	46	50	53	56	58
0.84	45	49	52	55	56
0.83	44	48	51	53	55
0.82	42	46	50	52	54
0.81	41	45	48	51	53
0.80	40	44	47	50	52
0.79	38	43	46	48	50
0.78	37	41	45	47	49
0.77	36	40	43	46	48
0.76	34	39	42	45	47

Maximum Pay Factor

- Base and Subbase 1.00
- > Treated Base 1.00
- Plant Mix Pavement 1.05
- Plant Mix Wearing Course
 1.05
- Seal Coat Aggregate 1.05
- > PCCP 1.00

Pay Factor Worksheet - #2

Aggregate Specification:	Crushed Bas	e Gradin	ig W	_	Tes	t Value: #4
Test Results: n =	5					
Test Values:	40	45	53	57	62	
Average Value: x =			St	andard D	eviation:	s =
						(σ _{n-1})
Upper Specif	ication Limit,	SL _U =				
Lower Specif	ication Limit	, SL _L =		_		
	$SL_U - \overline{x}$					
Upper Quality Index, Q _U =	s	= -			- = -	
Percent Material Within SL _U	P _U =				(From Tal	ble 113.1-1)
(If SL _U is not specified	, P _U = 100)			_		
	x - SL					
Lower Quality Index, Q _L =	s	= -			- = -	
Percent Material Within SL	P, =				(From Tal	ble 113.1-1)
(If SL _L is not specified	, P _L = 100)			_		-
Quality Level = Percent Within S	pecification	Limits		-100 =		
$QL = (P_U + P_L) - 100 =$		· -		-100 -		
Pay Factor = PF =				\rightarrow		ble 113.1-2)
			Minimu	ım Pay Fa	actor = _	
Max Pay Factor=				-		
Pay Adjustment Facto	or = PAF					
	= Min Pay F	actor - 1	= 00.		-1.00 =	

Pay Factor Worksheet - #3

Additional Stipulations

- Lots consist of 3 to 7 samples but usually 5
- **Contractor samples Engineer directs**
- ≻Sample size ≥ 30 lbs
- >PF for lot = lowest PF for any sieve
- ➢ Does not apply to 97 100 or 95 100
- ≻ Minimum acceptable PF 0.75

- Reject material removed
- Obviously defective material rejected and removed
- > 2 Consecutive Lots < 1.00 PF Adjustments</p>
- Contractor may remove and replace to avoid penalty

Pay Factor Calculations

- >100 Tons of Plant Mix Aggregate
- >\$15.00 per Ton
- Minimum Payment Adjustment Factor PAF = +0.02
- Regular Payment = (100 Tons)(\$15.00/Ton) = \$1500
- >Bonus for Quality Aggregate = (+0.02)(\$1500) = \$30.00
- Total Payment = \$1530.00

Maximum Pay Factors

- Base and Subbase 1.00
- ≻Treated Base 1.00
- Plant Mix Pavement 1.05
- ➢ Plant Mix Wearing Course 1.05
- Seal Coat Aggregate 1.05
- > PCCP 1.00