

Start with Scales Scales are used in virtually all aggregate test procedures >WYDOT MTM 801 > Most specifications require a 0.1 percent accuracy level > Accuracy should be checked once a month and every time the scale or the lab trailer is moved. > Level the balance and check

For usage of 10,000 grams or less, the verification weights are: 100, 1000, 5000, and 10,000 grams

Scales (continued) For usage of 10,000 grams or more, the verification weights are: 5,000, 10,000, and 15,000 grams For both ranges, the verification weights are: 100, 1,000, 5,000, 10,000 and 15,000 grams Allowable tolerance is + or – 0.1% of the weight used If <u>any</u> recorded weight exceeds the allowable range, discontinue use of balance for recalibration or repair. Keep a signed copy of the balance sheet with the balance.

Aggregate Tests
>Gradation – WYDOT MTM 814.0 and 815.0
► AASHTO T 11 – Material finer than #200 by washing
► AASHTO T 27 – Sieve analysis of fine and coarse aggregate

AASHTO T 27 – Sieve Analysis

- Summary: A sample of dry aggregate is separated over a series of progressively smaller sieves to determine size distribution.
 - Used with AASHTO T 11 for total gradation
 - Used for fineness modulus

AASHTO T 27- Sieve Analysis (continued)
Significance: Total gradation influences water or asphalt demand workability, strength, void content, VMA, stability.

_	AASHTO T 27 (Coarse Aggregate Equipment)
	➢ Balance: required accuracy is 0.1% of sample mass
	Sieves: 1", ¾", ½", 3/8", and #4
	≻Oven: 230± 9°F - 110 ± 5°C
	≻Large mechanical shakers

AASHTO T 27 (Coarse Aggregate continued)
≻Check equipment (Always No. 1!)
>Dry sample to constant mass and record
Check sample size to be sure it meets minimum allowable weight (MTM 814)
≻Nest the sieves in the proper order
Section 3 - 16

	AASHTO T 27(Coarse Aggregate continued)
	Check the mass retained on each screen to determine if a screen was overloaded. If overloaded, rescreen the materials, half at a time
	 The mass in kg/m² of sieving surface shall not exceed the product of 2.5 * sieve opening in mm (next pages)
	Determine the percentage passing and retained on #4
	Split the -#4 to 300 g or greater.
1	

Maxi Mate	mum / rial Re	Allowataine	able (d on a	Quanti a Siev	ty of e, kg
	No	Nominal dimensions of Sieve			
Sieve					
Opening	203.2-	254-	304.8-	350 by	372 by
Size, mm	mm dia	mm dia	mm dia	350 mm	580 mm
125	С	С	С	С	67.4
100	С	С	С	30.6	53.9
90.0	с	С	15.1	27.6	48.5
75.0	С	8.6	12.6	23.0	40.5
63.0	С	7.2	10.6	19.3	34.0
50.0	3.6	5.7	8.4	15.3	27.0
37.5	2.7	4.3	6.3	11.5	20.2
25.0	1.8	2.9	4.2	7.7	13.5
19.0	1.4	2.2	3.2	5.8	10.2
12.5	0.89	1.4	2.1	3.8	6.7
9.50	0.67	1.1	1.6	2.9	5.1
4.75	0.33	0.54	0.8	1.5	2.6

Cia	
Sleve Size	2 5 x 25 4 mm= 63 5 kg/m2
1"	$A = 372.0 \text{ mm} (15") \times 580.0 \text{ mm} (23") = 372 \text{ mm} \times 580 \text{ mm} = 0.21576 \text{ m}$
	0.21576 m2 x 63.50 kg = 13.7 kg or 30.1 lb .
	<u> </u>
	2.5 x 19.0 mm= 47.50 kg/m2
3/4"	A = 0.21576 m2
	0.21576 m2 x 47.50 kg = 10.2 kg or 22.5 lb
	2.5 x 12.5 mm= 31.25 kg/m2
1/2"	A = 0.21576 m2
	0.21576 m2 x 31.25 kg = 6.7 kg or 14.8 lb
	0.5.0.0.5.000
2/0=	2.5 X 9.5 mm= 23.75 kg/m2
3/0	A = 0.21576 m2 0.21576 m2 x 23.75 kg = 5.1 kg or 11.3 lb
	0.210/0 Hz x 20.70 kg = 0.1 kg 01 11.0 lb
	2.5 x 4.75 mm= 11.88 kg/m2
#4	A = 0.21576 m2
	0.21576 m2 x 11.88 kg = 2.6 kg or 5.64 lb

AASHTO T 11 Material Finer than #200

- Summary: A sample is washed over a #200 sieve and the loss in mass is determined.
- Significance: Minus #200 fraction influences water demand, flowability and workability, asphalt demand, VMA, stiffness, stability.

3 - 21

AASHTO T 11 Equipment
≻Balance: required accuracy is 0.1% of sample mass
≻Sieves: one #200 and a #8 on top
➤Container: sufficient to contain sample and water
≻Oven: 230 ± 9°F - 110 ± 5°C

AASHTO T 11 (continued)

- Check equipment
- Obtain fine aggregate sample (300 g minimum)
- Dry the test sample to a constant weight
- Place the sample in a wash pan and cover with about 2" of water

AASHTO T 11 (continued)

- Agitate sample to separate fine particles. Spoon or similar tool OK.
 Spray nozzle OK if no material splashed on sides. (AASHTO T 11 2000)
- Pour wash water containing suspended fines over the nested #8 and #200 sieves.
 - The nesting sieves reduce splash and minimize loss of sample

AASHTO T 11 (continued)

> Avoid decantation of coarse particles

- > Add water, agitate and decant (do not use any tools, hands, etc. on the #200 screen)
- Repeat until water exiting wash pan and below #200 screen is clear
 - Place a white evaporating dish below the water stream
- Return all material on #200 sieve to the wash sample by flushing

AASHTO T 11 (continued)

- Dry the wash sample to constant mass in an oven at 230 ± 9°F
- Calculate the amount of material passing the #200 sieve by washing
 - ► Washed material passing #200
 - = dry weight before wash dry weight after wash

 AASHTO T 27 Fine Aggregate Equipment
Balance: required accuracy is 0.1% of the sample mass
≻Sieves: #4 and smaller
≻Small mechanical sieve shaker
≻Oven
Section 3 - 28

AASHTO T 27
(Fine Aggregate Continued)
Pour dried sample from the wash sieve into sieves using brush to remove material from pan
➢ If there is more than 200 grams on an 8" sieve, add another sieve or hand sieve smaller amounts
≻Turn the mechanical sieve shaker on for a sufficient period (usually 5-10 minutes)
Service 2 27

AASHTO T 2 Fine Aggregate Eq	27 Juipm	en	t)				
≻Hand check sieve with la retained for sufficient sha	rgest a ake tin	am ne	ou	nt			
Hand tap 25 times at 6		W E COARS	E AGG.	(lbs or k	INE AG	2)	
locations in 1 minute.	Sample After Wash		* (8		_	.0	۲
	Pass No. 200 (75µm)						t
⊾lf more than 0.5%	Pass No. 200 [75 pm], Pan						Ļ
	Total Pass Ro. 200 [75,40]	-	TA RET -		S RET +	S.RET +	6
passes, resieve.	SIEVE SIZE	WT RET	K X 500 E	WT RET	P = 100 F	<u>R x1</u> 100	
	1 12* (37.5 mm)					-	
	1*(25mm)						1
	314° [19 mm]						Ľ
Determine the surger of	10" (12.5 mm)	1.1					Ł
Puetermine the mass of	38" (8.8 mm)	20	_				Ł
	No. 4 (0.55 mm)			-	_		Ł
material retained on each	No. 16 (5.58 mm)		_		-	-	
	No. 30 (600 µm)						Ľ
material retained on each							Ľ
sieve and in the nan and	No. 40 425 (µm)	_					
sieve and in the pan and	No. 42 425 (µm) No. 50 (300 µm)						
sieve and in the pan and	No. 40 425 (pm) No. 50 (300 pm) No. 100 (100 pm)						
ve and in the pan and ord.	No. 40 425 (µm) No. 50 (300 µm) No. 100 (150 µm) No. 200 (15 µm) Pass No. 200 (15 µm)		_			_	

Maximum Allow Material on	able Quant a Sieve (g)	ity of	
8" Sie	eve	Sieve Opening Size, mm	203.2- mm dia
		125	С
Sieve Size	Grams	100	C
2"	3600	90.0	C
1 5"	2700	75.0	C
1.5	2700	63.0	C
1.0"	1800	50.0	3.6
3/,"	1400	37.5	2.7
1/ 11	1400	25.0	1.8
1/2″	890	19.0	1.4
3/8"	670	12.5	0.89
		9.50	0.67
#4	330	4.75	0.33
<#4	200	(Page 3	i-19)
		Section	3 - 34

Aggregate Splitting

>AASHTO T 248 (WYDOT MTM 805.0) – Aggregate Splitting

Section 3 - 35

Summary: the reduction of large samples of aggregate to the appropriate size for testing.

Aggregate Splitting (continued) Significance: it is important that the smaller samples are most likely to be a representation of the larger samples and thus of the total supply. Throat Opening 50% larger than Largest Particle. (MTM) Fine aggregate must be drier than 	
 Significance: it is important that the smaller samples are most likely to be a representation of the larger samples and thus of the total supply. Throat Opening 50% larger than Largest Particle. (MTM) Fine aggregate must be drier than 	
➢ Throat Opening 50% larger than Largest Particle. (MTM)➢ Fine aggregate must be drier than	5
➢ Fine aggregate must be drier than	
saturated surface dry.	
Pour into hopper and distribute evenly without using hands.	/

Liquid Limit
➢ AASHTO T 89 (WYDOT MTM 812.0) – Determining the liquid limit of soils prepared in accordance with AASHTO T 87 (WYDOT MTM 802.0)
Summary: A sample of minus #40 (425µm) material is tested in a Liquid Limit device at increasing moisture contents until the material flows. The moisture content at that point is the liquid limit.

Significance: Liquid Limit is an indicator of clay content which affects compressibility, permeability, strength, stability, moisture susceptibility and density.

Liquid Limit

Turn the crank at 2 rps, dropping the cup
 Count drops until groove closes for ½"
 The test is acceptable between 16 and 36 shocks

	Correcti	on Chart	
Number of Blows	Correction Factor	Number of Blows	Correction Factor
16	0.947	27	1.009
17	0.954	28	1.014
18	0.961	29	1.018
19	0.967	30	1.022
20	0.973	31	1.026
21	0.979	32	1.030
22	0.985	33	1.034
23	0.990	34	1.038
24	0.995	35	1.042
25	1.000	36	1.045
26	1.005		

				Or	ne F	Poin	nt Lie	quid L	.imit		
	A	Per Co bet	rfo un twe	rm a t be een	a Oi twe 30 a	ne F en 3 and	Point 36 ai 20.	Test v nd 16,	with a prefe	Blov rably	N Y
	A	Ob the Re	otai e tv co	n w vo h rd D	ater alvo ata	r col es n on	nten neet bott	t samp om of	ole wr T-166	here She	et
		Ob the Re	otai e tv co	n w vo h rd D	ater alvo ata	r co es n on	nten neet bott	t samp om of	Die wr T-166	nere She	et
1		Ob the Re	otai e tv co	n w vo h rd D	ater alvo ata	on	nten neet bott	t samp om of	T-166		et
FRACTL		Ob the Re	otai e tv co	n w vo h rd D	ater alvo ata	on	nten neet bott	t samp om of	T-166		et
FRACTU FLAT &	TOTAL IRED FACE	Ob the Re	otai e tv co	n w vo h rd D	ater alvo ata	on	nten neet bott	t samp om of			et
FRACTL FLAT & FINEN	TOTAL RED FACE ELONGATE		otai e tv co soome soome	n w vo h rd D	ater alvo ata	on	nten neet bott	t samp om of			et
FRACTU FLAT & FINEN BLOWS	TOTAL IRED FACE ELONGATH IESS MO			n w vo h rd D	ater alvo ata	on	bott	t samp om of	T-166		PLASTIC INDE
FRACTL FLAT & FINEN BLOWS	TOTAL IRED FACE ELONGATE IESS MOI S = 22			n w vo h rd D	ater alvo ata 100 or more t. 602.0: 100 or more t. 602.0: 100 or more 21.65	on Noster = A-EB = 0.00	nten neet bott	t samp om of %MO (00/E)x80 (28.37%	T-166 WET WT (ORY WT) WET - DI URES-(MOSTURE) C STORE 1 CORT. Factor (27.9%)	bit or kg) bit or kg)	PLASTIC INDE (P) HL - PL 12%

Plastic Limit

- AASHTO T 90 (WYDOT MTM 813.0) Determining the Plastic Limit and Plastic Index of Soils
- Summary: A sample of minus #40 material is rolled to 1/8" diameter at decreasing moisture contents until it crumbles. The moisture content at that point is the Plastic Limit; the difference between LL and PL is the Pl.

Section 3 - 53

➢ Significance: Same as Liquid Limit

Plastic Limit > Material passing a #40 sieve (0.0165") > Add moisture until plastic (while preparing the LL sample). > Test is performed after the LL test. > Roll into 'worms' 1/8" in diameter > Repeat, removing moisture, until 'worms' break up at or before reaching 1/8" diameter, approximately 15-20 g. > Weigh, dry, reweigh (Record at Bottom of T-166 sheet) > Calculate moisture content > This is the 'Plastic Limit'

Compaction Tests

- AASHTO T 99 "Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5-kg (5.5 lb) Rammer and a 305mm (12-in.) Drop"
- > AASHTO T 180 Moisture Density of soils using 25 blows of a 10 lb rammer at an 18 in. drop for each of 5 lifts
- AASHTO T191 Density of soil in-place by the sand cone method

Section 3 - 56

> Nuclear Moisture-Density

AASHTO T 99 (Compaction)

- AASHTO T 99 Moisture Density; Standard Proctor
- Significance: Used for specification compliance for soils and CTB. Used with AASHTO T 191.

AASHTO T 99 (Compaction continued) > Summary: A series of samples (3-5) are compacted in a 4 in diameter mold at varying moisture contents. The results are used to plot a dry unit weight vs. moisture content curve from which the maximum dry weight and optimum moisture content are determined.

Moisture/Density Testing
 Soil compacted in mold with hammer Weigh, determine moisture content Perform at several moisture contents Calculate moisture content and dry density Plot Moisture/Density Curve Dry Density v Moisture Content Peak of curve gives: MDD: Maximum Dry Density OMC: Optimum Moisture Content

Section3 - 59

AASHTO T 180 (Compaction)

- >AASHTO T 180 Moisture Density; modified proctor.
- Summary: Similar to AASHTO T 99 with greater compactive effort.
- Significance: used for specification compliance for untreated bases. Used with AASHTO T 191. Results in higher dry weight and lower optimum moisture content than AASHTO T 99.

21

AASHTO T 191 (compaction)
 AASHTO T 191 – Density of soils in-place by sand cone method (MTM 212.0)
Summary: A sample of compacted material is removed and weighed. The resulting hole is filled with calibrated sand of a known unit weight. The weight of material removed vs. sand to fill the hole is compared to determine in-place density. In-place moisture is also determined.
 Significance: Results are used with AASHTO T 99 or AASHTO T 180 to determine relative density and specification compliance.

Section 3 - 65

AASHTO T 190 (continued) ≻Results: ►R Value ► Moisture Sensitivity

Significance: R-Value is used in surfacing thickness design; affects total surfacing thickness and special handling requirements.

ASTM D 5821 (Coarse Aggregate Angularity)

- ASTM D 5821 (MTM 817.0) Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate
- Summary: The percentage of aggregate larger than #4 with one or more fractured faces is determined
- Significance: Internal friction of coarse aggregate affect the workability, consolidation, strength, stability, and VMA of asphalt mixes. More fractured faces will result in a higher internal friction.

ASTM D 5821 (Coarse Aggregate Angularity Continued)

- > Typically only performed during the aggregate production phase.
 - Weight of Sample is based on Nominal Maximum Particle Size.
 - Determine whether each particle has no fractured faces, one fractured face, two or more fractured faces, and place each into separate piles.
 - A fractured face is whenever one-quarter or more of the maximum cross section area, when viewed normal to that face, is fractured with sharp and well-defined edges (excluding small nicks).
- Not a strong correlation between results & HPM resistance to rutting, but a simple replacement test does not exist at this time.

(Fir	AASHTO T 304 ne Aggregate Ang	4 jularity)
≻AASHT Test Me Conten 824.0)	O T 304 (Method A athod for Uncompa t of Fine Aggregat	A) – Standard acted Void e (MTM
≻Summa sample	ry: The void cont of #8 to #100 fine ined as a percent of	ent of a loose aggregate is of the original
aeterm mass.	Individual Size Fraction	Mass, g
determi mass.	Individual Size Fraction No. 8 to No. 16 No. 16 to No. 30 No. 30 to No. 50 No. 50 to No. 100	<u>Mass. g</u> 44 57 72 <u>17</u> 190 g

 Significance: Void content is influenced by particle shape, texture and gradation. It can be an indicator of: water demand in concrete; flowability or workability; influence of fine aggregate on VMA; and 	AASHTO T 304
Significance: Void content is influenced by particle shape, texture and gradation. It can be an indicator of: water demand in concrete; flowability or workability; influence of fine aggregate on VMA; and	 (Fine Aggregate Angulanty Continued)
bituminous concrete stability	Significance: Void content is influenced by particle shape, texture and gradation. It can be an indicator of: water demand in concrete; flowability or workability; influence of fine aggregate on VMA; and bituminous concrete stability

Section3 - 71

 AASHTO T 304 (Fine Aggregate Angularity Continued)
Typically only performed during the aggregate production phase.
Not a strong correlation between results and HPM resistance to rutting but a simple replacement test does not exist at this time.
Section3 - 72

AASHTO T 176 (Clay Content)
➢ AASHTO T 176: Plastic Fines in Graded
Aggregates and Soils by Use of the Sand
Equivalent Test (MTM 836.0)
>Summary: A sample of fine aggregate is
mixed with a flocculating solution
(calcium chloride) in a graduated
cylinder. The cylinder height of
suspended clay and sedimented sand is
measured.
Significance: Clay content would affect
the aggregate surface area and the
asphalt content

- AASHTO T 96 Resistance to Degradation by Abrasion and Impact in the Los Angeles Machine (MTM 818.0) 2004
- Summary: A sample of coarse aggregate is placed in a steel drum along with a certain number of steel spheres. The drum is rotated 500 times and the sample is then washed over a #12 sieve. The difference in mass between initial and final mass is the % loss
- Significance: Abrasion loss is related to aggregate quality or durability.

AASHTO T 104 (Soundness)

- AASHTO T 104: Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate
- Summary: An aggregate sample is exposed to repeated immersions in saturated solutions of sodium or magnesium sulfate followed by oven drying.
- Significance: The percent loss over various sieves is related to the freeze/thaw resistance of the aggregate.

AASHTO T 112 (Deleterious Material)
 AASHTO T 112: Clay Lumps and Friable Particles in Aggregate
Summary: Wet sieving aggregate size fractions over specified sieves. The percentage of mass lost is reported as the percentage of clay lumps.
Significance: The percent to clay lumps will affect the optimum asphalt content and the performance of the asphalt mix.

TEST	DESIGNATION
*Coarse and *Fine Gradation	AASHTO T 11 & T 27
Fine Aggregate Angularity	AASHTO T 304
*Coarse Aggregate Angularity	ASTM D 5821
Flat & Elongated Pieces	ASTM D 4791
*Liquid Limit	AASHTO T 89
*Plastic Limit	AASHTO T 90
Durability	AASHTO T 96
Compaction	AASHTO T 99, T 180, & T 19
Strength (R-Value)	AASHTO T 190
*Splitting	AASHTO T 248
Clay Content	AASHTO T 176
Soundness	AASHTO T 104
Deleterious Material	AASHTO T 112

L

Homework!!!						
≻Using the calculato	e shortcu r, find:	t buttoi	ns on y	our		
▶ The Av	erage and	d Stanc	lard De	viation		
+22	and	48	and	3.6		
◆ 24		-42		4.8		
+21		53		5.2		
• 17		-47		7.3		
+23		49		3.9		
≻ x = 21.4		12.2		4.96		
≻ S = 2.70		51.82		1.460		
				Section3 -		

