

Correlation of Testing Technicians for

 Core Density $\qquad$$\qquad$
The actual calculations of the correlation will not be on the exam but you would need \qquad to have an appreciation to the process. In addition, you would need to be able to \qquad answer general questions about the process.
\qquad

	Correlation of Testing Technicians for Core Densities
General - Compares the hot plant mix pavement densities determined by WYDOT field laboratory and Contractor's laboratory. - The paired t-test is used - If difference is significance, then the dispute resolution procedure will start	

Correlations of Testing Technicians for Core Densities (continued) \qquad
> Procedure

- Obtain 14 cores
- Cores are collected in pairs
- Pairs are taken within 2 ft of each other
- Each pair is split up
- 7 cores for WYDOT and 7 cores for contractor
- Test samples
-WYDOT MTM 423.0
- Report densities to the nearest 0.1 pcf

	Procedure (continued)
	Determine densities to the nearest 0.1 pcf $>$ Perform the paired t-test $>$ Calculate the difference between densities $>$ Determine the S.D. of the differences $>$ Eliminate up to one outlier based on 2 S.D. (use calculated S.D.) S Range $=0.5$ to 2.0 pcf $>$ If $\mathrm{T}<3.707$; No significant difference; for n=7 $>$ If T> 4.032; Significant difference $>$ For $\mathrm{n}=6$
	Section 11-5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cost Analysis	
> Three Questions	
- Mix cost per ton - \$/ton	
- Mix cost per cubic yard - \$/yd ${ }^{3}$	
- Mix cost per square yard - \$/yd ${ }^{2}$	
	Sction 1-8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cost Analysis Example			
Material	$\begin{gathered} \% \text { of } \\ \text { Total } \\ \text { Mi } \end{gathered}$	Cost(S)/Ton	Solution to $\underset{(\text { Mix }}{\text { (\$/ton) }}$ Cost per Ton
Aggregate \#1	25	4.00	$25 \% \times 4.00$ or $0.25 \times 4.00=1.00$
Aggregate \#2	35	6.00	$35 \% \times 6.00$ or $0.35 \times 6.00=2.10$
Aggregate \#3	35	. 00	$35 \% \times 2.00$ or $0.35 \times 2.00=0.70$
Asphalt	5	150.00	$5 \% \times 150 \circ 0.05 \times 150=\underline{7.50}$
Density $=156 \mathrm{lb} / \mathrm{ft}^{3}$ Thickness 4 in .$\begin{aligned} & \frac{\$}{y d^{3}}=\frac{\$ 11.30}{t o n} x \frac{156 \mathrm{lb}}{f t^{3}} \times \frac{1 \mathrm{ton}}{2000 \mathrm{lb}} \times \frac{27 \mathrm{ft3}}{y d^{3}}=\$ 23.80 / y d^{3} \\ & \frac{\$}{y d^{2}}=\frac{\$ 23.80}{y d^{3}} \times 4 \text { in } x \frac{1 y d}{36 \mathrm{in}}=\$ 2.64 / y d^{2} \end{aligned}$			

	Homework
Work the following problems tonight:	
15-4 Cost Analysis 15-5 Cost Analysis Change all pcf to S Range 8 to $32 \mathrm{~kg} / \mathrm{kg} / \mathrm{m}^{3}$ tric problem Section 16 - Problems from material covered earlier today including tank problem and 16-5	

