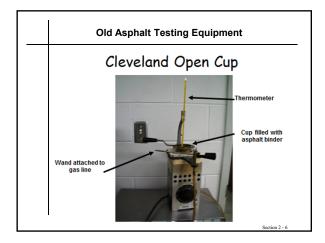
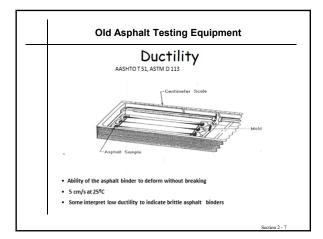
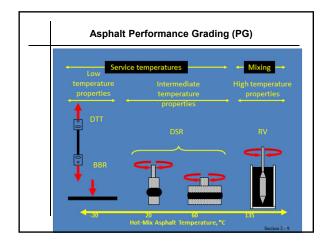
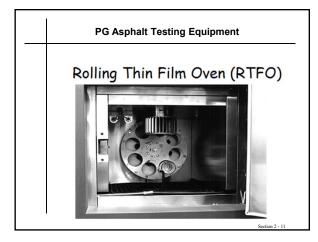

 Grading of Asphalt Binder	
≻Viscosity of original	
Viscosity of aged asphalt	
Penetration of original	
SHRP performance grading	
	Section 2 - 2

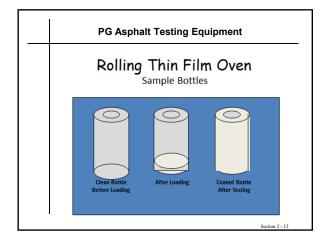




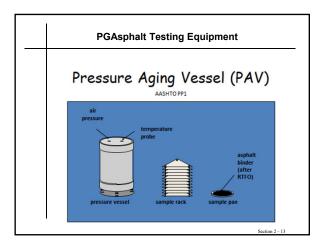


Performance Grading (PG) Asphalt Testing Equipment										
Equipment	Purpose	Performance Property								
Rotational Viscometer	Handling pumping	Flow								
Rolling Thin Film Oven Test Pressure Aging Vessel	Simulate aging through Hot Plant Simulate long term aging	n/a								
Dynamic Shear Rheometer	Measure properties @ high & intermediate temperature	Permanent deformation & fatigue cracking								
Bending Beam Rheometer Direct Tension Tester	Measure properties @ low temperature	Low temperature cracking								

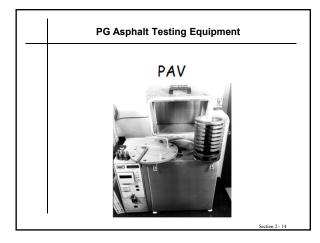


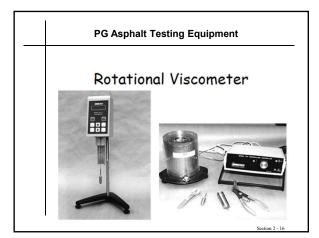


PG Asphalt	Tests	(Aging)
------------	-------	---------

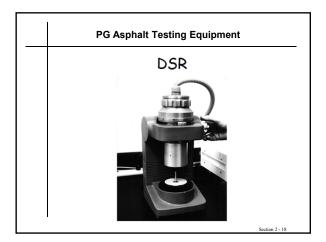

- Rolling Thin Film Oven (RTFO): It simulates the condition of asphalt immediately after construction
- Pressure Aging Vessel (PAV): It simulates the aging of asphalt after years of being in service. PAV samples must be RTFO aged first

Section 2 - 10

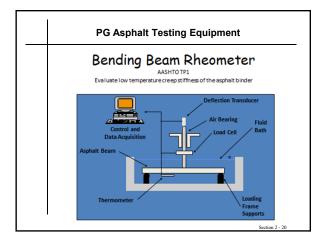


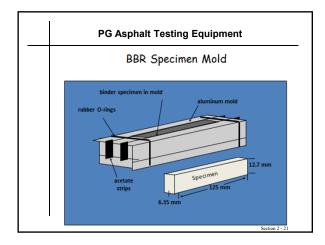


PG Asphalt Tests (Rotational Viscometer)


- RV measures the viscosity of asphalt or tank asphalt at 135°C
- RV is used to determine if the asphalt is fluid enough to handle
- $\succ \mathsf{RV}$ is performed on unaged asphalt only

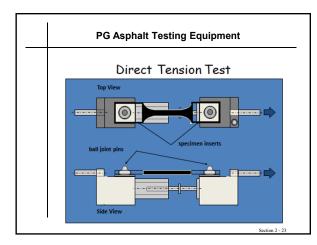
ction 2 - 15

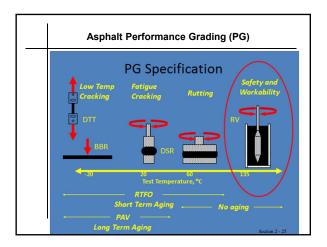



 PG Asphalt Tests (Dynamic Shear Rheometer)
 DSR is performed to check rutting and fatigue cracking DSR is used to characterize the viscous
and elastic behavior of asphalt DSR measures the complex shear modulus (G*) and phase angle (delta)
DSR is performed on original, RTFO aged binder, and PAV aged binder
Section 2 - 17



	PG Asphalt Tests (Bending Beam Rheometer)	-
	BR is performed to check low mperature cracking	
	3R measures stiffness at very low mperatures	
a te	BR measures asphalt deflection under constant load at a constant mperature. Parameters determined are iffness (s) and slope (m)	
≻B	BR is performed on PAV aged asphalt	
	Section 2 - 19	





 PG Asphalt Tests (Direct Tension Tester)
DTT is performed to check low temperature cracking
≻DTT supplements the BBR
DTT is not used in specification compliance
DTT is performed on PAV aged asphalt
Section 2 - 22

Asphalt Performance Grading (PG)
The main objective of PG is to improve field performance by limiting the potential of asphalt to contribute toward rutting, fatigue cracking, and low temperature cracking
Physical properties are constant but the testing temperatures are different
Section 2 - 24

Asphalt Performance Grading (PG)

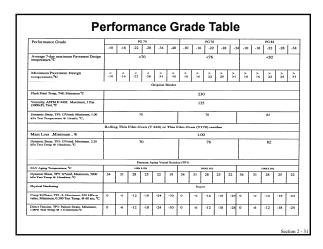
- The required PG grading for a specific location can be determined based on high and low pavement temperature
- >High pavement temperature is calculated at a .8" (20 mm) depth based on sevenday average high air temperature and the geographic latitude of the project

on 2 - 26

Section 2 - 27

Low pavement surface temperature is determined based on the one-day minimum air temperature

l	Asphalt Performance Grading (PG)
	The reliability concept is used to determine a degree of design risk to high and low temperatures
	Reliability levels range from 50 to 98 percent
	Current SHRP recommendations are to use 98% for the high traffic end and 50% for the low traffic end
)	Air temperatures are available for thousands of weather stations nationwide


Asphalt	Performance	Grading (PG)
---------	-------------	--------------

- > Seven grades are available based on high temperature (46, 52, 58, 64, 70, 76, and 82°C)
- >Up to seven grades are available based on low pavement temperature [-10, -16, -22, -28, -34, -40, and -46°C]
- ≻Examples: PG 52-22, PG 64-28
- Not all low temperatures are available with some high temperatures
- Deeper pavement layers may have lower grades

Pe	rfoi	ma	nce	e Gi	rade	e Ta	able	;				
Performance Grade		PG 46		1	PG 52							
	-34	-40	-46	-10	-16	-22	-28	-34	-40	-4		
Average 7.day maximum Pavement Design temperature,ºC		~46					~52					
Minimum Pavement Design temperature, ⁹ C	>-34	>-40	>-46	>-10	>-16	>-22	>-28	>-34	>-40	>-4		
			Origina	l Binder								
Plash Point Temp, 148: Minimum *C					2	30						
Viscosity, ASTM D 4402: Maximum, 3 Pas (3000eP), Test, "C				135								
Dynamic Blow, TP3: G*/sin6, Minimum, 1.00 kPa Test Temperature @ 10rad/s, ⁶ C,	46			52								
k	folline Thi	n Film Ovr	n (T 240)	or Thin File	n Own (T	179) Reside	**					
Mass Loss. maximum . %					1.	00						
Dynamic Shear. TP5: G*xinő. Maximum, 2.20 kPa Test Temp @ 10mal/sev. °C,		46		52								
		Pressua	ne Aging Ve	usel Reside	н (РРІ)							
PAY Aging Temperature, ⁶ C		90					90					
Dynamic Shear, TPS: G*sinő, Maximum, 5000 kira Tess Temp @ 10md/sec, ⁶ C	10	7	4	25	22	19	16	13	10	. 7		
			Re	port								
Creep Stiffness. TP1: S. Maximum. 300 MPa m-value, Minimum, 0.300 Test Temp, & 60 see, %	-24	-30	-36	0	-6	-12	-18	-24	-30	-3		
Direct Tension, TP3: Failure Strain, Minimum, 1.00% Test Temp @ 1.0 mm/min.ºC	-24	-30	-36	0	-6	-12	-18	-24	-30	-3		

Pe	rfo	rm	and	ce (Gra	de	Tal	ole			
Performance Grade			PG 58					PC	64		
	-16	-22	-28	-34	-40	-10	-10	-22	-28	-34	-4
Average 7-day maximum Pavement Design temperature,*C			<58					<	64		
Minimum Pavement Design temperature,"C	>16	>22	>28	>34	>40	>10	>16	>22	>28	>34	~
			Or	iginal Bir	nder		-				
Plash Point Temp, T48: Minimum "C						230					~
Viscovity, ASTM D 4402: Maximum. 3 Pas (3000cP), Test, ⁸ C						135					
Dynamic Shear, TP5: G*/sin&, Minimum, 1.00 KP3 Test Temperature @ 10rad/s, %C,		58					64				
	Rollin	e Thin Film	n Oven (T	240) or Th	in Film Ove	n (T 179)	Residue				
Mass Loss, maximum . %						1.00					
Dynamic Shear, TPS: G*sinő, Maximum, 2.20 kPa Test Temp @ 10rad/sec, °C,		58 64									
		,	Sector Age	ng Vessel I	Recidue (PF	95					
PAV Aging Temperature, 9C			100					1	00		
Dynamic Shear, TPS: O*sino, Maximum, 4000 kPa Test Temp # 10rad/sec, %C	25	22	19	16	13	31	28	25	22	19	1
Physical Hardening				Report							
Creep Stiffneas, TP1: 5, Maximum, 300 MPa m-value, Minimum, 0.300 Test Temp, @ 60 sec, "C	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	4
Direct Tension, TP3: Failure Strain, Minimum, 1 00%. Test Temp @ 1.0 mm/min, ⁶ C	-6	-12	-18	-24	-30	0	-0	-12	-18	-24	-1

ST	Station	Latitude	Min 50%		tual ibility	Min 98%	Actual Reliability	
			Grade	High	Low	Grade	High	Lov
FL	Miami WSCOMO AP	25.80	PG 58-10	99	99.9	PG 58-10	99	99.
WY	Cheyenne WSFO AP	41.15	PG 52-22	68	55	PG 58-28	99.9	98.
тх	Houston FAA AP	29.65	PG 64-10	99.9	99.3	PG 64-10	99.99	99.:
NY	New York Inter AP	40.65	PG 52-16	61	97.1	PG 58-16	99.9	97.
со	Denver WSFO AP	39.77	PG 58-22	99.9	78	PG 58-28	99.9	99
CA	Los Angles WSO AP	33.93	PG 52-10	66	99.9	PG 58-10	99.9	99.9

As	phalt Performance Grading (PG)
	eyenne, Wyoming PG 52-22 @ 50 cent reliability
	eyenne, Wyoming PG 58-28 @ 98 cent reliability
	mi Florida PG 58-10 @ 50 percent ability
	mi Florida PG 58-10 @ 98 percent ability
det	DOT uses LTPP-Bind for ermination of appropriate grade for particular layer.

Example: frontier PG 64-22												
Performance Grade	-16	-22	PG 64	-34	-40		-10	-16	PG 70	-28	-34	340
Original binder												-
Flash Point Temp, T48: Minimum, degrees C												
Rotational Viscosity: Maximum, 3 Pas (3000cP). Test Temp. 135 degrees C		[0.701									
Dynamic Shear: G*sin_, Minimum, 1.00 kPa			64						70			
Test Temp @ 10 rad/s, degrees C		[1.296 kPa				_		0.731 kPa			
RTFO Residue Percent Change, 1.00 Max Loss		[0.203									
Dynamic Shear: G*sin_, Minimum 2.20 kPa Test Temp @ 10 rad/s, degrees C			64 2.832 kPa				_		70			
PAV Aging 20 hours @ 2.07 Mpa			100						100 / (11	0)		
Dynamic Shear, TP5: G*sin_, Maximum,	28	25	22	19	16		34	31	28	25	22	1
5000 kPa Test Temp @ 10 rad/sec, degrees C			4076	5316	6594							
Creep Stiffness: S, Maximum, 300 Mpa stiffnes	-6	-12	-18	-24	-30		0	-6	-12	-18	-24	-31
Test Temp, @ 60 sec, degrees C m_value, Min 0.300 m_value		112 0.325	218.3 0.281	436.8 0.255		E						
Physical Harding 24 Hours Conditioning												
Direct Tension: Failure Strain, Minimum, 100%	-6	-12	-18	-24	-30		0	-6	-12	-18	-24	-30
Test Temp @ 1.0 mm/min, degrees C			1	1								

٦

Asphalt Performance Grading (Example)

- ≻ Frontier PG 64-22
- ➤ Tested at the Materials office: PG 64-22
- > Is it good for Cheyenne at 50% reliability?
- \succ Is it good for Cheyenne at 98% reliability?

Section 2 - 35

PG As	sphalt Gra	ide Adjust	ment
		Traffic speed	
ESALs (million)	>70Km/h	20-70 Km/h	<20 Km/h
<0.3	-	-	-
0.3 to <3	-	1	2
3 to <10	-	1	2
10 to <30	-	1	2
>= 30	1	1	2
		1 Cm/h = 12.5 M	_

Performance Grading (Example)
Assuming a weigh station will be built near Cheyenne, can you use the Frontier PG64-22 @ 50% reliability?
≻How about 98% reliability?

I

Changing Grade of Binder
 ➤ The grade of asphalt will be specified.
The contractor may use a different grade according with the following (WYDOT 401.2.1)
 The upper temperature may be increased.
 The lower temperature may be decreased.
 The DOT should be notified in writing of any changes before mix production begins.
 Repeated changing of grades will not be allowed.
Section 2 - 38