

Gradation > Maximum density line > Superpave Gradation Limits

Gradation Requirements, Marshall and Superpave Mixes

Table 803.5.5-1

Sieve	% Passing, Nominal Maximum Size				
	1 in	3/4 in	1/2 in	3/8 in	
1 1/4 in	100	-	-	-	
1 in	90-100	100	-	-	
3/4 in	65-90	90-100	100	-	
1/2 in	50-85	55-90	90-100	100	
3/8 in	40-75	45-85	55-90	90-100	
No. 4	30-60	30-65	35-70	45-85	
No. 8	20-45	20-50	20-55	30-65	
No. 30	5-25	5-30	5-35	10-40	
No. 200	2-7	2-7	2-7	2-7	

Aggregate Properties, Flexible Pavements .

Table 803.5.5-2

Property	Aggregate Type				
Troperty	Agg I	Agg II	Agg III	Agg IV	Agg V
LA Abrasion maximum loss, %	35	40	40	40	40
Flat and Elongated (1 to 5 ratio) maximum, %	10	10	10	10	-
Sand Equivalent Minimum (2), %	45	45	45	40	40
Fractured Faces minimum (1), %	95/90	95/90	85/80	75/-	55/-
Fine Aggregate Angularity minimum (2), %	45	45	45	40	40
Plastic Index (2)	NP	NP	NP	NP	NP
Soundness (MgSO4) Maximum loss, %	18	18	18	18	18

- (1) "95/90" denotes that 95 percent of the coarse aggregate has one or more fractured faces and 90 percent has two or more fractured faces.

 (2) Based on the minus No. 4 fraction of the composite blend.

Superpave

Equipment

- > Superpave Gyratory Compactor (SGC)
 - ► 600 kPa compaction pressure
 - ▶ 6" sample
 - ► The base rotates @ 30 rotations per minute
 - ► Compaction (internal) angle 1.25°

The Gyratory Compactor

Superpave

Equipment

- ▶ Ovens
- ► Mechanical Mixer
- ▶ Pans
- ▶ Thermometer
- ▶ Balances

Section 6 - 8

Superpave

Mix Design (Design Aggregate Structure)

- > Establish trial blends and compare them to specifications.
- > Select three trial blends satisfying specifications.

- ➤ Perform a preliminary evaluation of the blended aggregate properties
 - ▶ Four consensus properties
 - ► Bulk and apparent specific gravities of aggregate
 - ▶ Any source aggregate properties

Section 6 - 10

Superpave

Mix Design
(Design Aggregate Structure)
(continued)

- > Prepare a minimum of two specimens for each trial blend.
- > Compact specimens in the SGC to Ndes.

Section 6 - 1

Superpave

Number of Gyrations

- N_{des}: A function of traffic and traffic level.
- N_{ini}: To estimate the compactability of the mixture.
- > N_{max}: To estimate the maximum compaction under traffic.

Log N_{max} = 1.10 Log N_{des}

 $Log N_{ini} = 0.45 Log N_{des}$

	Superpave					
	Gyratory Compactive Effort (Continued)					
	Class	$N_{\rm ini}$	N_{des}	N_{max}		
	III-S	6	50	75		
	II-S	7	75	115		
	I-S	8	100	160		
l				Contract 12		

Mix Design (Design Aggregate Structure) (Continued)

- ${\ensuremath{\succ}}$ Perform the volumetric analysis to determine:
 - ► VMA
 - ▶ VFA
 - ➤ Dust proportion DP DP = P0.075/Pbe P0.075=% passing #200

Pbe = effective asphalt content
DP range (0.8 – 1.4)

> Based on SUPERPAVE criteria, decide which blend if any is acceptable

Section 6 - 14

Superpave

Table 401.4.1-2 Superpave Plant Mix Properties

		-	
	Class I-S	Class II-S	Class III-S
Number of Superpave Gyrations	100	75	50
% Voids in Laboratory Mix	4.0-5.0	4.0-5.0	4.0-5.0
% Voids in Production Mix	3.0-5.0	3.0-5.0	2.5-5.0
Dust/Effective Asphalt	0.8-1.4	0.8-1.4	0.8-1.4
Minimum % Asphalt	4.5	4.5	4.5
Minimum Tensile Strength Retained %	75	75	75
Film Thickness µm2	6-12	6-12	6-12
Voids Filled with Asphalt (VFA)	65-75	65-78	65-78

VMA Criteria Table 401.4.1-3

Percent Voids in Mineral Aggregate (VMA)

	1" Maximum	3/4" Maximum	1/2" Maximum	3/8" Maximum		
	Nominal Size	Nominal Size	Nominal Size	Nominal Size		
	Laboratory Mix					
CLASS IS, IIS	12.0-15.0	13.0-16.0	14.0-17.0	14.0-17.0		
CLASS IIIS	11.0-14.0	12.0-15.0	13.0-16.0	13.0-16.0		
Production Mix						
CLASS IS, IIS	11.0-15.0	12.0-16.0	13.0-17.0	13.0-17.0		
CLASS IIIS	10.0-14.0	11.0-15.0	12.0-16.0	12.0-16.0		

Section 6 - 16

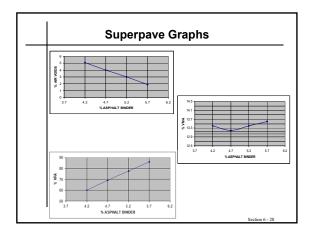
Superpave

Mix Design (Design Aggregate Structure) (Continued)

- ➤ After selection the design aggregate structure, a minimum of 2 specimens should be prepared at the estimated asphalt contents, at +/- 0.5%, and +/- 1.0% of the estimated asphalt content.
- A minimum of 2 specimens should be prepared for determinations of maximum theoretical specific gravity.
- \succeq Mix properties are evaluated by using the densification data @ N_{ini} and N_{des} and $N_{\text{max}}.$

Section 6 - 1

Superpave


Mix Design (Design Asphalt Content)

- Volumetric properties are calculated at Ndes.
- > Graphs should be developed for
 - ▶ Air voids
 - ► VMA vs. asphalt content
 - ▶ VFA vs. asphalt content

Mix Design (Design Asphalt Context) (continued)

- Design content should be established
 @ 4 % air voids
- > Other mixture properties should be checked

Section 6 - 19

Superpave

Mix Design

- >Two samples should be mixed at the design asphalt content
- > The samples should be compacted to Nmax in the gyratory compactor
- ➤ The density of the samples should be less than 98% of maximum density