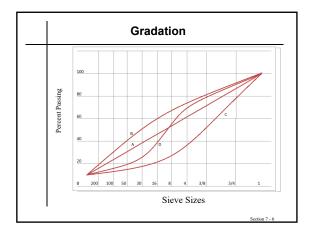
Asphalt BINDER Performance Grade Table Section 7 – Mix Design Variables and Effects

Mix Design Variables and Their Effects	r
> Variables	
► Aggregates	
▶ Asphalts	
▶ Density	
	Section 7 - 2


 Aggregates	
> Gradation	
≻VMA	
➤ Crushed Faces	
	Section 7 - 3

-3

Gradation > 0.45 Power Chart > Max. Nominal Size > Max. Size > Max. Density Line

Gradation (continued) > Interpreting 0.45 Chart > Dense Gradation > Coarse Gradation > Fine Gradation > Gap Gradation (limestone mixes) > VMA vs. Gradation

Section 7 - 5

▶ Excess Fines

VMA	
>vs. Gradation	
≻ vs. Crushed Faces	
≻vs. Angularity	
≻vs. Absorption	
≻ vs. Asphalt Content	
Section 7 - 7	<u> </u>
	1
Crushed Faces	
≻Vs. Stability/Durability	
> Minimum requirements	
► Table 803.5.5-2	
Section 7 - 8	
Summary	
Coarse Gradation +	
High VMA + High Crushed Faces =	
Better Pavement	

Adverse Effects Coarse Gradation Decreased Workability Decreased Compactibility Segregation Raveling High VMA Special Attention to AC Content Sensitivity to AC Content High Crushed Faces Decreased Workability Decreased Compatibility Section 7- 10

Asphalt	
	▶ Asphalt Content
	► Temperature / Viscosity
	Asphalt Content
	◆Vs. Gradation
	◆Total vs. Effective
	•Excessive / Insufficient

Excess Asph	nalt
≻Flushing / Bleeding	
≻Tenderness	
➤ Low Skid Resistance	
➤ Rutting / Shoving	
➤ Shearing When Hot	
	Section 7 - 12

4

Insufficient Asphalt > Inadequate Coating **≻ Low Film Thickness** ➤ Difficult Compaction ▶ Raveling > Stripping ➤ Segregation ➤ Shearing When Cool Temp. / Visc. ➤ Mixing Temperature – high enough to coat without draindown ➤ Compaction Temperature – high enough for workability without bleeding High Temp. ➤ Blue Smoke ➤ Drain Down ≻ Fat Spots **≻Low Film Thickness** ➤ Non-Uniform Density

Low Temp. ➤ Poor Coating / Mixing ➤ Poor Workability ➤ Difficult Compaction ➤ Checking / Shearing > Raveling Density > Proper density - 92% to 97% of Voidless >WYDOT - Q A Spec. **≻Low Density** ▶ High Air Voids ► Low Stability ► Rapid Aging ▶ Poor Moisture Resistance ▶ Poor Fatigue Resistance ► Rutting / Shoving **Density (continued)** ≻ High Density ▶ Flushing / Bleeding ▶ Poor Skid Resistance ▶ Poor Flexibility