ASPHALT BINDER

Section 11 – Correlation of Testing Technicians For Core Densities WYDOT MTM 423.0

Correlation of Testing Technicians for Core Density

The actual calculations of the correlation will not be on the exam but you would need to have an appreciation to the process. In addition, you would need to be able to answer general questions about the process.

Correlation of Testing Technicians for Core Densities

> General

- Compares the hot plant mix pavement densities determined by WYDOT field laboratory and Contractor's laboratory.
- The paired t-test is used
- ► If difference is significance, then the dispute resolution procedure will start

Correlations of Testing Technicians for Core Densities (continued)

- > Procedure
 - ▶ Obtain 14 cores
 - Cores are collected in pairs
 - Pairs are taken within 2 ft of each other
 - Each pair is split up
 - 7 cores for WYDOT and 7 cores for contractor
 - Test samples
 - **◆ WYDOT MTM 423.0**
 - Report densities to the nearest 0.1 pcf

Procedure (continued)

- > Determine densities to the nearest 0.1 pcf
- > Perform the paired t-test
- > Calculate the difference between densities
- > Determine the S.D. of the differences
- ➤ Eliminate up to one outlier based on 2 S.D. (use calculated S.D.)
- > S Range= 0.5 to 2.0 pcf

$$T = \frac{\left| \overline{z} \right|}{\sqrt{\frac{S^2}{n}}}$$

- ▶ If T< 3.707; No significant difference; for n=7
- ➤ If T> 4.032; Significant difference
- \triangleright For n=6

Correlation of Core Densities

Project No(s):		
Tester A:	Organization A:	
Tester B:	Organization B:	
Resident Engineer:	Contractor:	
Testing Date:	<u></u>	

Sample	Densities, pcf		Differences, pcf	Outlier?	Differences, pcf
Pair ID	Α	- В	=		
1	153.00	151.20	1.80	NO	
2	151.60	153.40	- 1.80	NO	
3	148.30	150.30	- 2.00	NO	
4	151.40	152.90	- 1.50	NO	
5	151.60	150.90	0.70	NO	
6	149.60	150.70	- 1.10	NO	
7	155.00	155.50	- 0.50	NO	

Average	Difference:	- 0.629	pcf	Avg Diff:	pcf
Standard Deviation of	Difference:	1.409	pcf	SD of Diff:	pcf
Maximum Standard	d Deviation:	2.00	_ pcf	Max. SD:	pcf
Minimum Standard o	of Deviation:	0.50	pcf	Min. SD:	pcf
Avg. Diff + 2*SD: _ -0.629 + 2*1.409 = 2.190	t _{crit} :	3.707		t _{crit} :	
Avg. Diff. – 2*SD: -0.629 – 2*1.409 = -3.447	t:	1.18	1.18	≤ 3 . 707 t:	
Any Diff. more (+) than + 2.190 ?	Pass/Fail:	Pass		Pass / Fail:	
Any Diff. more (-) than - 3.447 ? Dire	ctional Bias:	No	Dire	ectional Bias:	

Comments:
$$T = \frac{|\overline{Z}|}{\sqrt{s^2/7}} = \frac{0.629}{\sqrt{1.409^2/7}} = 1.18$$

CORRELATION OF CORE DENSITIES

Tester A:			O	rganization of A:		Project No(s):	
				rganization of B:		QC Supervisor:	
Testing Date:				Contractor:		Resident Engineer:	
	Sample Pair	Densit	ies, pcf	Differences	Outlier?	Differences	
	ID	Α	В	pcf		(outlier Removed)	
	А	144.2	143.9				
	В	143.8	144.3				
	С	142.3	142.7				
	D	143.7	143.5				
	E	144.2	144.5				
	F	143.9	143.6				
	G	145.1	144.8				
Average Difference:			pcf	Avg. Dif.	pcf	'	
	Standard Deviation of Differences:				SD of Dif.	pcf	
	Maximum Standard Deviation:				Max. SD	pcf	
Minimum Standard Deviation: _			pcf	Min. SD	pcf		
<i>y</i> g Dif. + 2(SD)			t _{crit} :		t _{crit} :		
vg Dif 2(SD)			t:		t:		
• , ,			Dace / Fail:		Dace / Fail:		

Cost Analysis

- > Three Questions
 - ► Mix cost per ton \$/ton
 - ► Mix cost per cubic yard \$/yd³
 - ► Mix cost per square yard \$/yd²

Cost Analysis Example

Material	% of Total Mix	Cost(\$)/Ton	Solution to <u>Mix</u> Cost per Ton (\$/ton)
Aggregate #1	25	4.00	$25\% x 4.00 \ or \ 0.25 \ x 4.00 = 1.00$
Aggregate #2	35	6.00	$35\% \times 6.00 \text{ or } 0.35 \times 6.00 = 2.10$
Aggregate #3	35	2.00	$35\% \times 2.00 \text{ or } 0.35 \times 2.00 = 0.70$
Asphalt	5	150.00	$5\% \times 150 \text{ o } 0.05 \times 150 = \underline{7.50}$

Density = 156 lb/ft³ Thickness 4 in.

\$11.30/ton

$$\frac{\$}{yd^3} = \frac{\$11.30}{ton} x \frac{156 lb}{ft^3} x \frac{1 ton}{2000 lb} x \frac{27 ft3}{yd^3} = \$23.80/yd^3$$

$$\frac{\$}{yd^2} = \frac{\$23.80}{yd^3} \times 4 \text{ in } x \frac{1 \text{ yd}}{36 \text{ in}} = \$2.64/yd^2$$

Homework

Work the following problems tonight:

15-4 Cost Analysis

15-5 Cost Analysis

Change all **pcf** to

S Range 8 to 32 kg/kg/m³ tric problem

Section 16 - Problems from material covered earlier today including tank problem and 16-5