ASPHALT BINDER

Section 11 - Correlation of Testing Technicians For Core Densities WYDOT MTM 423.0

Correlation of Testing Technicians for Core Density

The actual calculations of the correlation will not be on the exam but you would need to have an appreciation to the process. In addition, you would need to be able to answer general questions about the process.

Correlation of Testing Technicians for Core Densities

> General

- Compares the hot plant mix pavement densities determined by WYDOT field laboratory and Contractor's laboratory.
- The paired t-test is used
- If difference is significance, then the dispute resolution procedure will start

Correlations of Testing Technicians for Core Densities (continued)

> Procedure

- Obtain 14 cores
- Cores are collected in pairs
- Pairs are taken within 2 ft of each other
- Each pair is split up
- 7 cores for WYDOT and 7 cores for contractor
- Test samples
-WYDOT MTM 423.0
- Report densities to the nearest 0.1 pcf

Procedure (continued)

$>$ Determine densities to the nearest 0.1 pcf
$>$ Perform the paired t-test
$>$ Calculate the difference between densities
$>$ Determine the S.D. of the differences
$>$ Eliminate up to one outlier based on 2 S.D. (use calculated S.D.)
$>$ S Range $=0.5$ to 2.0 pcf

$$
T=\frac{|\bar{z}|}{\sqrt{\frac{s^{2}}{n}}}
$$

$>$ If $\mathrm{T}<3.707$; No significant difference; for n=7
$>$ If $\mathrm{T}>4.032$; Significant difference
$>$ For $\mathrm{n}=6$

Correlation of Core Densities

Project No(s):
Tester A:
Tester B:
Resident Engineer: \qquad Organization A:
Organization B:
Contractor: \qquad
\qquad
\qquad
\qquad
Testing Date:

Sample Pair ID	Densities, pof		Differences, pcf	Outlier?	Differences, pcf
	A	- B			
1	153.00	151.20	1.80	NO	
2	151.60	153.40	- 1.80	NO	
3	148.30	150.30	- 2.00	NO	
4	151.40	152.90	- 1.50	NO	
5	151.60	150.90	0.70	NO	
6	149.60	150.70	-1.10	NO	
7	155.00	155.50	- 0.50	NO	

Average Difference: \qquad pcf Avg Diff: \qquad pcf
Standard Deviation of Difference: \qquad pcf
Maximum Standard Deviation: \qquad 2.00 pcf pcf

SD of Diff: pcf

Minimum Standard of Deviation: 0.50

Max. SD: \qquad pcf
Min. SD: \qquad pcf
$\begin{array}{lll}\text { Avg. Diff }+2^{*} \text { SD: } & -0.629+2^{*} 1.409=2.190 & t_{\text {crit }}: \frac{3.707}{1.18} 1.18 \leq 3.707 \\ \text { Avg. Diff. }-2^{*} \text { SD: } & -0.629-2^{* 1} 1.409=-3.447 & t:\end{array}$ \qquad
Avg. Diff. -2^{*} SD: $\mathbf{- 0 . 6 2 9 - 2 * 1 . 4 0 9 = - 3 . 4 4 7} \quad t: \quad 1.18 \quad 1.18 \leq 3.707 \quad \mathrm{t}:$ \qquad
Any Diff. more (+) than + 2.190 ? Pass/Fail:_Pass
Any Diff. more (-) than - 3.447 ? Directional Bias:
No
Pass / Fail: \qquad
Directional Bias: \qquad
Comments: $\quad \mathrm{T}=\frac{|\bar{Z}|}{\sqrt{s^{2} / 7}}=\frac{0.629}{\sqrt{1.409^{2} / 7}}=1.18$
Section 11-6

CORRELATION OF CORE DENSITIES

Tester A: Tester B: Testing Date:		Organization of A : Organization of B: Contractor:				Project No(s): QC Supervisor: Resident Engineer: Differences (outlier Removed)
Testing Date:						
	$\begin{array}{\|c\|} \hline \text { Sample Pair } \\ \text { ID } \\ \hline \end{array}$, pcf	Differences pcf	Outlier?	
	A	144.2	143.9			
	B	143.8	144.3			
	C	142.3	142.7			
	D	143.7	143.5			
	E	144.2	144.5			
	F	143.9	143.6			
	G	145.1	144.8			
	Average Difference:			_pcf	Avg. Dif.	__pcf
	Standard Deviation of Differences:			__pcf	SD of Dif.	__pcf
	Maximum Standard Deviation:			__pcf	Max. SD	__pcf
	Minimum Standard Deviation:			__pcf	Min. SD	__pcf
Avg Dif. + 2(SD)					$\mathrm{t}_{\text {crit }}$:	
Avg Dif. - 2(SD)					t:	
			/ F		Pass / Fail:	

Cost Analysis

$>$ Three Questions

- Mix cost per ton - \$/ton
- Mix cost per cubic yard - $\$ / \mathrm{yd}^{3}$
- Mix cost per square yard - \$/yd ${ }^{2}$

Cost Analysis Example

Material	\% of Total Mix	Cost(\$)/Ton	Solution to Mix Cost per Ton (\$/ton)
Aggregate \#1	25	4.00	$25 \% \times 4.00$ or $0.25 \times 4.00=1.00$
Aggregate \#2	35	6.00	$35 \% \times 6.00$ or $0.35 \times 6.00=2.10$
Aggregate \#3	35	2.00	$35 \% \times 2.00$ or $0.35 \times 2.00=0.70$
Asphalt	5	150.00	$5 \% \times 150$ o $0.05 \times 150=\underline{7.50}$
Density $=156 \mathrm{lb} / \mathrm{ft}^{3}$		hickness	in. \$11.30/ton

$$
\begin{aligned}
& \frac{\$}{y d^{3}}=\frac{\$ 11.30}{t o n} x \frac{156 l b}{f t^{3}} \times \frac{1 \text { ton }}{2000 l b} x \frac{27 \mathrm{ft} 3}{y d^{3}}=\$ 23.80 / y d^{3} \\
& \frac{\$}{y d^{2}}=\frac{\$ 23.80}{y d^{3}} \times 4 \text { in } x \frac{1 y d}{36 \mathrm{in}}=\$ 2.64 / y d^{2}
\end{aligned}
$$

Homework

Work the following problems tonight:

15-4 Cost Analysis
15-5 Cost Analysis
Change all pcf to S Range 8 to $32 \mathrm{~kg} / \mathrm{kg} / \mathrm{m}^{3}$ tric problem

Section 16 - Problems from material covered earlier today including tank problem and 16-5

