Practice Problems Section 15 – Practice Problems

Section 15 - 1

Practice Problems

- **➤** Compaction Pay Factors
- **≻** Cost Analysis
- Cores vs. Nuclear Testing Correlation
- **➤ Density Random Number Selection**
- Compaction Pay Factors-SD

Pay Factor Determination (p. 9-45)

- ➤ Density
 - **▶** Determine core densities
 - WYDOT MTM 415.0
 - ◆Round to 0.01%
 - **▶ Determine % density**

% Density =
$$\frac{\text{density}}{\text{max. theor.}} = x$$

▶ Determine average (\overline{x})

$$\overline{X} = \frac{\sum_{X}}{n}$$

Pay Factor Determination (p. 9-46)

> Determine standard deviation (s)

$$s = \sqrt{\left(\frac{1}{n-1}\right)\sum\left(x - \bar{x}\right)^2}$$

► Calculate the Quality Index (QI)

$$QI = \frac{\bar{x} - 92.00}{s}$$

- ▶ If QI < 0.01 Reject
- ▶ If QI ≥ 0.01 and $x \le 96.00\%$
- See Table IV

Pat Factor Q Table 401.5.3-2 (p. 9-47)

Quality	<u>Index</u>	<u>Pay</u>	Quality	<u>Index</u>	<u>Pay</u>	<u>Quality</u>	<u>Index</u>	<u>Pay</u>
From	То	<u>Factor</u>	From	То	<u>Factor</u>	From	То	<u>Factor</u>
	≤ 0.00	Reject	0.50	0.53	0.67	1.08	1.11	0.85
0.01	0.01	0.50	0.54	0.56	0.68	1.12	1.14	0.86
0.02	0.04	0.51	0.57	0.59	0.69	1.15	1.18	0.87
0.05	0.07	0.52	0.60	0.62	0.70	1.19	1.21	0.88
0.08	0.10	0.53	0.63	0.65	0.71	1.22	1.25	0.89
0.11	0.13	0.54	0.66	0.69	0.72	1.26	1.28	0.90
0.14	0.16	0.55	0.70	0.72	0.73	1.29	1.31	0.91
0.17	0.19	0.56	0.73	0.75	0.74	1.32	1.34	0.92
0.20	0.22	0.57	0.76	0.78	0.75	1.35	1.37	0.93
0.23	0.25	0.58	0.79	0.82	0.76	1.38	1.40	0.94
0.26	0.28	0.59	0.83	0.85	0.77	1.41	1.43	0.95
0.29	0.31	0.60	0.86	0.88	0.78	1.44	1.46	0.96
0.32	0.34	0.61	0.89	0.91	0.79	1.47	1.49	0.97
0.35	0.37	0.62	0.92	0.95	0.80	1.50	1.52	0.98
0.38	0.40	0.63	0.96	0.98	0.81	1.53	1.55	0.99
0.41	0.43	0.64	0.99	1.01	0.82	1.56	3.57	1.00
0.44	0.46	0.65	1.02	1.04	0.83		≥ 3.58	1.10
0.47	0.49	0.66	1.05	1.07	0.84			

Compaction Pay Factors

1. 94.3% 95.80% 94.70% 95.00% 95.60% 95.2% 94.90%

x = 95.07

s = 0.52

 $5.90 \ge 3.58$ from Table 401.5.3-2 p. 9-47

PF = 1.10

2. 95.7% 92.90% 92.80% 92.00% 95.40% 93.60% 93.50%

Quality

1.50

1.53

1.56

Index

1.52

1.55

3.57

 ≥ 3.58

Pav

0.98

0.99

1.00

1.10

x = 93.70

s = 1.37

Index

0.37

0.40

0.43

0.46

0.49

Pav

0.62

0.63

0.64

0.65

0.66

Quality

0.92

0.96

0.99

1.02

1.05

Quality

0.35

0.38

0.41

0.44

0.47

Quanty	HIGOX	<u> </u>	<u>Quanty</u>	HIGOX	<u> </u>	<u>Quality</u>	HIGOX	<u>. uy</u>	
From	То	<u>Factor</u>	From	То	<u>Factor</u>	From	То	<u>Factor</u>	
	≤ 0.00	Reject	0.50	0.53	0.67	1.08	1.11	0.85	
0.01	0.01	0.50	0.54	0.56	0.68	1.12	1.14	0.86	
0.02	0.04	0.51	0.57	0.59	0.69	1.15	1.18	0.87	
0.05	0.07	0.52	0.60	0.62	0.70	1.19	1.21	0.88	
0.08	0.10	0.53	0.63	0.65	0.71	1.22	1.25	0.89	
0.11	0.13	0.54	0.66	0.69	0.72	1.26	1.28	0.90	
0.14	0.16	0.55	0.70	0.72	0.73	1.29	1.31	0.91	
0.17	0.19	0.56	0.73	0.75	0.74	1.32	1.34	0.92	
0.20	0.22	0.57	0.76	0.78	0.75	1.35	1.37	0.93	
0.23	0.25	0.58	0.79	0.82	0.76	1.38	1.40	0.94	
0.26	0.28	0.59	0.83	0.85	0.77	1.41	1.43	0.95	
0.29	0.31	0.60	0.86	0.88	0.78	1.44	1.46	0.96	
0.32	0.34	0.61	0.89	0.91	0.79	1.47	1.49	0.97	

0.95

0.98

1.01

1.04

1.07

Index

Pav

0.80

0.81

0.82

0.83

0.84

1.4 falls between 1.22 & 1.25 from p. 9-47

PF = 0.89

92.30% 90.20%

1.20 falls between 1.1 &

1.21 from 9-47

PF = 0.88 (PF < 1.00)

% 91.00% 90.90%

or negative number (see p. 9-46 & 9-47)

Section 15 - 3

Cost Analysis

Example #1

Material	% of Total Mix	Cost/Ton
Aggregate #1	45	\$7.50
Aggregate #2	33	\$6.65
Aggregate #33	16	\$5.50
Asphalt	6	\$120

Density = 155 pcf

\$13.65 per mix ton

Pavement Thickness = 4.5 inches

Compute the Following:

- Mix Cost per Ton $\frac{\$}{yd^3} = \frac{\$13.65}{ton} x \frac{155 lb}{ft^3} x \frac{1 ton}{2000 lb} x \frac{27 ft3}{yd^3} = \frac{\$28.56}{yd^3}$
- Cost per Square Yard

$$\frac{\$}{yd^2} = \frac{\$28.56}{yd^3} \times 4.5 \text{ in } x \frac{1 \text{ yd}}{36 \text{ in}} = \$3.57/yd^2$$

Cost Analysis

Example #2

Solution:

Mix Cost per Ton = \$25.00

Density = 150 pcf

Pavement Thickness = 5 in

Compute the Following:

- 1. Cost per Cubic Yard
- 2. Cost per Square Yard

$$\frac{\$}{yd^3} = \frac{\$25.00}{ton} x \frac{150 \, lb}{ft^3} x \frac{1 \, ton}{2000 \, lb} x \frac{27 \, ft3}{yd^3} = \$50.63 / yd^3$$

$$\frac{\$}{yd^2} = \frac{\$50.63}{yd^3} \times 5.0 \text{ in } x \frac{1 \text{ yd}}{36 \text{ in}} = \$7.03/\text{yd}^2$$

Table (MTM417.0) (p. 9-33)

Grading (Nominal Max. Size)					
	1"	3/4"	1/2"	3/8"	PMWC
Sieve	Allow	able Diffe	rence	(% Pa	assing)
1 1/4"	1.5				
1"	2	1.5			
3/4"	3	2	1.5		
1/2"	3.4	3	2	1.5	1.5
3/8"	3.4	3.4	3.4	2	2
No. 4	3.4	3.4	3.4	3.4	3.4
No. 8	3.3	3.3	3.3	3.3	3.3
No. 30	2.9	2.9	2.9	2.9	
No. 200	1.2	1.2	1.2	1.2	1.2

Verification Testing (Aggregate Gradation)

Problem #1 See Section 9-33 Table (MTM417.0)

A Contractor Obtained the Following Gradation for an Aggregate Sample:

For
$$3/4$$
" size $95\% - 94\% = 1\%$ Ok $(1 \le 2)$
For $1/2$ " size $75\% - 72\% = 3\%$ Ok $(3 \le 3)$

For
$$3/8$$
" size $68\% - 65\% = 3\%$ Ok (3 \le 3.4)

For #30 size 27% - 23% = 4% Fail (4> 2.9)

The DOT Performed the verification testing on the Corresponding Sample and Obtained the Following Results:

If any fail, see required steps on page 9-32

Assuming that PMP 3/4" w
Results can be used for

Grading (Nominal Max. Size)					
	1"	3/4"	1/2"	3/8"	PMWC
Sieve	Allow	able Diffe	rence	(% Pa	assing)
1 1/4"	1.5				
1"	2	1.5			
3/4" ——	3	2	1.5		
1/2"	3.4	3	2	1.5	1.5
3/8"	3.4	3.4	3.4	2	2
No. 4	3.4	3.4	3.4	3.4	3.4
No. 8	3.3	3.3	3.3	3.3	3.3
No. 30	2.9	2.9	2.9	2.9	
No. 200	1.2	1.2	1.2	1.2	1.2

Crading (Naminal May Ciza)

Sieve Size	% Passing
1"	100
3/4"	95
1/2"	75
3/8"	68
#4	52
#8	41
#30	27
#200	5.2

Sieve Size	% Passing
1"	100
3/4"	94
1/2"	72
3/8"	65
#4	50
#8	39
#30	23
#200	4.8

est

Verification Testing (Aggregate Gradation)

Problem #2

A Contractor Obtained the Following Gradation for an Aggregate Sample:

Sieve Size	% Passing
1/2"	100
3/8"	96
#4	52
#8	39
#30	17
#200	4.2

The DOT Performed the verification testing on the Corresponding Sample and Obtained the Following Results:

Test Results can be used for Calculating the Pay Factor.

Assuming that PMP 3/8" was used, Determine if the contractor's

Sieve Size	% Passing
1/2"	100
3/8"	93
#4	56
#8	43
#30	21
#200	6.1

Verification Testing (Aggregate Gradation)

Problem #3

A Contractor Obtained the Following Gradation for an Aggregate Sample:

Sieve Size	% Passing
3/4"	100
1/2"	96
3/8"	79
#4	61
#8	48
#30	26
#200	4.5

The DOT Performed the varification testing on the Corresponding Sample and Obtained the Folloving Results

abo	Ve
-----	----

Sieve Size	% Passing
3/4"	100
1/2"	94
3/8"	78
#4	59
#8	46
#30	25
#200	4.2

Assuming that PMP ½" was used, Determine if the contractor's Test Results can be used for Calculating the Pay Factor.

Verification Testing (Density)

The Following Densities Were Obtained from Verification Testing. Determine Which Sets Confirm the Contractor's Results.

Contractor's	DOTs		Difference	Difference
Density	Density	Difference	Acceptable	Unacceptable
141.2	141.9	0.7 pcf	×	
142.3	142.1	0.2 pcf	×	
142.5	141.3	1.2 pcf	×	
143.5	141.1	2.4 pcf		×
141.3	144.5	3.2 pcf		×
143.1	142.9	0.2 pcf	×	
144.9	143.7	1.2 pcf	×	
142.3	142.5	0.2 pcf	×	

From Section 9-34 – Table 2 (TM529) --- Allowable Density

Difference (between technicians) 1.50 pcf

If Diff. ≤ 1.50 pcf, then Acceptable If Diff. > 1.50 pcf, then Unacceptable