ASPHALT BINDER

Section 5 – Marshall Mix Design

Mix Design-Marshall Method

- ➤ Test Procedure AASHTO T 245 (Wyoming Modified)*
- > General
 - ▶ 4 inch ϕ x 2.5 inch specimens
 - Same aggregate blend
 - Varying binder content
 - Multiple specimens at each binder content
- > Components
 - Bulk Specific Gravity Measurement
 - Density Voids Analysis
 - Stability Flow Test

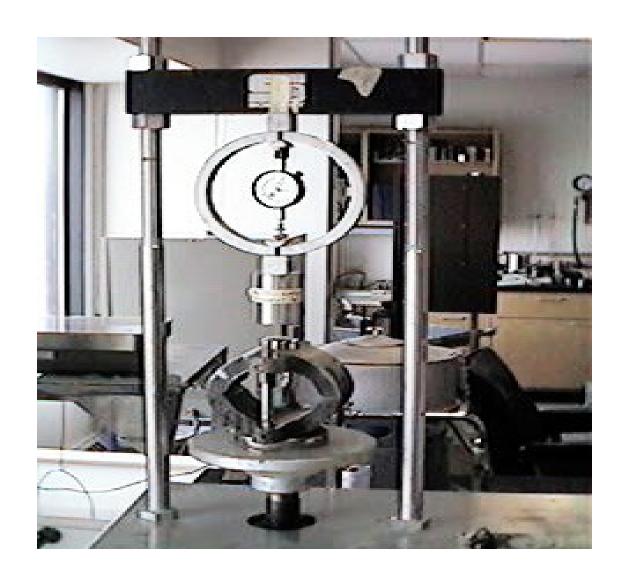
Procedure

- **➤** Sample Preparation
 - Obtain representative Asphalt and Aggregate Samples
 - Proposed for Use
 - Dry Aggregate
 - +230°F
 - Constant Weight
 - Conduct Sieve Analysis
 - Determine S.G. of Aggregate and binder

- **→ Prepare Mix Samples**
 - Select binder Content Range
 - Heat binder and Aggregate to mix temperature specifications
 - Combine binder and Aggregate
 - Mix to thoroughly coat
 - ► Cure 2 hours at compaction temperature (Wyoming modified)
 - Place in heated molds

- ▶ Compact with Marshall Hammer
 - +10 lbs
 - **◆18**" drop
 - ◆50 or 75 blows per side
- ► Cool and remove for molds

Marshall Compactor

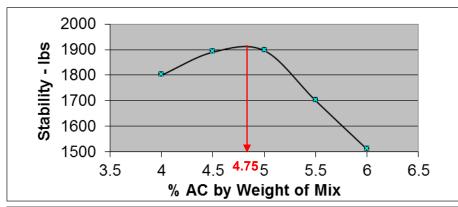


- > Testing
 - ▶ Measure Bulk S.G. of samples
 - ***AASHTO T 166**
 - ◆Weight in air dry mass
 - ◆Immerse in water 3 5 minutes and determine mass in water
 - Remove and blot dry with damp cloth
 - Weight immediately SSD mass
 - Calculate Bulk S.G.

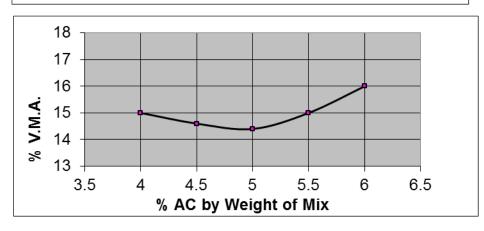
$$BULK \ S.G. = \frac{dry \ mass}{(SSD \ mass - mass \ in \ water)}$$

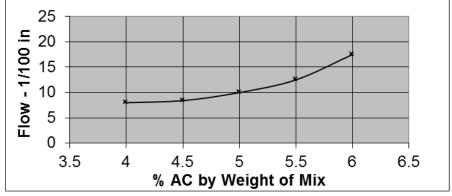
- ➤ Measure Stability And Flow Of Samples
 - ▶ Immerse in water 140°F, 30 minutes
 - Remove from water and place in Marshall Tester
 - Apply load to failure
 - 2 inches per minute
 - Record Stability failure load
 - ▶ Record Flow 0.01 inch
 - ▶ Complete in < 30 seconds</p>

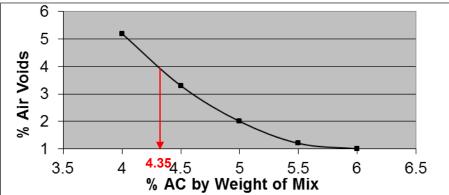
Marshall Stability Device

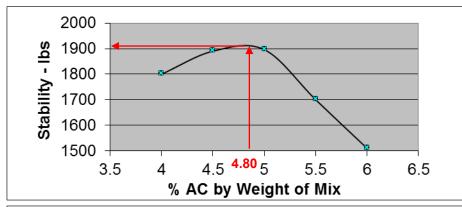

- **➤ Analyze Density And Voids**
 - Calculate Density
 - ► Calculate Air Voids
 - ► Calculate VMA
 - ► Calculate VFA

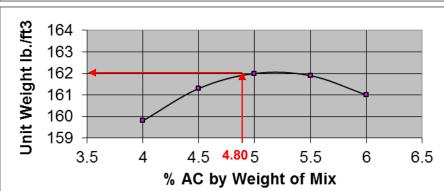

- **▶ Plot Test Results Versus Asphalt Content**
 - Stability
 - **▶** Air Voids
 - Density
 - **▶** Flow
 - ► VMA

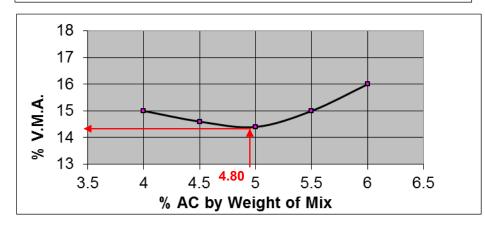

- ➤ From Plots, Find Binder or Asphalt Content At:
 - Maximum Density
 - Maximum Stability
 - ▶ 4% Air Voids
- ➤ Calculate Average
- ➤ Determine Characteristics at Average
- ➤ Compare vs. Criteria
- > Select Binder Content

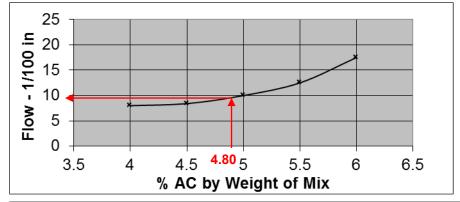

Maximum Density Maximum Stability 4% Air Voids

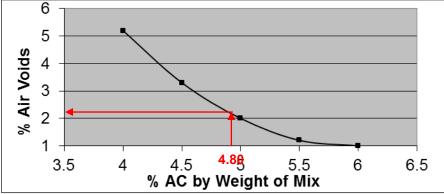

Marshall Graphs






Example:


Max Density- 5.25% AC
Max Stability- 4.75% AC
4% Air Voids- 4.35 % AC
Avg of above = 4.8% AC


Marshall Graphs

Example Continued: Use 4.80% AC Density with 4.8% AC = 162 lb/ft³ Stability with 4.8% AC = 1910 lbs Air Voids with 4.8% AC = 2.1 % Flow with 4.8% AC = 9.9 1/100in VMA with 4.8% = 14.3% Compare to Mix Design Criteria

Marshall Mix-Design Criteria

Table 401.4.1-2

	Class I-M	Class II-M	Class III-M
Number of Marshall Blows	75	75	50
Marshall Stability (lbs [N]) minimum 1910 - Fail	2500 [11000]	2500 [11000]	2000 [9000]
Marshall Flow (0.01 in [0.25 mm]) 14.3 - Pass	8-16 [8-16]	8-16 [8-16]	8-16 [8-16]
% Voids in Laboratory Mix 2.1 - Fa % Voids in Production Mix	5.0-6.0 4.0-6.0	4.0-5.0 3.0-5.0	4.0-5.0 2.5-5.0
Dust/Effective Asphalt	0.8-1.4	0.8-1.4	0.8-1.4
Minimum % Asphalt 4.8 - Pass	4.5	4.5	4.5
Minimum Tensile Strength Retained %	75	75	75
Film Thickness μm	6-12	6-12	6-12

Percent Voids in Mineral Aggregate (VMA)

Table 401.4.1-3

	1 in Maximum Nominal Size	³ ∕₄ in Maximum Nominal Size	½ in Maximum Nominal Size	3/8 in Maximum Nominal Size
	9.9 - Fail	Laboratory Mix		
CLASS IM, IIM	12.0-15.0	13.0-16.0	14.0-17.0	14.0-17.0
CLASS IIIM	11.0-14.0	12.0-15.0	13.0-16.0	13.0-16.0
		Production Mix		
CLASS IM, IIM	11.0-15.0	12.0-16.0	13.0-17.0	13.0-17.0
CLASS IIIM	10.0-14.0	11.0-15.0	12.0-16.0	12.0-16.0

Due to Fails -- Need to Redesign Mix

Mix Design- Moisture Resistance

Test Procedure – AASHTO T 283

Procedure

- Mix samples at Marshall Design AC Content
- Cure 16 hours at 140°F
- ► Heat to compaction temperature
- ► Compact to 7.0 ± 0.5% air voids with Marshall hammer
- ► Remove from molds and cure in air for 24 ± 3 hours
- Divide into two subsets

Mix Design-Moisture Resistance (continued)

- > Procedure
 - ► Test one subset in indirect tension
 - Condition other subset
 - Vacuum saturate to 70% to 80%
 - Freeze 16 hours at 0°F
 - Immerse in water 24 hours at 140°F
 - Immerse in water bath 1 hour at 77°F
 - ► Test in indirect tension
 - Calculate % retained strength

Conditioned Subset Average Strength (100) = % Retained Strength Unconditioned Subset Average Strength