Section 4

Batch Water, Aggregate Moisture, w/cm Ratio \& Adjusting Slump

Wyoming Materials Technician Certfication

WMTC Concrete Training \& Certification Seminar

Water-cementitious materials ratio

 ratio of the amount of water, minus water absorbed by the aggregates, to the amount of cementitious material in the concrete
w / cm ratio $=\mathrm{wt}$ of total water -wt of absorbed water wt of cementitious materials

Minimum w/cm for hydration about 0.25
Practical minimum ... about 0.35 for workability without admixtures

WYDOT w/cm ratios
(SSRBC 414.4.7 \& 513.4.4)

Structural 0.45
Pavement 0.45

Typical Relationships of Strength to w/cm Ratio

Relationship Between Freeze-Thaw Resistance, w/cm Ratio, and Different Concretes \& Curing Conditions

Aggregate Absorption \& Surface Moisture

None

Total Moisture = Absorbed + Free (Net) Moisture
Free (Net) Moisture = Total - Absorbed Moisture

Total Moisture $=$ Absorbed Moisture + Free Moisture Aggregate Moisture Percentages ... always computed from dry aggregate weight

Wt. of Water ABSORBED = Agg. Wt SSD - Agg. Wt DRY

$$
\% \text { Absorp. }=\frac{\text { Wt. of Water absorbed }}{\text { Agg. Wt }} \times 100
$$

$$
\% \text { Absorp. }=\frac{\text { Agg. Wt ssd }- \text { Agg. Wt DRY }}{\text { Agg. Wt DRY }} \times 100
$$

\% Absorption is usually a relatively constant, a known aggregate property determined by lab.

\% Free (Net) Moisture Use to Adjust Batch Weights

\% Free Moist. = \% Total Moist. - \% Absorption

or

Wt. Free Moist. = Wt. Total Moist. - Wt. Absorb. Moist.

Always use \% Absorption, \% Total or \% Free with Aggregate DRY Weight.

\% Total Moisture

Total Wt of Water = Wet Wt of Agg. - Dry Wt of Agg.

$$
\begin{aligned}
& \% \text { Total Moist. }=\frac{\text { Total Wt of Water }}{\text { Agg. Wt DRY }} \times 100 \\
& \% \text { Total Moist. }=\frac{\text { Agg. Wt wet }- \text { Agg. Wt DRY }}{\text { Agg. Wt DRY }} \times 100
\end{aligned}
$$

Example \#1

Mix Design
588 Ibs Cement
1181 lbs Sand (dry)

1 gal water $=8.34 \mathrm{lbs}$
1.482 \% Absorption
2.0\% Moisture Content
0.831\% Absorption
1.0\% Moisture Content

1781 lbs Rock (dry)

Batch water added: $\quad 29.4$ gal/cy or $244.9 \mathrm{lbs} / c y$ Water added-on-site: 1.3 gal/cy or $10.8 \mathrm{lbs} / c y$

Calculate w/cm Ratio

1. Calculate free (net) water from sand

$$
1181 \text { lbs. } x(2.0 \%-1.482 \%)=6.12 \text { lbs/cy }
$$

2. Calculate free (net) water from rock

$$
1781 \text { lbs. } x(1.0 \%-0.831 \%)=3.01 \text { lbs/cy }
$$

3. Calculate Total Free (net water)

$$
\begin{aligned}
& 244.9+10.8+6.12+3.01=264.8 \mathrm{lbs} / \mathrm{cy} \\
& \text { batch }+ \text { on-site }+ \text { sand }+ \text { rock }=\text { total water }
\end{aligned}
$$

w/cm ratio example ...

w / cm ratio $=264.8 \mathrm{lbs}$ water
588 Ibs cement
w / cm ratio $=0.45$

Example \#2

Mix Design

588 Ibs Cement
1181 Ibs Sand (dry)

Max. w/cm ratio $=0.45$
1.482 \% Absorption
2.0\% Moisture Content

1781 Ibs Rock (dry) 0.831\% Absorption
1.0\% Moisture Content

Batch Water Added: 26.0 gal/cy or $216.84 \mathrm{lbs} / \mathrm{cy}$ How much water can be added-on-site?

1. Calculate free (net) water from sand

1181 lbs. $\mathbf{x}(2.0 \%-1.482 \%)=6.12 \mathrm{lbs} / \mathrm{cy}$
2. Calculate free (net) water from rock

1781 lbs. $x(1.0 \%-0.831 \%)=3.01 \mathrm{lbs} / \mathrm{cy}$
3. Calculate Total Free (net water)
$216.84+6.12+3.01=225.97 \mathrm{Ibs} / c y$
batch + sand + rock $=$ total water

Max Total Water = w/cm Ratio \mathbf{x} Cement

Max Total Water $=0.45 \times 588 \mathrm{lbs} / \mathrm{cy}=264.60 \mathrm{lbs} / \mathrm{cy}$
Max water that can be added $=264.60$ - $225.97=38.63 \mathrm{lbs} /$ cy
Or $38.63 \mathrm{lbs} / \mathrm{cy}=4.63 \mathrm{gal} / \mathrm{cy}$ 8.34 lbs/gal

OK to adjust slump if ...

1. Not more than $1 / 4$ cy of concrete has been discharged from truck
2. Max. w/cm ratio is not exceeded
3. After adding water (adjusting slump), turn drum at mixing speed for 30 revolutions (min)

> DO NOT RETEMPER!

WYDOT On-site Mix Adjustments

 (SSRBC 414.10.3 \& 513.4.9.4)- Do not add water while hauling
- Accurately meter added water
- Do not exceed allowable w/cm ratio
- Mix for at least 30 additional revolutions
- Only 2 on-site mix adjustments allowed (water, admixture if approved)
- Adjust while concrete still plastic \& within 45 minutes of initial mixing
- Do not re-dose partial loads
- Do not add water to concrete that has started to set
- Engineer may approve adding on-site admixtures for slump \& air
- Add admixtures in accordance with manufacturer's recommendations
- Adjusting mix does not increase allowable placing time limits
- Do not use air reducing admixtures
- Document all re-dosing actions on batch ticket \& placing report

