Section 7 Admixtures, Hot & Cold Weather Concreting

WMTC Concrete Training & Certification Seminar

Types of Admixtures

Air-entraining Agents (ASTM C260, AASHTO M154)

Chemical Admixtures

(ASTM C494, AASHTO M194) Type A Water-reduc Water-reducing

Type B Retarding Type C Type D Accelerating
Water-reducing & Retarding

Water-reducing & Accelerating
Water-reducing, High Range
Water-reducing, High Range & Retarding Type E Type F

Supplementary Cementitous Materials

Pozzolans - Fly Ashes (Types F & C) Natural Pozzolans

Silica Fume Ground, Granulated Blast-furnace Slag (GGBFS)

Requirements for Admixtures

- · No chemical composition requirements
- Must meet specified physical requirements as set by ASTM or AASHTO
- Must be approved by WYDOT

							Type G.
	Type A, Water Reducing	Type B, Retarding	Type C, Acceler- aling	Type D, Water Reducing and Retarding	Type E, Water Reducing and Accelerating	Type F, Water Reducing, High Range	Water Reducing, High Range and Relarding
Water content, max, % of control	95		-	96	95	68	86
Time of setting, allowable deviation from control, terrine							
follows then	1:00 earlier nor 1:30 later	1:00 later 3:30 later	1:00 earlier 3:30 earlier	1:00 later 3:30 later	1:00 earler 2:30 earler	1/00 earlier nor 1:30 later	1:00 later 3:30 later
Final: at least			1:00 earlier		1:00 earlier		-
not more than	1:00 earlier nor 1:30 later	3:30 later	***	3:30 later		1:00 earlier nor 1:30 lates	3:30 later
Compressive strength, min, % of control: ⁸							
1 day			**			140	125
3 days	110	90	125	110	125	125	125
7 days	110	90	100	110	110	115	115
28 days	110	90	100	110	110	110	110
6 months	100	90	90	100	100	100	100
1 year	100	90	90	100	100	100	100
Plexural strength, min, % control: ⁸							
3 days	100	90	110	100	110	110	110
7 days 26 days	100	90 90	100	100	100	100	100
26 days Length change, max shrinkage (alternative requirements): ^C	100	90	90	100	100	100	100
Percent of control	135	135	135	135	135	135	135
Increase over control	0.010	0.010	0.010	0.010	0.010	0.010	0.010
Relative durability factor, min [®]	80	80	80	80	80	80	. 80

Handling & Storage

- · Come in solids, flakes or liquid
- · Come in different concentrations
- Available in 5, 55 or 5,000 gallon supplies
- Some admixtures need to be protected from freezing

7-5

Adding Admixtures to Fresh Concrete

Must keep the following consistent

- Dosage amount
 - Based on cementitious material content (x ounces per 100 lbs of cement)
- Rate of discharge
- Timing in batching sequence

Otherwise, expect different admixture performance

Ways to Measure Admixtures

- Use Calibrated Dispenser
 - Positive volumetric displacement
 - Visual volumetric containers
 - Timer controlled
 - Weight
- Batching Accuracy: ±3%

7-7

Things that Affect Air Content in Concrete ...

Everything!

		in cement alkali level.	that air-entraining agent dosage be adjusted.
		Less air-entraining agent dosage needed for high-alkali cements.	Decrease dosage as much as 40% for high-alkali cements.
tement		Air-void system may be more unstable with some combinations of alkali level and air-entraining agent used,	
Portland cement	Fineness	Decrease in air content with increased fineness of cement.	Use up to 100% more air-entraining admixture for very fine (Type III) cements. Adjust admixture if cement source or fineness changes.
	Cement content in mixture	Decrease in air content with increase in cement content.	Increase air-entraining admixture dosage rate as cement content increases.
		Smaller and greater number of voids with increased cement content.	
	Contaminants	Air content may be altered by contam- ination of cement with finish mill oil.	Verify that cement meets ASTM C 150 (AASHTO M 85) requirements on air content of test mortar.
lerisis	Fly ash	Air content decreases with increase in loss on ignition (carbon content).	Changes in LOI or fly ash source require that air- entraining admixture dosage be adjusted.
us me			Perform "foam index" test to estimate increase in dosage.
Supplementary ceneralibus materials		Air-void system may be more unstable with some combinations of fly ash! coment/air-entraining agents.	Prepare trial mixes and evaluate air-void systems.
ntany o	Ground granulated blast-furnace slag	Decrease in air content with increased fineness of GGBFS.	Use up to 100% more air-entraining admixture for finely ground slags.
pheme	Silica fume	Decrease in air content with increase in silica fume content.	Increase air-entraining admixture dosage up to 100% for fume contents up to 10%.
8	Metakaolin	No apparent effect.	Adjust air-entraining admixture dosage if needed.
Г	Water reducers	Air content increases with increases in dosage of lignin-based materials.	Reduce dosage of air-entraining admixture.
2			Select formulations containing air-detraining agents.
chemical admichans		Spacing factors may increase when water-reducers used.	Prepare trial mixes and evaluate air-void systems.
1 6	Retarders	Effects similar to water-reducers.	Adjust air-entraining admixture dosage.
Ĕ	Accelerators	Minor effects on air content,	No adjustments normally needed.
S	High-range water reducers (Plasticizers)	Moderate increase in air content when formulated with lignosulfonate.	Only slight adjustments needed.
		Spacing factors increase.	No significant effect on durability.
Г	Msximum size	Air content requirement decreases with increase in maximum size.	Decrease air content.
Aggregate		Little increase over 37.5 mm (1½ in.) maximum size aggregate.	
Aggr	Sand-to-total aggregate ratio	Air content increases with increased sand content.	Decrease air-entraining admixture dosage for mixtures having higher sand contents.
	Sand grading	Middle fractions of sand promote air- entrainment.	Monitor gradation and adjust air-entraining admixture dosage accordingly.

	Characteristic/Material	Effects	Guidance	
	Water chemistry	Very hard water reduces air content.	Increase air entrainer dosage.	
e		Batching of admixture into concrete wash water decreases air.	Avoid batching into wash water.	
dunys		Algae growth may increase air.		
pure	Water-to-cement ratio	Air content increases with increased water to cement ratio.	Decrease air-entraining admixture dosage as water to cement ratio increases.	
Mix water	Slump	Air increases with slumps up to about 150 mm (6 in.).	Adjust air-entraining admixture dosages for slump.	
×		Air decreases with very high slumps.	Avoid addition of water to achieve high-slump con- crete.	
		Difficult to entrain air in low-slump concretes.	Use additional air-entraining admixture; up to ten times normal dosage.	
ī	Procedure/Variable	Effects	Guidance	
	Batching sequence	Simultaneous batching lowers air content.	Add air-entraining admixture with initial water or on sand.	
		Cement-first raises air content.		
	Mixer capacity	Air increases as capacity is approached.	Run mixer close to full capacity. Avoid overloading.	
gon	Mixing time	Gentral mixers: air content increases up to 90 sec. of mixing.	Establish optimum mixing time for particular mixer.	
roced		Truck mixers: air content increases with mixing.	Avoid overmixing.	
Production procedures		Short mixing periods (30 seconds) reduce air content and adversely affect air-void system.	Establish optimum mixing time (about 60 seconds).	
Pro	Mixing speed	Air content gradually increases up to approx. 20 rpm.	Follow truck mixer manufacturer recommendations.	
		Air may decrease at higher mixing speeds.	Maintain blades and clean truck mixer.	
	Admixture metering	Accuracy and reliability of metering system will affect uniformity of air content.	Avoid manual-dispensing or gravity-feed systems and timers. Positive-displacement pumps interlocked with batching system are preferred.	
Г	Transport and delivery	Some air (1% to 2%) normally lost during transport.	Normal retempering with water to restore slump will restore air.	
su).		Loss of air in nonagitating equipment is slightly higher.	If necessary, retemper with air-entraining admixture to restore air.	
delivery			Dramatic loss in air may be due to factors other than transport.	
Transport and	Haul time and agitation	Long hauls, even without agitation, reduce air, especially in hot weather.	Optimize delivery schedules. Maintain concrete temperature in recommended range.	
8	Retempering	Regains some of the lost air.	Retemper only enough to restore workability. Avoid	
2		Does not usually affect the air-void	addition of excess water.	
		system. Retempering with air-entraining ad- mixtures restores the air-void system.	Higher admixture dosage is needed for jobsite admixture additions.	

Chemical Admixture Summary

All admixtures are somewhat sensitive to concrete temperature

As the temperature of the mix increases, the effectiveness of the admixture decreases, so ...

- $\boldsymbol{-}$ As temperature $\underline{\text{increases}},$ may need to $\underline{\text{increase}}$ dosage rate for same effects
- As temperature <u>decreases</u>, may need to <u>reduce</u> dosage rate for same effects

All admixtures are somewhat sensitive to brands, types, mix design, cement composition and batching sequence

If anything changes, then expect different performance from admixtures 7-10

Hot & Cold Weather Concreting

Rate of hydration is sensitive to temperature of the fresh concrete

Hydration – chemical reaction between portland cement & water

Temperature

Rate of Hydration

How Do We Define Hot Weather?

Any combination of the following that impair quality of freshly mixed or hardened concrete

- High air temperatures
- High concrete temperatures
- Low relative humidity
- Wind velocity
- Solar radiation

These conditions will accelerate ...

Rate of Cement Hydration and Rate of Moisture Loss

Knowing this is the *key* to understanding how to handle hot weather concreting

7-13

Hot Weather Increases Water Demand

Amount of water to produce a given slump increases with increasing concrete temperature

7-14

If fresh concrete temperature increases 10°F, then

- About 1 gal/cuyd is needed to maintain slump
- Air content decreases about 1%
- Decreases strength from 150 psi to 200 psi

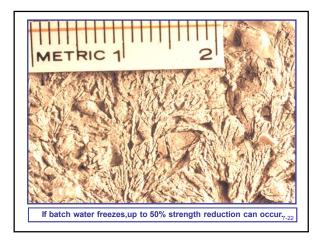
— 7-15

Air Content & Fresh Concrete Temperature

<u>Less</u> air is entrained as the concrete temperature <u>increases</u>.

- Monitor fresh concrete air test
 & concrete temperature
- Offset loss of air by increasing dosage of air-entraining admixtures

7-


Water Reducing & Retarding Admixtures

- Type B Water Reducing
 - Delays setting & hardening from 1 to 31/2 hrs
- Type D Water Reducing & Retarding
 - Reduces water content 5% min.
 - Retards set from 1 to 31/2 hrs
- Type G Water Reducing & Retarding
 - Reduces water 12% to 30%
 - Retards set from 1 to 31/2 hrs

7-20

Cold Weather Objectives ...

- 1. Protect from Early Age Freezing
- 2. Strength Development
- 3. Prevent Thermal Shock & Cracking

Mix Design Options

- Type III portland cement
- Additional portland cement

(100 to 200 lbs cuyd) can increase shrinkage & curling, especially if cement content exceeds 600 to 625 lbs/cy

- Hot water & heated aggregates
- Chemical admixtures (non-chloride)

7-23

Chemical Accelerators

- Type C Accelerator (non-chloride)
- Type E Water-Reducer & Accelerator
 - Offsets slow set times
 - Aids finishing process
 - Reduces bleed water
 - May contain some chlorides (check project limits)

Maintaining Curing Temperatures

Insulate & Capture Heat of Hydration

- Internal heat generate for first 3 days
- Want to capture as much as possible

Supply Heat (\$\$\$)

- Hydronic Systems
- Electric (Heat) Blankets
- Heated Enclosures

