Volumetrics

Section 2 – Laboratory Checklist of Materials

Field Testing Laboratory and Personnel Requirements

- > WYDOT SPECIFICATIONS : 114.3
- Provide quality control supervisor as pointof-contact for all parties for quality control and quality acceptance issues.
- At minimum, the supervisor has the authority to coordinate activities for the mix design, quality control, and quality acceptance testing; to review and interpret test reports; make recommendations for control process, including mix properties.

Field Testing Laboratory and Personnel Requirements (Continued)

- When testing is required, ensure the presence at the production site of a certified technician during production of aggregate, plant mix pavement, or concrete placements.
- > All test results must be signed by a certified technician.
- Ensure testing personnel use the testing procedures as outlined in Materials Testing Manual.

Field Testing Laboratory and Personnel Requirements (Continued)

Only certified technicians can perform sampling and testing of materials in the field.

resung Ceruncation Requirements			
Tests	Minimum Certification		
Aggregate gradation	Aggregate		
Coarse Aggregate Angularity	Aggregate		
Fine Aggregate Angularity	Aggregate		
Liquid Limit	Aggregate		
Plastic Limit	Aggregate		
Sand Equivalent	Aggregate		
In-Place Density	Asphalt		
Mix Verification Sampling	Asphalt and Aggregate		
Asphalt Content	Asphalt		
Field Sampling Fresh Concrete	Concrete		
Temperature of Fresh Concrete	Concrete		
Unit Weight (Density) of Concrete	Concrete		
Slump	Concrete		
Air Content of Fresh Concrete	Concrete		
Making, Curing Concrete Cylinders	Concrete		

Table 114.3.2-1 Testing Certification Requirements

ASSESSMENT OF FIELD LABS PERFORMING MIX VOLUMETRIC QUALITY ACCEPTANCE TESTING

> WYDOT MTM 127

- This procedure is intended to provide general guidance for assessing the competency of non-AASHTO accredited laboratories and personnel performing field testing of production mix volumetrics for quality acceptance.
- Assessment of field laboratories and personnel will be performed at the frequency stated in the contract documents or once per construction season, whichever is greater.

Procedure MTM 127:

The Engineer should confirm the following:

1. Copies of relevant contract documents, including contract plans and associated specifications, JMF, mix design, etc.

- 2. Safety equipment is in good condition.
- 3. Copies of current WYDOT Standard Specifications and WYDOT Materials Testing Manual.
- 4. Copies of the current applicable test procedures
- 5. The appropriate equipment to perform the required tests.
- 6. The equipment is serviced and calibrated as required, documentation of such is on file, and calibration/service decals are affixed to all testing equipment.

Procedure MTM 127 (CONTINUED)

- Obtain a sample of plant produced mix, mix from the project where the field laboratory is intended to be used is preferred, of sufficient size. The quantity must be large enough that when the sample is split in half, there is enough quantity of mix in each half.
- Determine the following: air voids, voids in mineral aggregate, voids filled with asphalt (for Superpave mixes only), voidless unit weight, stability & flow (Marshall mixes only), extracted asphalt content, extracted gradation, dust-to-effective asphalt content, and film thickness.

Procedure MTM 127 (CONTINUED)

- One half of the original sample will be tested by the field laboratory and the other half will be tested by an AASHTO accredited laboratory for the fore-mentioned properties.
- The results from each laboratory will be compared by the engineer using the criteria in WYDOT 416.0 and WYDOT 417.0. If the results are within the allowable limits (ie, correlate), the field laboratory and associated personnel are approved to perform field mix volumetric acceptance testing for the remainder of the construction season on WYDOT projects.

Procedure MTM 127 (CONTINUED)

If any of the results are not within the allowable limits, the field laboratory and the accredited laboratory must resolve the discrepancy(s) (additional mix testing may be necessary) and document the resolution of the discrepancy(s). If the resolution is acceptable to the engineer, the field laboratory and associated personnel are approved to perform field mix volumetric acceptance testing for the remainder of the construction season on WYDOT projects.

WYDOT 416.0

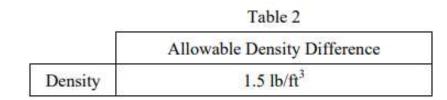
PRECISION STATEMENTS FOR COMPARING MIX DESIGN AND AGGREGATE PROPERTY TEST RESULTS.

Table 1

Allowable Difference between WYDOT's and contractor's Aggregate Results:

Aggregate Criteria	Allowable Difference
LA Abrasion Loss, %	5
Flat & Elongated, 1:5 ratio, %	4
Sand Equivalent, %	15
Fractured Faces, %	5
Fine Aggregate Angularity, %	3
Soundness (MgSO4) Loss, %	5

WYDOT 416.0


Table 2

Allowable Difference between WYDOT's and contractor's Mix Design Results:

	Allowable Difference		
Mix Criteria	Marshall	Superpave	
Bulk Specific Gravity (G _{mb}) (Coarse & Fine)	0.03	0.03	
Air Voids (V _a), %	1.2	1.2	
Voids in Mineral Aggregate (VMA), %	1.2	1.2	
Voids Filled with Asphalt Binder (VFA), %		8.0	
Marshall Stability, lb	900		
Marshall Flow, 0.01 in	3		
Tensile Strength Retained (TSR), %	8	8	
Film Thickness (F.T.), µm	2	2	
Dust to Effective Asphalt Binder Ratio (D/A)	0.3	0.3	
Voidless Unit Weight (VUW), lb/ft3	1.5	1.5	

WYDOT 417.0

- PRECISION STATEMENTS FOR COMPARING CONTRACTOR QA RESULTS TO WYDOT VERIFICATION RESULTS
- The precision statements are used to compare contractor and WYDOT gradation and density results to identify discrepancies.

WYDOT 417.0

			Tab	ole 1		
		A	llowable Grad	ation Differen	nce	
	3	Grading (Nominal Maximum Size)				
	l inch	³ / ₄ inch	1/2 inch	3/8 inch	PMWC	Concrete
Sieve	Allowable Difference (% Passing)					
1 1/4 inch	1.5					1.5
1 inch	2.0	1.5				2.0
³ / ₄ inch	3.0	2.0	1.5			3.0
1/2 inch	3.4	3.0	2.0	1.5	1.5	3.4
3/8 inch	3.4	3.4	3.4	2.0	2.0	3.4
No. 4	3.4	3.4	3.4	3.4	3.4	3.4
No. 8	3.3	3.3	3.3	3.3	3.3	3.3
No. 16						3.3
No. 30	2.9	2.9	2.9	2.9		
No. 50						2.9
No. 100				8		2.9
No. 200	1.2	1.2	1.2	1.2	1.2	1.2

Type 1 Lab for all paving projects
Type 2 Lab for all volumetrics projects

WYDOT MTM 121

WYDOT 121.0 (Rev. 09-16)

FIELD LABORATORY TESTING EQUIPMENT: STANDARD SURFACING KIT

- 1. Moisture tins, 3 oz
- 2. Moisture tins, 16 oz
- 3. Graduated cylinder, 100 ml
- 4. Straightedge, 15 inch
- 5. Measure, 0.1 ft³
- 6. Compaction mold, 0.03 ft³ (base plate optional)
- Compaction rammer and guide, 5¹/₂ lb
- 8. No. 4 screen, round, 16 inch diameter (WYDOT Catalog # FT6440)
- 9. Pan, 16 inch diameter (WYDOT Catalog # FT5420)
- 10. Compaction block, 300 lb minimum (Standard Plan 106-1A)
- 11. Removal press and plug for samples
- 12. Stove for drying or infra-red heater
- 13. Balance, high capacity, sensitive to 0.1 lb [5 g]
- 14. Balance, low capacity, sensitive to 0.0002 lb [0.1 g]
- 15. Trowel, 5 inch

16. Sample splitter: one large mechanical splitter

17. Sand cone apparatus, 1 gal [4 l] (jar and funnel)

18. Standard calibration sand (not less than 100 lb)

19. Chisel and hammer

20. Containers with lids; suggest concrete cylinder cans and lids

21. Rammer with guide, 5 1/2 lb

22. Spoon (large)

23. Shovel (flat square nose)

24. Wood block, 2 inch x 4 inch

25. Canvas sample bags

26. Container, 5 gal for sampling

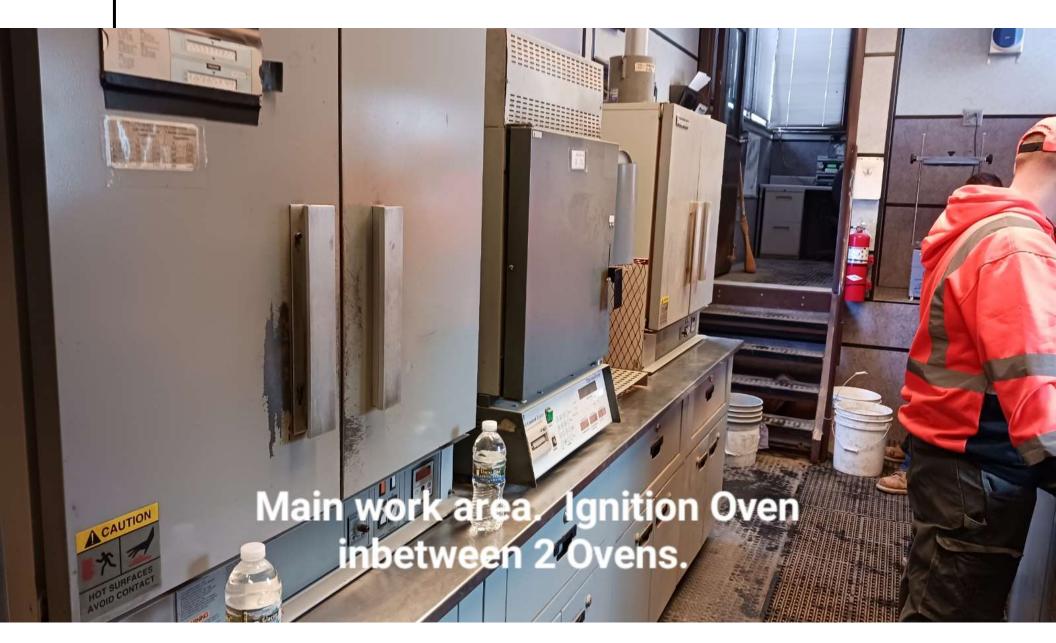
27. Mortar

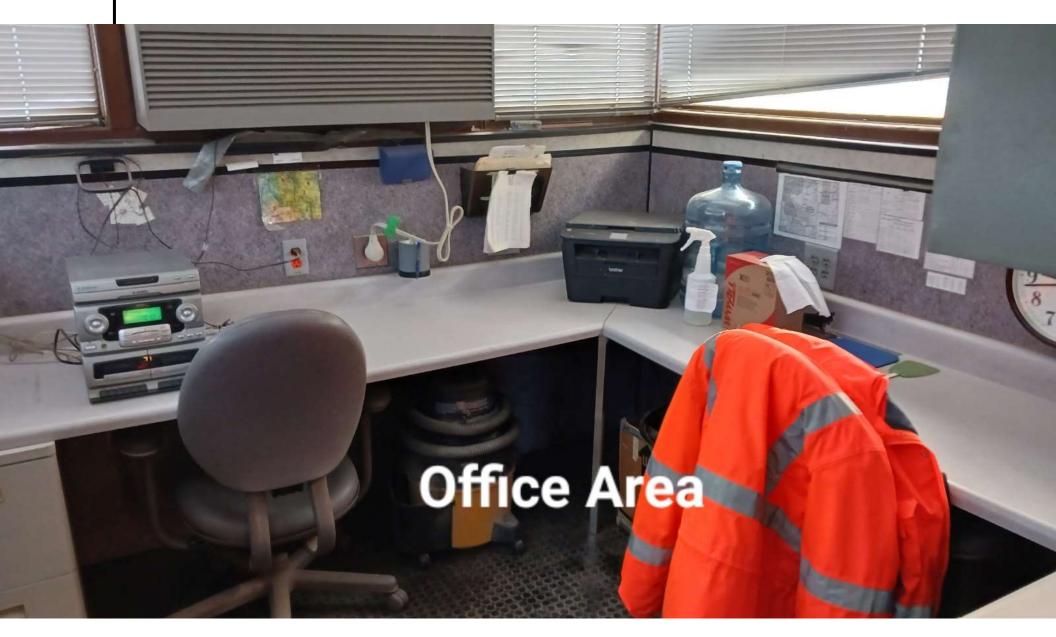
28. Pestle (rubber tipped)

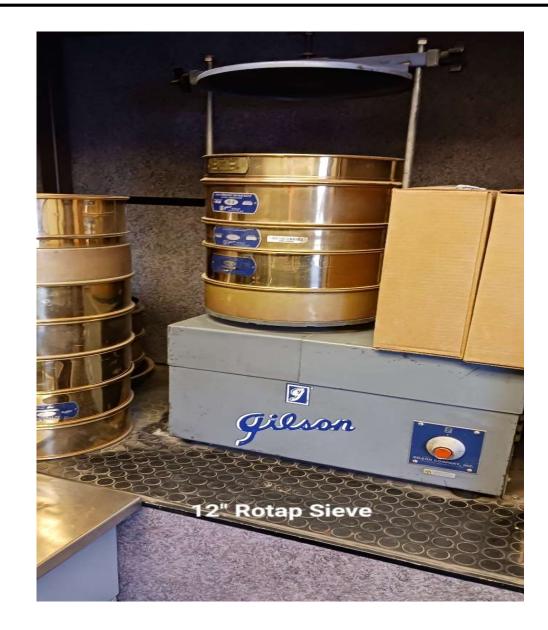
29. Liquid limit device

30. Grooving tool

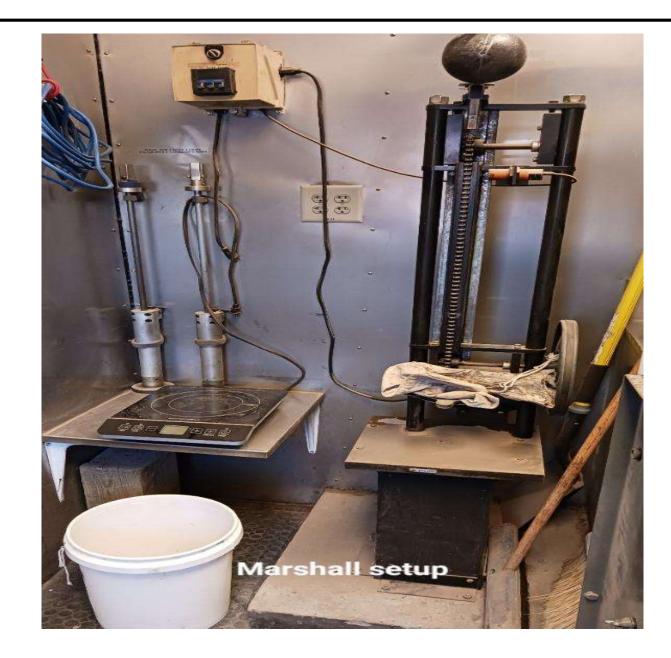
31. Porcelain casserole


- 32. Spatula, 4 inch long x 1 inch wide (with straight edge)
- 33. Ground glass plate
- 34. Suitable wash pans
- 35. Scoop (flat square nose)
- 36. Thermometers, 50 °F to 500 °F and 0 °F to 120 °F
- 37. Coring machine
- 38. Wire basket and chain
- 39. Container, 5 gal (with overflow)
- 40. Asbestos gloves
- 41. Brush sweeping
- 42. Brush brass
- 43. Large mechanical shaker with screens
- 44. Sieve shaker for 8 inch diameter sieves


45. No. 8 sieve for washing 46. No. 200 sieve for washing 47. U.S. Standard Sieves, 8 inch diameter and / or large shaker: $2\frac{1}{2}$ inch [53 mm] 2 inch [50 mm] 1 1/2 inch [37.5 mm] 1 inch [25.0 mm] 3/4 inch [19.0 mm] 1/2 inch [12.5 mm] 3/8 inch [9.5 mm] No. 4 [4.75 mm] (for large shaker) Pan (for large shaker) 48. U.S. Standard Sieves, 8 inch diameter: No. 4 [4.75 mm] No. 8 [2.36 mm] No. 10 [2.00 mm] [850 µm] No. 20 No. 30 [600 µm] No. 40 [425 µm] No. 50 [300 µm] No. 100 [150 µm] No. 200 [75 µm] Pan Lid (snug fitting)


- 49. Funnel stand with funnel, 11/4 inch ±, above cylinder
- 50. Jar (cylinder) and funnel bottom opening of $\frac{1}{2}$ inch $\pm \frac{1}{8}$ diameter
- 51. Proportional caliper device
- 52. WYDOT Forms:
 - *T-102 Report of Field Tests on Surfacing Materials
 - T-120 Sample Transmittal
 - T-166 Aggregate Analysis

*Weekly report no longer mandatory but optional



>AASHTO M 339M/M 339-22

Standard Specification for Thermometers Used in the Testing of Construction Materials

R61: Calibrations

- Establishing Requirements for Equipment Calibrations, Standardizations, and Checks.
- This practice contains general criteria and guidelines for establishing requirements for equipment calibrations, verification of calibrations, standardizations, and checks. This practice is intended to be used for equipment and test methods not specifically addressed in R 18.
- Construction material test standards can be improved if equipment calibrations, standardizations, and checks are properly specified and if each activity and its requirements are understood.
- The guidance in this document is intended to be used by standards developers in the selection of terms used in methods and in the

GUIDANCE FOR STANDARDS DEVELOPERS

Calibration or Standardization versus Checking—Most measuring instruments, measuring systems, and material measures should be either calibrated or standardized. Checking applies to test equipment that is not a measuring instrument, measuring system, or material measure such as an oven, straightedge, or specimen mold.

> Determining if Equipment Checks Are **Necessary**—The primary consideration in deciding whether a piece of test equipment should be checked is the equipment's influence on the test result. If the physical properties of a piece of equipment could significantly influence the test result, then routine checks to determine compliance or otherwise with stated criteria are essential. However, if the physical properties of a piece of test equipment are not likely to affect the test result, routine equipment checks are not necessary.

Calibration versus Standardization—The two primary considerations for making the decision to calibrate or standardize a measuring instrument, measuring system, or material measure are (1) the measurement's influence on the test result and (2) the probability that the uncertainty of measurement could exceed the accuracy requirement of the measurement. Refer to Figure 1 for guidance for determining whether to specify equipment calibration, standardization, or nothing.

		Probability That the Uncertainty of Measurement Could Exceed the Accuracy Requirement of the Measurement			
		Low	Moderate	High	
Measurement's Influence on the Test Result	High	Standardize	Calibrate	Calibrate	
	Moderate	Standardize	Standardize	Calibrate	
	Low	Nothing	Standardize	Standardize	

Figure 1-Guidance for Determining Whether Equipment Shall Be Calibrated, Standardized, or Neither

> Selecting and Specifying Intervals for **Equipment Calibrations, Standardizations,** and Checks—Equipment calibration, standardization, and check intervals shall be specified in the test methods (Notes 1 and 2). The two primary considerations for determining an acceptable interval are (1) the probability that time and/or usage will affect the instrument or device and (2) the measurement's or device's influence on the test result. Refer to Table 2 for guidance for determining intervals between calibrations, standardizations, and checks.

- Note 1—When the risk associated with using inaccurate equipment or nonconforming equipment is high, equipment should be monitored frequently. When the risk is low, less frequent monitoring may suffice.
- Note 2—Because the user may have verification of calibration data to support extending a calibration interval beyond the interval specified, the following wording is suggested for use when specifying calibration intervals: "In the absence of verification of calibration data to support the extension of the interval between calibrations, the interval between calibrations shall not exceed _____ months."

		Probability That Time or Usage Will Affect the Instrument/Device				
		Low	Moderate	High		
nce on	High	Monitoring (Moderate Risk)	Frequent Monitoring (High Risk)	Frequent Monitoring (High Risk)		
Measurement's Influence the Test Result	Moderate	Infrequent Monitoring (Low Risk)	Moderate Monitoring (Moderate Risk)	Frequent Monitoring (High Risk)		
	Low	Infrequent Monitoring (Low Risk)	Infrequent Monitoring (Low Risk)	Moderate Monitoring (Moderate Risk)		

Figure 2—Determining the Interval between Equipment Calibrations, Verification of Calibrations, Standardizations, and Checks

GUIDANCE FOR STANDARDS DEVELOPERS (CONTINUED)

Note 3—Intervals for frequent monitoring should be between 1 month and 4 months; intervals for moderate monitoring should be between 4 and 12 months; intervals for infrequent monitoring should be between 12 and 24 months.

T312, annex a3: Check Superpave molds visually

- Confirm that the molds are thoroughly cleaned and identified with a unique serial number or other unique identifier. Allow the molds to achieve a temperature of 64 to 82°F.
- This temperature range can be confirmed with an infrared thermometer.
- The mold bore shall be free of residue and deep gouges. Mold bores without gouges typically have an acceptable surface finish. Identify any wear area that may be visible in the mold.
- Do not attempt to clean an SGC mold in an ignition oven. Extreme heat may cause the mold to soften or become "out of round" and unrepairable.

T-344, Evaluation of Superpave Gyratory Compactor (SGC) Internal Angle of Gyration Using Simulated Loading

- Ensure gyratory compactor has been calibrated within last year and internal angle is correct.
- This practice covers the procedure for the evaluation of the Superpave gyratory compactor (SGC)internal angle of gyration using an instrument capable of simulating loading conditions similar to those created by a hot mix asphalt (HMA) specimen.

T-344 SUMMARY

- The internal angle of gyration of an SGC is measured dynamically with an instrument inserted into the SGC mold.
- > A load (moment) is induced on the SGC while the internal angle is simultaneously measured. The simulated loading conditions are similar to those created by compaction of a standard SGC volumetric specimen.
- The internal angles at each end of the mold are measured and then averaged to obtain the effective internal angle of gyration.

Accuracy Verification of Electronic Balance WYDOT MTM 801

Verification of Accuracy of Electronic General Purpose Balance

> Procedure

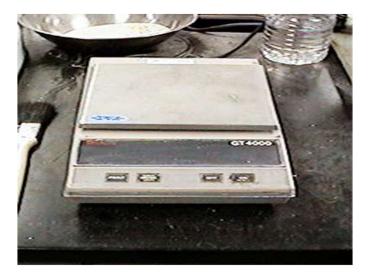
- Set up the balance in a location away from drafts or excessive air movement that might affect the read-out.
- Level the balance and if weighing in water, observe that the suspension apparatus is free of any obstructions that might affect ifs movement.

Procedure (continued)

- For balances with anticipated usage of 10,000 grams or less, the verification weights will be 100 grams, 1000 grams, 5000 grams and 10,000 grams.
- For balances with anticipated usage of 10,000 or more, the verification weights will be 5000 grams, 10,000 grams and 15,000 grams.
- If one balance is to used for both of the listed ranges verify using all weights.

Procedure (continued)

- Place the weight for each verification in five locations (the center and four corners) of the balance using the full range and record the actual weight obtained.
- Allowable tolerance for each verification is + or – 0.1% of the weight used.


Procedure (continued)

- If any recorded weight exceeds the allowable range discontinued use of the balance until the balance is calibrated or repaired and a complete new verification is performed.
- copies of all worksheets will be signed by the individual performing the verification and will be kept with the balance.

Scales

Balance Verification Worksheet

	Model: Serial #:		<u>PE 11</u> <u>J98</u>	<u>PE 11</u> <u>J98627</u>		D C E A Front B		
	Verification Weight (grams)	100	1000	5000	10,000	15,000		
	Tolerance (grams)	0.1	1.0	5.0	10.0	15.0		
	Allowable Range (grams)	99.9- 100.1	999.0- 1001.0	4995.0- 5005.0	9990.0- 10,010.0	14,985.0· 15,015.0		
	Reading A	100.1	1000.2	5000.6	10,000.8	15,006.1		
	Reading B	100.0	1000.8	5000.9	10,001.4	15,007.0		
	Reading C	100.1	1000.7	5001.1	10,001.8	15,007.9		
	Reading D	100.0	1000.2	5001.6	10,003.0	15,008.4		
	Reading E	99.9	999.2	4998.2	9996.4	14,992.2		
lee	ts allowable YES		quirement	s for all Ve		•		

Signature:_____

Balance Verification Worksheet

	Seria	al #:	<u>J9862</u>	2 7 A	Front	В
	Verification Weight (grams)	100	1000	5000	10,000	15,000
	Tolerance (grams)	0.1	1.0	5.0	10.0	15.0
	Allowable Range (grams)	99.9-100.1	999.0-1001.0	4995.0- 5005.0	9990.0- 10,010.0	14,985.0 15,015.0
	Reading A					
	Reading B					
	Reading C					
	Reading D					
	Reading E					
M	eets allowabl	NÖ	quirements f	or all Verific	ation Weigh	nts: