The Gaussian integers

\[\mathbb{Z}[i] = \{ a + bi : a, b \in \mathbb{Z} \}. \]

Units in \(\mathbb{Z}[i] \) are \(\pm 1, \pm i \).

Recall: an element \(a \) of the commutative ring \(R \) is **irreducible** provided \(a \) is not a unit and \(a = bc \) implies that \(b \) or \(c \) is a unit.

2 is not irreducible in \(\mathbb{Z}[i] \) because \((1 + i)(1 - i) = 2 \).
$N(a + bi) = a^2 + b^2$.

- $N(z) = 0$ if and only if $z = 0$.

- If z is a Gaussian integer, then $N(z)$ is an integer, and $N(z) = 1$ if and only if z is a unit.

- $N(z_1 z_2) = N(z_1)N(z_2)$
If \(N(z) \) is a prime, then \(z \) is an irreducible in \(\mathbb{Z} \).

Why? \(xy = z \Rightarrow N(x)N(y) = N(z) \Rightarrow N(x) \text{ or } N(y) = 1 \Rightarrow x \text{ or } y \) is a unit.

Example: \(1 + 2i \) is an irreducible in \(\mathbb{Z} \).

We claim that 3 is irreducible in the complex numbers. Suppose that \(3 = ab \), where \(a, b, \in \mathbb{Z}[i] \).

Then \(9 = N(3) = N(a)N(b) \). If \(N(a) = 1 \) or \(N(b) = 1 \) we’re done.

Otherwise \(N(a) = 3 \). This means there are integers \(x \) and \(y \) with \(x^2 + y^2 = 3 \)–which is impossible.

So either \(a \) or \(b \) is a unit.
Express \(165 + 490i \) as a product of irreducibles in \(\mathbb{Z}[i] \).
\[165 + 490i = 5(35 + 98i) = 5 \times 7(5 + 14i). \]

\[5 = (1 + 2i)(1 - 2i) \] So:
\[165 + 490i = (1 + 2i)(1 - 2i) \times 7 \times (5 + 14i) \]

\(1 + 2i \) and \(1 - 2i \) are irreducible, since their norms are a prime.

\(7 \) is irreducible, since \(a^2 + b^2 = 7 \) has not integer solutions.

What about \(5 + 14i \); This has norm \(221 = 13 \times 17 \). So if not irreducible, we are looking for \(x = a + bi \) and \(y = c + di \) with
\[xy = 5 + 14i \] and \(a^2 + b^2 = 13 \) and \(c^2 + d^2 = 17 \). This gives \(a, b \in \{ \pm 2, \pm 3 \} \) and \(c, d \in \{ \pm 1, \pm 4 \} \) \(x = 2 + 3i \) and \(y = 1 + 4i \) works; and \(x \) and \(y \) are irreducible.

So \(165 + 490i = 7(1 + 2i)(1 - 2i)(2 + 3i)(1 + 4i). \)
Fundamental Theorem for the Gaussian Integers

Every Gaussian integer is either 0, a unit, irreducible or the products of irreducibles.

Why?
If not irreducible nor unit nor 0, then $a = bc$ for some bc with neither b nor c a unit.

So $N(a) = N(b)N(c)$ and $N(b) < N(a)$ and $N(c) < N(a)$.

So we can "factor" b and c to get factorization of a.
Division Algorithm for the Gaussian integers

Let a and b be Gaussian integers, with $b \neq 0$. Then there exist q and r such that $a = bq + r$ where $N(r) < N(b)$.

Algorithm: Compute a/b in the complexes, say $a/b = u + iv$. Now let u' be the closest integer to u, and v' be the closest integer to v.

Set $q = u' + iv'$, $r = a - bq$.

Why does this work? $a - bq = b(a/b - q)$. So $N(r) = N(b)N(a/b - q)$ and $N(a/b - q) = N(u - u' + i(v - v')) = (u - u')^2 + (v - v')^2 \leq (.5)^2 + (.5)^2 < 1$.

So $N(r) < N(b)$.
Example:

Find the quotient and remainder when $3 + 5i$ is divided by $1 + 2i$ in $\mathbb{Z}[i]$.

\[
\frac{3+5i}{1+2i} = \frac{(3+5i)(1-2i)}{5} = \frac{13-i}{5} = 13/5 - (1/5)i.
\]

So $q = 2 + 0i$ and $r = 3 + 5i - 2(1 - 2i) = 1 + i$.

Check: $3 + 5i = 2(1 + 2i) + (1 + i)$ and $N(1 + i) = 2 < 5 = N(1 + 2i)$.

Note: Quotient and remainder are not unique!
Once we have the Division Algorithm, we can mimic Euclid’s proof to get:

If a is irreducible in $\mathbb{Z}[i]$ and $a|bc$, then $a|b$ or $a|c$.

Def’n In a domain, a is a prime if a is a nonzero, non-unit such that $a|bc \Rightarrow a|b$ or $a|c$.

Almost agrees with normal def’n in case of \mathbb{Z}. Get $\pm p$
Let’s show there are no positive integer solutions to \(x^2 + 1 = y^3 \).

Suppose there were. Note \(x^2 + 1 = (x + i)(x - i) = y^3 \) in the Gaussian integers.

By Euclid’s Lemma, both \(x + i \) and \(x - i \) divide \(y \).

Thus \(x^2 + 1 \) divides \(y \), say \((x^2 + 1)k = y \).

Substitution gives \(x^2 + 1 = k^3(x^2 + 1)^3 \).

so \((x^2 + 1)(k^3(x^2 + 1)^2 - 1) = 0 \).

Integral domain implies \(k^3(x^2 + 1) = 1 \).

Taking norms implies that \(x^2 + 1 \) must be 1.

But then \(x = 0 \).
Now the integral domain $\mathbb{Z}[\sqrt{-5}] = \{a + \sqrt{5}bi : a, b \in \mathbb{Z}\}$ behaves quite differently.

Still have a norm: $N(a + \sqrt{5}bi) = a^2 + 5b^2$; with the properties as before.

Units just ± 1.
6 = 2 \cdot 3; 2 and 3 irreducible, since \(a^2 + 5b^2 = 2\) and
\(c^2 + 5d^2 = 3\) has no integer solutions.
6 = (1 + \sqrt{5}i)(1 - \sqrt{5}i); and \(1 + \sqrt{5}i\) and \(1 - \sqrt{5}i\) are both irreducible. (Since there norms are 6).

In \(\mathbb{Z}[\sqrt{-5}]\): there is not unique factorization!

So there is no division algorithm.

Euclid’s Lemma fails!: 2 divides \(6 = (1 + \sqrt{5}i)(1 - \sqrt{5}i)\); but 2 does not divide either of the factors.