Implementing Surveillance Tools and Processes to Improve Performance and Identify Possible Opportunities in Mature CO₂ Floods

Juan J. Nevarez
Exploitation Engineer
Agenda

- Field History
- Geologic Setting
- Reservoir Data
- Production History
- Reservoir Surveillance Process & Activity
 - Reservoir level review
 - Pattern level review
 - Well level review
- Production Surveillance Process
 - WAG management reports
 - Well testing reports
- Impact of Reservoir & Production Surveillance
 - Cambrian downspacing
 - Field performance
Discovery:
- 1916 by Bair Oil Company
- 269’ well in 1st Frontier Formation
- Lost Soldier No. 1 IP = 200 bopd.
- Earliest production from shallow horizons
 - Frontier, Muddy, Lakota, Morrison and Sundance

Development
- 1930’s: Lost Soldier Tensleep discovered
 - Well IP = at 2,435 bopd
- 1936: Wertz Field discovered
- 1947: Madison discovered
- 1975 Acquired by Amoco
- 1999 Acquired by Merit Energy Company

Unitization
- Wertz: 1937
- Lost Soldier 1962

Secondary & Tertiary Floods
- Waterfloods initiated in the mid/late 1970’s
- CO₂ Floods initiated in the late 1980’s
- **Location:**
 - Great Divide Basin
 - Northwestern edge of the Rawlins Uplift

- **Structure:**
 - Faulted anticlines
 - Eight Producing Horizons (youngest to oldest)
 - Frontier
 - Muddy
 - Lakota
 - Sundance
 - Tensleep (CO₂)
 - Darwin (CO₂)
 - Madison (CO₂)
 - Flathead (CO₂)

- **Fields:**
 - Lost Soldier:
 - 250 wellbores
 - 500 mmbbl OOIP
 - Wertz:
 - 164 wellbores
 - 250 mmbbl OOIP
<table>
<thead>
<tr>
<th>Formation</th>
<th>Lithology</th>
<th>Average Depth</th>
<th>Formation Thickness</th>
<th>Average Porosity</th>
<th>Air Perm md</th>
<th>Current Spacing</th>
<th>Res Press psi</th>
<th>Oil Grav API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensleep</td>
<td>SS</td>
<td>5,000</td>
<td>535</td>
<td>9.9%</td>
<td>31.0</td>
<td>10 - 20</td>
<td>2,800</td>
<td>35</td>
</tr>
<tr>
<td>Darwin</td>
<td>SS</td>
<td>5,500</td>
<td>65</td>
<td>13.0%</td>
<td>36.0</td>
<td>20 -30</td>
<td>2,650</td>
<td>35</td>
</tr>
<tr>
<td>Madison</td>
<td>LS/DOL</td>
<td>5,565</td>
<td>340</td>
<td>9.0%</td>
<td>2.5</td>
<td>20 -30</td>
<td>2,650</td>
<td>35</td>
</tr>
<tr>
<td>Cambrian</td>
<td>SS</td>
<td>7,000</td>
<td>200</td>
<td>10.5%</td>
<td>30.0</td>
<td>30 - 40</td>
<td>3,700</td>
<td>35</td>
</tr>
<tr>
<td>Tensleep</td>
<td>SS</td>
<td>6,200</td>
<td>425</td>
<td>10.9%</td>
<td>20.0</td>
<td>10 - 20</td>
<td>3,500</td>
<td>35</td>
</tr>
<tr>
<td>Darwin</td>
<td>SS</td>
<td>6,625</td>
<td>75</td>
<td>13.1%</td>
<td>36.0</td>
<td>20 -30</td>
<td>3,300</td>
<td>35</td>
</tr>
<tr>
<td>Madison</td>
<td>LS/DOL</td>
<td>6,700</td>
<td>400</td>
<td>8.7%</td>
<td>2.5</td>
<td>20 -30</td>
<td>3,300</td>
<td>35</td>
</tr>
</tbody>
</table>

- **General Statistics**
 - 158 active producers
 - 174 active injectors

- **Facilities**
 - 9 production satellites
 - 14 injection satellites
 - Lost Soldier Main Battery (In 1995 Amoco Production Company combined production facilities)
 - Injection plant No.1 (6 positive displacement pumps each with a 40,000 bwpd capacity)
 - Bairoil CO₂ Recycle Plant – 5 Compressors- 150 MMCFPD Capacity- (200- 2200 psi)
Bairoil Faces Significant Challenges in Mid 2008

- **Reservoir Issues**
 - Production is on decline
 - WAG cycle management
 - Reservoir surveillance

- **Production Issues**
 - High GOR ratios limiting production in some wells
 - Well testing frequency

- **CO₂ Facilities Issues**
 - Limited capacity in CO₂ recycling plant
 - Preventive maintenance completed but downtime still exists
Reservoir Level Workflow

- Develop geologic model for all WAG CO₂ flooded reservoirs
- Develop updated OOIP for all reservoirs including new well data
- Utilize StreamSim’s 3D streamline simulator model for two key reservoirs
- Performance Plots in all reservoirs to identify flood maturity and efficiency
 - Production/Injection
 - % Recovery vs HCPVSI - CO₂ efficiency and maturity
 - CO₂ retention and utility factors
 - Review Pressure data over time where available
Cumulative Incremental Oil vs Cumulative CO2 Injection

Cumulative Incremental Oil, % OOIP

Cumulative CO2 Injection, % HCPV

Legend:
- LSCA
- LSDM
- LSTP
- WZTP
- WZDM
Pattern Level Workflow

- Used StreamSim’s 3D streamline simulator to develop well allocation factors and injection efficiencies

- Used Geologic Model to develop updated OOIP at the pattern level

- Linked Landmark DSS Software to Bairoil SCADA system via Procount and Merit Databases
 - Daily Production/Injection Data is automatically loaded

- Develop performance plots at pattern level to identify flood maturity and efficiency
 - % Recovery vs HCPVSI
 - CO₂ retention and utility factors
 - Injection/Withdrawal Bubble Maps
Production/Injection Bubble Map Movie
Putting Reservoir/Production Surveillance into Practice

- Collected and reviewed all historical injection profiles, last profiles had been done in 2000

- Develop a plan to conduct injection survey on all active injectors
 - All active injectors were completed within 7 months

- Utilized OOIP, Pattern performance and injection surveys data to develop new WAG setpoints and cycles volumes based on pattern maturity and efficiency

- Developed an inventory of recommendations to improve underperforming patterns
 - Conformance Work- Squeeze jobs, Selective Injection
 - Coil Tubing Work
Conformance Candidates

<table>
<thead>
<tr>
<th>Injectors</th>
<th>Subzone</th>
<th>% of Total Perfs</th>
<th>Water</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTP 13</td>
<td>TP(A1)</td>
<td>19%</td>
<td>100%</td>
<td>80%</td>
</tr>
<tr>
<td>LSTP 18</td>
<td>TP(A1)</td>
<td>19%</td>
<td>100%</td>
<td>94%</td>
</tr>
<tr>
<td>LSTP 41</td>
<td>TP(A1)</td>
<td>15%</td>
<td></td>
<td>96%</td>
</tr>
<tr>
<td>LSTP 64</td>
<td>TP(A1)</td>
<td>14%</td>
<td>78%</td>
<td>28%</td>
</tr>
<tr>
<td>LSTP 85</td>
<td>TP(A1)</td>
<td>5%</td>
<td>100%</td>
<td>94%</td>
</tr>
<tr>
<td>LSTP 70</td>
<td>TP(A1)</td>
<td>6%</td>
<td>100%</td>
<td>81%</td>
</tr>
<tr>
<td>LSTP 78</td>
<td>TP(B1)</td>
<td>18%</td>
<td>64%</td>
<td>100%</td>
</tr>
<tr>
<td>LSTP 99</td>
<td>TP(A1)</td>
<td>10%</td>
<td>76%</td>
<td>19%</td>
</tr>
<tr>
<td>LSTP 101</td>
<td>TP(A1)</td>
<td>32%</td>
<td>94%</td>
<td>85%</td>
</tr>
<tr>
<td>LSTP 104</td>
<td>TP(A1)</td>
<td>26%</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>LSTP 105</td>
<td>TP(A1)</td>
<td>45%</td>
<td>74%</td>
<td>98%</td>
</tr>
<tr>
<td>LSTP 107</td>
<td>TP(B1)</td>
<td>25%</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>LSTP 112</td>
<td>TP(A1)</td>
<td>36%</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>LSTP 126</td>
<td>TP(A1)</td>
<td>29%</td>
<td></td>
<td>82%</td>
</tr>
<tr>
<td>LSTP 127</td>
<td>TP(A1)</td>
<td>5%</td>
<td>92%</td>
<td>9%</td>
</tr>
<tr>
<td>LSTP 134</td>
<td>TP(B1)</td>
<td>36%</td>
<td>91%</td>
<td></td>
</tr>
<tr>
<td>LSTP 146</td>
<td>TP(A1)</td>
<td>36%</td>
<td>99%</td>
<td>63%</td>
</tr>
<tr>
<td>LSTP 147</td>
<td>TP(A1)</td>
<td>21%</td>
<td>77%</td>
<td>54%</td>
</tr>
<tr>
<td>LSTP 148</td>
<td>TP(A1)</td>
<td>17%</td>
<td>96%</td>
<td>55%</td>
</tr>
<tr>
<td>LSTP 104</td>
<td>TP(A1)</td>
<td>11%</td>
<td>89%</td>
<td>77%</td>
</tr>
</tbody>
</table>
Injection /Production Surveillance Tools

- Merit has a robust SCADA system that provides production well testing, injection volumes and pressure data
- System provided daily reports that were utilized by field personnel to manage daily operations
- Identified a need to develop Exception Based Reports that identified patterns and wells that needed attention
 - Well Testing Report- Identified production drops & testing issues
 - Injection Report- Identified WAG switching candidates and metering issues
 - Directly link to Reservoir Surveillance Tools
Impact of Reservoir & Production Surveillance

- Helped identified downspacing opportunities in Cambrian flood
- Development of WAG Management Tool at the pattern level
- Identified and executed several conformance modification projects
- Develop surveillance tools that can be utilized in other Merit’s CO₂ WAG floods
- Arrested production decline in all reservoirs
Thank You