Embedding Factorizations in Hypergraphs

Mohammad Amin Bahmanian
University of Ottowa

A hypergraph \mathcal{G} is a pair (V, E) where V is a finite set called the vertex set, and E is the edge set, where every edge is a subset of V. The degree of a vertex is the number of edges containing that vertex. A k-edge-coloring of \mathcal{G} is a mapping $f : E \rightarrow C$, where C is a set of k colors, and the edges of one color form a color class. An r-factor \mathcal{H} of \mathcal{G} is composed of all the vertices and some (or perhaps all) of the edges of \mathcal{G} so that each vertex in \mathcal{H} is of degree r.

Let $[m] = \{1, \ldots, m\}$, and let $K_m^h = ([m], \binom{[m]}{h})$ ($\binom{[m]}{h}$ is the collection of all h-subsets of $[m]$). Given a k-edge-coloring of K_m^h, we discuss the conditions under which this coloring can be extended to a coloring of K_n^h (for $n \geq m$) so that each color class in K_n^h is an r-factor.