Computing Hamiltonian cycles in finite graphs

Matthew Schroeder
Idaho State University

A variety of algorithms have been developed to determine existence of, count, and find Hamiltonian cycles in a graph. Staples proposed “A new adjacency matrix for finite graphs” in order to count the number of self-avoiding k-step walks in a graph. We alter this matrix to explicitly determine all Hamiltonian cycles in a finite graph and provide natural efficiencies for implementation.