Answer two of the following problems.

1. Denote by S_3 the nonabelian group of order 6. How many homomorphisms are there from S_3 to S_3? List them all.

2. Let G be a group, and let A, B be normal subgroups of G such that $G = AB$. Let $N = A \cap B$. Show that $G/N \cong A/N \times B/N$.

3. Let G be a group generated by two distinct elements x, y of order 2.
 (a) Show that G has an abelian normal subgroup H of index 2.
 (b) What are the possibilities for the order $|G|$? In each case indicate also the order $|Z(G)|$ of the centre. Justify your answers.

4. Let $G = GL_n(\mathbb{C})$, the group of invertible complex $n \times n$ matrices, and let $T \leq G$ be the subgroup consisting of all diagonal matrices with nonzero diagonal entries. Show that T is a maximal abelian subgroup of G, i.e. the only abelian subgroup of G containing T, is T itself.