A Cost-Benefit Analysis of Drip Irrigation

By: Aaron Hutson

How A Drip Irrigation System Works

- Applies water directly to plant's root zone
- Uses drip lines with emitters to accomplish this
- System has pressure regulators, chemical injectors and control equipment to get water to drip lines
- Can be automated more than other systems

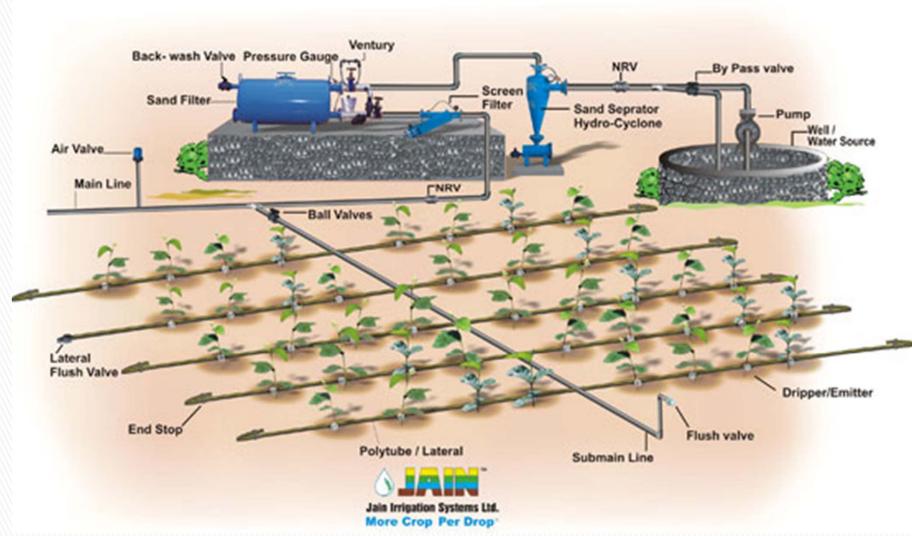


Photo from: http://www.justbiit.com/cms/irrigatio n/?Drip_Irrigation_Vs_I-SyS

University of Nebraska Studies

- 2 years, 2005 and 2006
- Found that water stress will have a negative impact on yields
- Found that drip irrigation will improve the crop's water use efficiency
- Improved efficiency can lead to lower irrigation costs

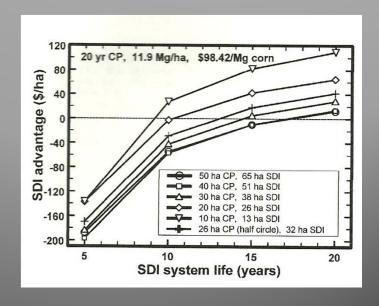
Kansas State University

- System has been in use since 1989
- System has not had any major problems or failures while in use
- Study observed that drip irrigation life expectancy allows it to be competitive with center pivot systems
- Observed lower nitrogen build up in groundwater when nitrogen was fertigated with drip irrigation system

California Irrigation Conversion

- There are about 73,000 acres that have converted from flood and sprinkler systems to drip irrigation systems
- Most conversion is due to drip irrigation with groundwater pumping being more reliable and efficient
- There are a lot of farmers planting almonds, drip irrigation offers excellent irrigation guarantees
- Some farmers won't convert, mostly due to poor groundwater availability or quality

Initial Investment Costs


- Flood/Furrow system: about \$165/acre
- Center pivot system: about \$367/acre
- Drip irrigation system: about \$832/ acre
- Also need to consider: anticipated water availability, soil type, field shape, field size, anticipated crop price, anticipated yield, anticipated input costs

Water Use Efficiency

- Flood/Furrow system: about 65%
- Center pivot system: about 85%
- Drip irrigation system: about 95%–99%
- Factors impacting efficiency: Soil type, terrain, crop health, weather

Center Pivot vs. Drip Irrigation

- Time for drip irrigation system to pay its initial investment back vs. Center Pivot
- Both systems life expectancy: 20 years

Overall Possible Returns

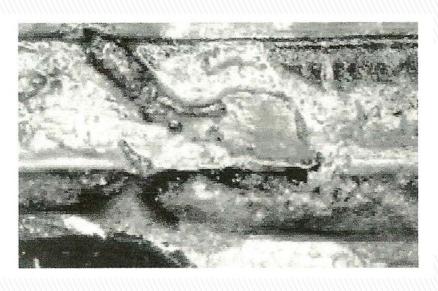
- This farmer had some government financial assistance
- Field size unknown
- Drip system
 allowed for better
 profits from
 reduced inputs and
 increased yield

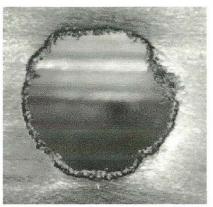
Drip Irrigation Payback in Years Based on Actual Results*

	Drip Scenario 1:	Drip Scenario 2:	Drip Scenario 3:	
Drip Irrigation System Investment	\$1,200	\$1,200	\$1,100	per acre
EQIP Cost Share Grower Investment	\$0.0 \$1,200.0	\$0.0 \$1,200.0	\$330.0 \$770.0	30% of cost per acre
Potential Yield Increase with Drip (assuming 175 bu/ac with Gravity)	50	50	100	bushels/acre
Corn Price	\$3.50	\$2.50	\$3.50	per bushel
Potential Additional Revenue	\$175.00	\$125.00	\$350.00	per acre
Potential Savings				
Fuel Savings	\$25.00	\$25.00	\$25.00	per/acre
Labor Savings	\$26.62	526.62	\$26.62	per/acre
Chemical/Fungicide Savings	\$27.50	\$27.50	\$27.50	per/acre
Fertilizer Savings	\$43.88	\$43.88	\$43.88	per/acre
Culityation Savings	\$37.50	\$37.50	\$37.50	per/acre
Potential Cost Savings	\$160.50	\$160.50	\$160.50	per/acre
Payback Calculation †	3.6	4.2	1.5	Years

^{&#}x27;Results based on specific conditions - variations may apply.

[†] Grower Investment divided by sum of Potential Additional Revenue and Potential Cost Savings.

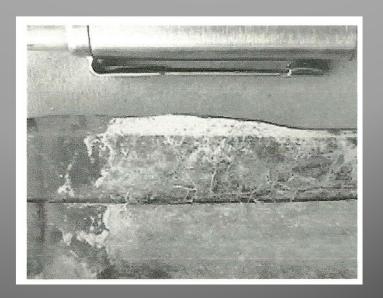

Drip Scenario 1: No Subsidy: 50 bu/ac yield increase: \$3.50/bu Drip Scenario 2: No Subsidy: 50 bu/ac yield increase: \$2.50/bu


Drip Scenario 3: EQIP Subsidy: 100 bu/ac yield increase: \$3.50/bu

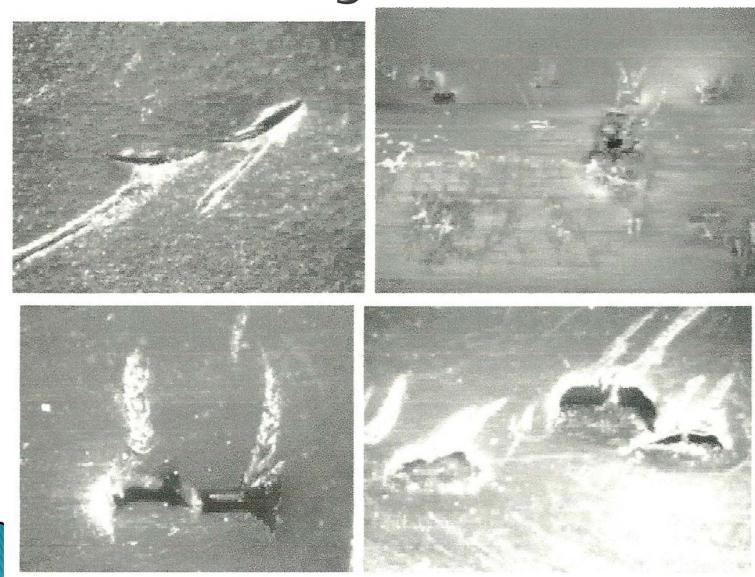
Common Problems

- Root intrusion into drip tape
- Insect damage to drip tape
- Rodents damaging drip tape
- Some soils are fine enough particle size to enter drip tape through emitters
- Some bacteria may combine with soil particles to plug emitter

Common Problems (cont.)



Bacteria and soil combining to plug emitter


Insect damage

Root Intrusion

Rodent Damages

Solutions to Problems

- Insecticide injection to kill insects
- Chlorination and other chemical treatments to kill bacteria
- Herbicide injection to kill roots
- No good solution known for rodents at this time

Conclusions

- Drip irrigation has high initial costs, but does have the potential to pay for itself fairly quickly
- Drip irrigation has better water efficiency, making it a good choice in low water or water restricted areas
- Depending on your willingness to do so, drip irrigation is a good investment overall

Questions?