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a b s t r a c t

While rural freeways generally have lower crash rates, interactions between driver behavior, traffic and
geometric characteristics, and adverse weather conditions may increase the crash risk along some free-
way sections. This paper examines the safety effects of roadway geometrics on crash occurrence along
a freeway section that features mountainous terrain and adverse weather. Starting from preliminary
exploration using Poisson models, Bayesian hierarchical models with spatial and random effects were
developed to efficiently model the crash frequencies on road segments on the 20-mile freeway section of
study. Crash data for 6 years (2000–2005), roadway geometry, traffic characteristics and weather infor-
mation in addition to the effect of steep slopes and adverse weather of snow and dry seasons, were used
in the investigation. Estimation of the model coefficients indicates that roadway geometry is significantly
urve
ayesian model

associated with crash risk; segments with steep downgrades were found to drastically increase the crash
risk. Moreover, this crash risk could be significantly increased during snow season compared to dry sea-
son as a confounding effect between grades and pavement condition. Moreover, sites with higher degree
of curvature, wider medians and an increase of the number of lanes appear to be associated with lower
crash rate. Finally, a Bayesian ranking technique was implemented to rank the hazard levels of the road-
way segments; the results confirmed that segments with steep downgrades are more crash prone along

the study section.

. Introduction

The COTrip system has been developed by Colorado Department
f Transportation (CDOT) to provide the traveler with impor-
ant information about travel time, congestion, adverse weather
onditions and lane closure due to occasional avalanche danger,
aintenance on the road and/or road crashes. This information is

rovided by as a part of an Intelligent Transportation System (ITS)
nd can be accessed through the website http://www.cotrip.org.
n addition, the real time information is dynamically disseminated
o road users via Dynamic Message Signs (DMS). In an effort to
pgrade existing Intelligent Transportation System to include Vari-
ble Speed Limits (VSL), CDOT has ambitious plans to implement
he system first within a 20 miles long section on Interstate 70 (I-

0), this section experienced higher than average crash frequency
ver the last few years. It is expected to substantially improve
afety by managing the speed limit along the section during adverse
eather.

∗ Corresponding author.
E-mail address: mahmed@mail.ucf.edu (M. Ahmed).

001-4575/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.aap.2011.03.021
© 2011 Elsevier Ltd. All rights reserved.

The section of interest features mountainous road geometry and
frequent severe weather. As a result of this mountainous terrain,
this section of the interstate highway features steep slopes up to
7%. Moreover, climate with all its aspects of temperature, humidity,
precipitation and wind is dramatically impacted by the consid-
erable high elevations. This section experienced relatively higher
fatality rate, a 0.48 per 100 million vehicle miles traveled (MVMT),
compared to the entire interstate system in 2004 (fhwa.dot). In
order to come up with an effective ITS upgrade, it is vital for a pre-
liminary evaluation of the contributing factors to crash occurrence
and identification of hotspots.

This research attempts an exploratory safety analysis on this
section of the freeway. In particular in this paper, we aim at (1)
examining the effect of mountainous highway geometrics and traf-
fic characteristics in adverse weather on the frequency of crashes,
(2) identifying hazardous road segments and crash-prone time
periods for more focus within an Advanced Traffic Management

strategy.

To achieve the abovementioned objectives, vehicle crash data
from I-70 in the state of Colorado were obtained for 6 years
(2000–2005) together with roadway geometry, traffic character-
istics, and adverse weather represented in the snow and dry

dx.doi.org/10.1016/j.aap.2011.03.021
http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
http://www.cotrip.org/
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Fig. 1. Longitudinal profile.

eason. A preliminary data exploration was first conducted to
xamine the important factors that may contribute to crash occur-
ence. Bayesian hierarchical models with random effects were used
o fully account for the uncertainty associated with parameter
stimates and provide exact measures of uncertainty on the pos-
erior distributions of these parameters and hence overcome the

aximum likelihood methods’ problem of overestimating preci-
ion because of ignoring this uncertainty (Goldstein, 2003; Rao,
003). Application of random effects models will help also in pool-

ng strength across sets of related units and hence improve the
arameter estimation in spare data (i.e. crash frequency models)
Aguero-Valverde and Jovanis, 2007). Moreover, since the crash risk

ight be spatially correlated among adjacent roadway segments,
ayesian spatial models were also examined. Finally, Bayesian
anking technique was used to effectively rank the hazard levels
ssociated with the roadway segments of analysis.

. Description of roadway section

.1. General description

The freeway section under consideration is a 20.13 miles long of
-70 starting at Mile Marker (MM) 205.673 at Silverthorne and ends
t MM 225.80 at Silver Plume in Colorado. The section encompasses
hree main parts; the Eisenhower Memorial Tunnel of 1.69 miles
ong starting at MM 213.18 and ending at MM 214.87, about
.5 miles of the west side of the tunnel and 11.60 miles of the east
ide. The Eisenhower Tunnel is a twin bore tunnel with 26 ft of
ravel width (two lanes of 13 ft each). The tunnel is the highest point
long the interstate highway system with an elevation of 11,158 ft
nd an average grade of 1.7% rising toward the west (Colorado.info).

.2. Road alignment

The section passes through extreme mountainous terrain. The
orizontal alignment of this section has relatively several sharp
orizontal curves’ radii. In addition to the steep grades on the west
nd east sides of the tunnel, as shown in Fig. 1, the west side has
rades up to about 7% while the east side has grades that vary from
.3% to 6%.
.3. Climate

The section has a quite complex climate compared to most of the
.S. highways. The elevations in the vicinity of the area vary from
Prevention 43 (2011) 1581–1589

8700 ft to more than 14,000 ft on the highest peaks above the Eisen-
hower tunnel. The climate within this section is affected by the high
altitudes and typically results in variations of all aspect of climate
such as temperature, humidity, precipitation and, wind within
short distance and time. The crash report identifies the weather and
pavement conditions when a crash occurs. The plots of crash fre-
quencies versus weather and road conditions (see Fig. 2) conform to
the metrological data (climate.colostate.edu), suggesting that there
are two main seasons: snow season from October through April
and the dry season from May through September which experience
small amount of rain, this can explain the small percentage of rain
related crashes of 6% that occurred almost exclusively within the
dry season. Regarding the distribution of weather-related crashes
over the 6 years, 47% of the total crashes occurred within snowy
weather where the pavement condition was icy, snowy or slushy,
about 6% of the total crashes occurred in rain where the pave-
ment was wet while all other 47% occurred within clear weather
and dry pavement conditions. It is worth mentioning that small
percentage of snow related crashes occurred within the defined
dry season (about 2%) while a negligible number of rain related
crashes occurred within the defined snow season (only 2 crashes
on WB in the month of October within the 6 years). Classifying
the climate into two main seasons will help us understand if there
is a significant difference between crashes occurring within sea-
sons that feature snow versus dry and the underlying seasonal
effect on the roadway segments. Careful examination of the trends
depicted in Fig. 2 produced these two main seasons. Although, all
crashes related to weather and pavement conditions are aggregated
within the two seasons to develop the data structure needed for
the modeling effort of this study, the likelihood of crash occur-
rence in normal weather and dry pavement conditions remains
constant in both seasons. Moreover, modeling the crash frequency
of each specific weather condition (to account for a third rain sea-
son) would result in zero inflated problems associated with the
short segments of the mountainous road section and the low crash
frequency. Thus we were constrained by the data to use 2 main sea-
sons, although more seasons might be possible on other freeways
with higher crash frequencies and more distributed crashes per
season.

3. Data preparation and preliminary crash analysis

There are many factors that contribute to crash occurrence,
including driver behavior, traffic and geometric characteristics,
weather conditions and interrelationships between these differ-
ent factors. Unfortunately, the driver behavior factors are usually
not available. Therefore, the available roadway, traffic and weather
conditions factors were used in this study. There were two sets of
data used in the study; roadway data and crash data. The roadway
data were collected from CDOT, Roadway Characteristics Inventory
(RCI) and Single Line Diagrams (SLD). The crash data were obtained
from the road crash database maintained by CDOT.

A first but essential step in data preparation is road segmen-
tation. Given the variation of road geometry, a major criterion
employed for segmentation in this study was homogeneity in road-
way alignment. According to the RCI data, both horizontal and
vertical alignments were scrutinized. Moreover, a minimum-length
criterion was set to 0.1 mile to avoid the low exposure problem and
the large statistical uncertainty of the crash rate per short segment
(Miaou, 1994). Segments shorter than 0.1 mile were combined

with adjacent segment with similar geometrical characteristics as
much as possible. For example, a 0.021 mile long straight segment
was combined with the preceding segment with smooth curve of
39,755 ft radius, rather than the subsequent sharp-curved segment
with 1813 ft radius. With this approach, 20 less-than-0.1 mile seg-
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Fig. 2. Distribution of the monthly crashes by we

ents from 104 homogeneous segments were combined with their
djacent segments, resulting in 84 segments for each direction.

Table 1 illustrates the definitions and descriptive statistics of
raffic, road geometrics, and weather characteristics for the seg-

ents.
Segment length and AADT are multiplied to estimate daily VMT

o reflect the crash exposure for each segment. Among risk fac-
ors, of most interest are road alignment factors. The longitudinal
rades are defined as a categorical variable with 8 categories grad-
ally from upgrade (being positive) to downgrade (being negative),
ategorizing grades within 2% according to the American Associa-
ion of State Highway and Transportation Officials (AASHTO, 2004)
lassification would help in reducing the number of short segments
y combining the segments that share all other geometrical char-
cteristics and fall within the same grade range and hence avoiding
xcessive zero frequency within short segments without losing
nterpretable useful information about grades. For segments with

ultiple grades, the equivalent grade for those segments was cal-
ulated in accordance with the Highway Capacity Manual (HCM,
000) (Highway Capacity Manual 2000). Specifically, an overall
verage grade was calculated in case of no single portion of the
rade is steeper than 4% or the total length of the grade is less than
.75 mile. For some sub segments steeper than 4%, the HCM (2000)
Highway Capacity Manual 2000) composite grade procedure was
sed to determine an equivalent grade.

Defining variables for horizontal alignment is more complicated.
he basic parameters, including curve radius, deflection angle, and
egree of curvature, are parameterized for the curve contained in
ach segment. The curve direction is also monitored as safety effect
ay be different between left-side and right-side curves. Other

ariables speed limit, median width, shoulder width, number of
anes, and truck percentage, are also included as control variable
lthough there are no much variation for these factors at the 20-
ile freeway section.
In the study area, a total of 1877 crashes were reported over

he study period (2000–2005), 804 and 1057 crashes occurred
n the East and West bounds, respectively. Sixteen crashes were
ot assigned to any of the East or West directions and they were
xcluded from this study. Four hundred were rear end crashes, 234
urn over crashes and 370 were collision with guard rail or median
arrier while the side swipe crashes were 223 on the mainline.
wenty five percent of the crashes occurred on curves with steep

rades, about 60% occurred on straight segments with steep grades
nd the remaining 15% occurred on either curve or straight with
at grades.

Figs. 3 and 4 depict a preliminary crash distribution for east and
est bound respectively. In the figures, each of the east and west
and pavement conditions for aggregated 6 years.

bound sections are divided into 3 miles long sub-sections. Each of
these sub-sections has different number of homogenous segments
according to roadway geometry as explained above (e.g. first sec-
tion at MM 207 has 13 homogenous segments, starts at MM 206
and ends at MM 208).

As shown in Fig. 3, although the section that starts at MM 215
and ends at MM218 at the east bound has the second least number
of 9 segments, it has the highest mean of the crash frequency of 6
and 18 for dry and snowy seasons, respectively. It is worth men-
tioning that the sub-section at MM 216 on east bound is located
after the tunnel with average downgrade of 6.5%.

Generally, west bound has higher crash frequency within the
3 miles sub-sections than the east bound in both seasons. Simi-
larly, the 3 miles section centered at MM 216 has the highest mean
of the crash frequency of 5.56 followed by the sub-section at MM
213 having 5.30 in rain season while the sub-section at MM 213
experienced a mean of the crash frequency of 18 in the snow
season.

4. Model specification

The factors affecting the occurrence of crashes could be concep-
tually categorized into two groups, associated with crash exposure
and crash risk, respectively.

Crash occurrence∼Crash exposure × Crash risk

While exposure factors account for the amount of opportunities
for crashes which traffic systems or drivers experience, the risk
factors reflect the conditional probability that a crash occurs given
unit crash exposure. Statistically, the stochastic crash occurrence
is rationally assumed to be Poisson process, which justifies the
popular use of the Poisson distribution to model crash frequencies
(Jovanis and Chang, 1986).

yit |�it∼Poisson(�it) = Poisson(�iteit)
log�it = logeit + X′

itˇ

in which, yit is the crash count at segment i (i = 1,. . .,168(84 seg-
ments on each direction)) during season t (t = 1 for dry season, 2
for snow season) with the underlying Poisson mean �it. �it and eit,

contributing to �it, denote risk factors (covariates Xit and the coef-
ficients �) and exposure factors, respectively. Based on parameter
estimation, the Incidence Rate Ratio (IRR) is generally computed
to more conveniently understand the impact of covariates, say k,
on the expected crash frequency for one unit change of continuous
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Table 1
Summary of variables descriptive statistics.

Variables Description Mean Stdev Min Max

Response variable
Crash frequency Frequency of all crashes per segment 5.45 7.37 0 55

Exposure variables
Segment length Length of the road segment (mile) 0.24 0.16 0.099 0.92
AADT Average annual daily traffic 27626 1889 25500 29300
Daily VMT Daily vehicle mile traveled 6582 4419 2267 23409

Risk factors
Season Dry = 0, snowy = 1 0.5 0.5 0 1
Grade Longitudinal grade, eight categories: Upgrade:

0–2% = 1, 2–4% = 2, 4–6% = 3, 6–8% = 4;
Downgrade: 0–(−2)% = 5, (−2)–(−4)% = 6,
(−4)–(−6)% = 7, (−6)–(−8)% = 8

4.45 2.40 1 8

Curve radius Curve radius (ft) 4396 6356 1348 39755
Deflection angle Deflection angle of curve 21.07 13.43 1.02 48.90
Degree of curvature Degree of the curve per segment with curves 2.39 1.13 0.14 4.25
Curve length Length of the curve per segment with curves 0.17 0.09 0.01 0.48
Curve length Ratio Percentage of curve length to total segment

length
0.53 0.46 0 1

No of lanes Number of lanes: 2 lanes = 0, 3 lanes = 1 0.42 0.49 0 1
Median width Width of median (ft) 20.67 15.88 2 50

v

I

o
w
(
u
f
a
w
p

s
b
l
H

Outside Shoulder Outside shoulder width (ft)
Inside shoulder Inside shoulder width (ft)
Speed limit Posted speed limit
Truck percentage Percentage of trucks

ariables or binary effect for dummy variables (Haque et al., 2010).

RRk = E(yit |Xit, xk + 1)
E(yit |Xit, xk)

= exp(ˇk)

In this current study, daily VMT, the product of AADT and length
f road segment, is employed to reflect crash exposure associated
ith each road segment. Moreover, a time exposure coefficient

1 for dry season, log(5/7) for snow season) is used to offset the
nbalanced design of seasons (5 month for dry season and 7 month
or snow season). As shown in Table 1, risk factors include road
lignment (grade and curve), road design (number of lanes, median
idth, and shoulders), traffic characteristics (speed limit and truck
ercentage), and the environmental factor (season).
In regard to model structure, given the “variance = mean” con-
traint of Poisson model, the Negative Binomial (NB) model has
een extensively employed to deal with the over-dispersion prob-

em in crash data (Miaou and Song, 2005; Persaud et al., 1997, 2001;
arwood et al., 2000; Hauer et al., 2002; Hovey and Chowdhury,

Fig. 3. East bound crash frequencie
6.80 3.20 1 20
3.99 1.83 0 12

60.95 4.8547 50 65
10.35 0.39 10 10.8

2005; Shankar et al., 1995). Nevertheless, as ordinary NB models
only provides a blind account for individual heterogeneity, numer-
ous techniques have recently been explored to more specifically
accommodate for various crash data features, for example, zero-
inflation model for excess zeros (Shankar et al., 1997; Carson and
Mannering, 2001; Lee and Mannering, 2002; Lord et al., 2005;
Lord et al., 2007), a two-state Markov switching count-data model
to overcome the drawbacks of the traditional zero-inflated Pois-
son (ZIP) and zero-inflated negative binomial (ZINB) (Malyshkina
et al., 2009), spatial and time series model for spatiotemporal data
(Aguero-Valverde and Jovanis, 2006; Quddus, 2008a,b; Huang et al.,
2010), hierarchical model for multilevel data structure (Huang
and Abdel-Aty, 2010). Furthermore, the use of variable dispersion
parameters in negative binomial models has been reported useful

to improve the model-fitting (Heydecker and Wu, 2001; Miaou and
Lord, 2003; Miranda-Moreno et al., 2005; El-Basyouny and Sayed,
2006; Mitra and Washington, 2007; Lord and Park, 2008). Multi-
variate count models have also been applied to jointly model crash
frequency at different levels of injury severity (Tunaru, 2002; Park

s in dry and snowy seasons.
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Fig. 4. West bound crash freq

nd Lord, 2007; Ma et al., 2008; Ye et al., 2009; Aguero-Valverde
nd Jovanis, 2009; El-Basyouny and Sayed, 2009a). More recently,
more flexible random parameter modeling approach, including

andom intercept and/or random slope, is emerging in the litera-
ure, in which model parameters are allowed to vary from site to
ite (Li et al., 2008; Anastasopoulos and Mannering, 2009; Huang
t al., 2008, 2009; El-Basyouny and Sayed, 2009b; Huang and Chin,
010). Lord and Mannering (2010) provided a detailed review of
he key issues associated with crash-frequency data as well as an
ssessment of the strengths and weaknesses of the various method-
logical approaches that have been used to address these problems.

Despite the availability of various statistical model selection
easures, selection of appropriate crash prediction models should

e dependent on the characteristics of the specific crash data.
pecifically, we have three basic observations for the current crash
ata: (a) Over-dispersion: the data may be highly over dispersed as
he overall mean and variance equal to 5.45 and 54.32, respectively,
s shown in Table 1; (b) Site-specific structure: each segment has
wo observations; crash count during each of the dry and the snow
easons. Hence, random effects may be appropriate to account for
he global site-specific effects; (c) Spatial distribution: as road seg-

ents are mutually connected, spatial heterogeneities, resulting
rom spatial confounding factors, may exist for adjacent segments.

Based on these observations, two alternative models are sug-
ested, i.e. random effect model (also called hierarchical Poisson
odel) and spatial model, both of which are modified from the

asic Poisson model.

Random effect model : log�it = logeit + X′
itˇ + �i

exp(�i)∼gamma(a, a)

overdispersion parameter : k = 1
a

Spatial model : log�it = logeit + X′
itˇ + �i + �i

�i∼normal
(

0,
1
�h

)

�i∼normal
(

�̄i,
1
�i

)
with

∑

�̄i = i /= j�jωij∑

i /= jωij
and �i = �c∑

i /= jωij

˛ = sd(�)
sd(�) + sd(�)
es in dry and snowy seasons.

Clearly, the random effect model is actually a slight modification
of the ordinary NB model, in which the two observations associated
with one same segment share an equal extra error component. In
the spatial model, the extra variance component consists of two
parts, �i for site-specific random effects, denoting the global extra-
Poisson variability, and �i for spatial correlation with the Gaussian
Conditionally Autoregressive prior (CAR model, Besag, 1974). It is
noted that �i is assumed to be Normal distribution rather than the
Gamma distribution in the random effects model. This is because
the multivariate normal distribution is more convenient computa-
tionally while combining with the Gaussian spatial component (�i)
than the multivariate version of Gamma distribution (Huang et al.,
2010), This also is suggested by the literature that Poisson Lognor-
mal PLN was found to provide the best statistical fit for the spatial
model (Milton et al., 2008; Anastasopoulos and Mannering, 2009;
Li et al., 2008; El-Basyouny and Sayed, 2009a). Regarding ω, the
proximity matrix, a 0–1 adjacency weight is employed. In other
words, each segment is specified an equal weight to its adjacent
segment(s). With the model specification, ˛ denotes the proportion
of variability in the random effects that is due to spatial hetero-
geneity, in which, sd is the empirical marginal standard deviation
function.

Although the most common CAR model is employed in this
study to model spatial effects, there are other techniques avail-
able in the literature such as Simultaneous Autoregressive (SAR),
Moving Average (MA) (Congdon, 2007), and Multiple Membership
(MM) (Goldstein, 1995; Goldstein et al., 1998; Langford et al., 1999).
El-Basyouny and Sayed (2009c) compared CAR, MM and Extended
Multiple Membership (EMM) to the traditional PLN model, they
concluded that EMM provided the best fit with a little better per-
formance than CAR and both EMM and CAR outperformed the MM
and PLN.

The candidate models could be estimated conveniently by
Bayesian inference using the freeware WinBUGS package (Lunn
et al., 2000). The CAR model is embedded in the function
“car.normal” in GeoBUGS, an add-on to WinBUGS that fits spatial
models. The DIC, a Bayesian generalization of AIC, is used to mea-
sure the model complexity and fit (Spiegelhalter et al., 2003). In
addition, a R2-type Bayesian measure is developed to evaluate the

model fitting,

R2
Bayes = 1 −

∑
∀i,t(yit − �it)

2

∑
∀i,t(yit − ȳ)2

,
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Table 2
Parameters estimates.

Model Poisson Random effect Spatial

Credible interval Credible interval Credible interval

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Season [snow] 0.600 0.501 0.698 0.600 0.499 0.702 0.600 0.498 0.710
Season [dry] (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Grade[1] −1.302 −1.538 −1.072 −1.287 −1.797 −0.778 −1.041 −1.950 −0.097
Grade[2] −0.855 −1.026 −0.685 −0.870 −1.322 −0.422 −0.458 −1.400 0.534
Grade[3] −0.786 −0.949 −0.617 −0.907 −1.285 −0.516 −0.316 −1.251 0.679
Grade[4] −0.530 −0.735 −0.328 −0.297 −0.845 0.277 0.237 −0.745 1.286
Grade[5] −1.193 −1.421 −0.981 −1.167 −1.674 −0.657 −0.663 −1.374 0.047
Grade[6] −0.888 −1.084 −0.704 −0.857 −1.322 −0.386 −0.434 −1.095 0.244
Grade[7] −0.698 −0.884 −0.515 −0.672 −1.175 −0.185 −0.281 −0.886 0.342
Grade[8] (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Degree of curvature −0.032 −0.066 0.003 −0.048 −0.131 0.035 −0.050 −0.132 0.029
Three road lanes −0.484 −0.620 −0.346 −0.509 −0.846 −0.157 −0.435 −1.119 0.321
Median width −0.007 −0.010 −0.003 −0.006 −0.015 0.003 −0.012 −0.027 0.002
k (dispersion parameter) – – – 0.418 0.305 0.561 – – –
sd(˚i): Spatial correlation – – – – – – 0.469 0.297 0.710
sd(�i): site-specific random effect – – – – – – 0.584 0.481 0.686
˛ – – – – – – 0.441 0.330 0.560

11
145

w
t
m

5

5

o
i
t
t
m
t
c
t
a
o
D

n
c
s
t
t
m
s

i
c
r
c
(
p
a
r
d
9
fi

Furthermore, based on estimation of pD (the number of effec-
tive variables in Bayesian model) and R2, we found that, compared
to the random effect model, the spatial model has equal R2 (0.88)
and has only an increase of 5 effective variables (pD from 117.3

[1]

[2] [3]

[4]

[5]

[6]

[7]

[8]

-1.500

-1.000

-0.500

0.000

0.500

97.50%
pD: no of effective variables 11.9 – –
DIC 1903 – –
R2 (with error terms) 0.61 0.59 0.62
R2 (without error terms) – – –

hich estimates the proportion of explained sum of squares to
otal sum of squares. It could be regarded as a global model-fitting

easurement.

. Results and discussion

.1. Model estimation and diagnostics

In model estimation, with no prior knowledge of the likely range
f values of the parameters for mountainous freeway section, non-
nformative priors were specified for parameters. For each model,
hree chains of 20,000 iterations were set up in WinBUGS based on
he convergence speed and the magnitude of the dataset. All the

odels were converged reasonably through visual inspection on
he history plots and confirmed by the Brooks, Gelman and Rubin
onvergence diagnostics (Brooks and Gelman, 1998). After ensuring
he convergence, first 10,000 samples were discarded as adaptation
nd burn-in. To reduce autocorrelation, only every tenth samples
f the rest were retained for parameter estimation, calculation of
IC and Bayesian R2, as well as site rankings.

Exploratory modeling indicated that the crash frequencies are
ot significantly associated with Speed Limit, Truck Percentage, Per-
entage of Curve Length in all the three models. This was expected
ince there is a little variation in those variables between segments;
he speed limit and the truck percentage are almost identical along
he considered section and hence they were excluded from the final

odels. Results of model estimation with the remaining factors are
ummarized in Table 2.

Comparisons among the three candidate models imply very
nteresting findings. On one hand, the over-dispersion observed in
rash data is confirmed by the extra variance components of the
andom effect model and the spatial model. Specifically, signifi-
ant dispersion parameter is identified in the random effect model
k = 0.418, 95%CI (0.305, 0.561)). In the spatial model, variance com-
onents from spatial correlation and site-specific random effects

re 0.469 (95%CI(0.297, 0.710)) and 0.584 (95%CI(0.481, 0.686)),
espectively, which apparently indicate the proportion of the over-
ispersion accounted by the spatial clustering is 44.1% (˛ = 0.441,
5%CI(0.330, 0.560)). Moreover, model diagnostic measures con-
rmed that the random effect and spatial models outperform the
7.3 – – 122.3 – –
6 – – 1468 – –
0.88 0.86 0.90 0.88 0.86 0.90
0.52 0.32 0.60 0.39 0.02 0.56

Poisson model by accounting for over-dispersion. Specifically, DIC
is substantially reduced from 1903 in Poisson to 1456 in the ran-
dom effect model and 1468 in the spatial model. The Bayesian R2

is increased from 0.61 to 0.88.
On the other hand, however, while all the parameters are sig-

nificant in the Poisson model except of Degree of curvature, some
of them come out to be insignificant in the random effect model
(Grade(4), and Median Width). This phenomenon becomes more
remarkable especially in the spatial model where almost all the
variables turn out to be insignificant despite having the same sign
as in the basic Poisson model. Another interesting observation
from the parameter coefficients is that the safety effects of most of
the geometry-dependant factors fade away gradually from Poisson
through the other two, e.g. Grade, Degree of curvature, and Percent-
age of Curve Length etc. But the non-geometry-dependant factor
(Season) remains constant (0.600 in Poisson, random effect model
and spatial model).
-2.000

Mean

2.50%

Fig. 5. Grade coefficients.
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o 122.3). With all these observations, we argue that the spatial
odel does not actually outperform the random effect model. This
ay be reasoned that the spatial heterogeneity mostly depends

n road geometries among adjacent segments, which have been
ccommodated for by the well-defined geometry-dependent fac-
ors in the models. In other words, with explicit consideration for
arious road geometric factors in the model, the specification for
patial effect becomes redundant and hence, may reduce the sig-
ificance of the geometric factors instead. We further confirmed
his argument by calculating an R2 which does not include residual
erms for crash expectations (i.e. �it), as shown by R2 (without error
erms) in Table 2. Clearly, results indicate that the inclusion of error
erms reduced the model-fitting proportion explained by the risk
actors, especially in the spatial model.

In summary, the over-dispersion problem in Poisson model
s effectively addressed by the random effect and spatial mod-

ls, but the spatial model may have the problem of redundantly
ccounting for geometry-dependant effect. Therefore, the random
ffect model, which has the least DIC, is selected for further model
nference and site ranking. The adequacy of the random effects
ssumption may be assessed with lack-of-fit statistics, although
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these statistics test the fit of the model as a whole rather than the
specific random effects assumption. This random effects assump-
tion may be made less restrictive if � is allowed to vary with specific
site effects.

5.2. Interpretation of risk factors

Season was found to significantly affect crash occurrence
(ˇ = 0.600, 95%CI (0.499, 0.702)), the Incident Rate Ratios are
obtained by exponentiation of the regression coefficients exp[ˇ].
IRR value shows that the risk of crashes during snow season was
approximately 82% higher than the crash risk in dry season, given all
other variables constant. The increased crash risk within the snow
season may be explained by the confounding effect of the snowy,
icy, or slushy pavement conditions during the snow season, and
exacerbated by the steep slopes. This finding is important for offi-

cials to pay more attention and devote more resources during snow
season than in dry season for traffic management.

Road alignment factors, i.e. slope and curve, are the other key
variables of interest. Preliminary analysis on the data indicates that
more than 85% of the total crashes occurred on steep grades (Grade
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−2% or >2%). Steep grades are often considered implausible in
esign, and all design manuals recommend avoiding or keeping
inimal the use of steep slopes. Nevertheless, this is not the case
ith mountainous terrain highways since the steep grades cannot

e easily avoided. Longitudinal slope comes out to be significant
s indicated in Table 2. The effects of various slopes are compared
o Grade[8] (reference condition, steep slope ranges from −6% to
8%). Fig. 5 shows the slope coefficients and their 95% credible

ntervals, it can be noted that in order, Grade[8] is the most haz-
rdous slope followed by Grade[4], Grade[7], Grade[2], Grade[6],
rade[3], Grade[5] then Grade[1]. Generally, trends in the results

ndicate that the steeper the slope, the higher the crash risk; and
egments with upgrade slope are safer than corresponding down-
rades in the same slope range. These results are consistent with the
reliminary analysis and complementary to existing findings that
he steep grades may increase the likelihood of crash occurrence
Shankar et al., 1995; Chang and Chen, 2005).

In regard to the curve effect, although not statistically signifi-
ant, the result implies that a unit increase in Degree of curvature
ˇ = −0.048, 95%CI(−0.131,0.035), IRR = 0.95) is associated with a
% decrease in the crash risk, with all other factors equal. Actu-
lly, it is not uncommon that high degree of curvature was found
o be associated with decrease in crash likelihood (Shankar et al.,
995; Anastasopoulos et al., 2008; Chang and Chen, 2005). Previous
tudies argued that the feeling of danger along sharp curves might
ake the drivers compensate by driving more cautiously, leading

o lower crash rate instead.
Other variables included in the models are Number of Lanes and

edian Width. Results revealed that segments with three lanes
ˇ = −0.509, 95%CI(−0.846, −0.157), IRR = 0.6) are 40% less in crash
isk than two-lane segments, with all other factor being equal. This
nding conforms to the study by Park et al. (2010). The increase of
afety due to the increase in number of lanes is plausible since this
reeway has a high percentage of trucks which could be confined to
he 2 right lanes providing more space for other vehicles, contribut-
ng to easier maneuvers and less speed variance. Median width is
ssociated with a tiny positive effect (ˇ = −0.006, 95% CI (−0.015,
.003), IRR = 0.99), which is only significant in the Poisson model.
he increasing safety associated with wide median is well known
s median works as division for traffic in opposite directions and
recovery area for out-of-control vehicles (Anastasopoulos et al.,
008; Shankar et al., 1998).

.3. Ranking of sites

The ranking of sites is important to enable officials to pay more
ttention to those sites with high crash risk. Sites can be ranked by
he probability that a site is the worst or by posterior distribution of
anks (Tanaru, 2002). The separate rankings for dry and snow sea-
ons were produced based on the estimation on �it, the estimated
ankings tables are not presented here for brevity. The results con-
rmed that sites with steep grades are drastically affected during
now season and those segments received significantly higher risk
anks than in the dry season. Moreover, an overall site ranking is
eveloped by rating the weighted average of crash expectations in
he two seasons (�i1 for dry season and �i2 for snow season), i.e.,
afety Sitei = 0.42 × �i1 + 0.58 × �i2 to offset the unbalanced design
f seasons (5 month for dry season and 7 month for snow season)
s explained in the model specification section.

For illustration, the overall site rankings for the 84 segments are
lotted on the longitudinal profile for eastbound and westbound,

s shown in Figs. 6 and 7, respectively. Sites with high rank values
re more dangerous while sites with low rank values are safer. The
esults appear to be in good agreement with results from the pre-
iminary analysis that the steep downgrade sections received the
igh risk ranks in general. The segments at Eisenhower tunnel seem
Prevention 43 (2011) 1581–1589

to be safer in both east and west bounds. However, the segments
just before and after the tunnel received relatively high rank on the
eastbound. On the westbound, the downgrade segments received
most of the high ranks.

6. Conclusion

This paper presents an exploratory investigation of the safety
problems of a mountainous freeway section of unique weather con-
dition. Hierarchical Full Bayesian models were developed to relate
crash frequencies with various risk factors associated with adverse
weather, road alignments and traffic characteristics. Using the cali-
brated model, the sites were ranked in term of crash risk for further
safety diagnostics and mitigation.

In modeling, it was found that while the random effect and spa-
tial models outperform the Poisson model, the spatial model may
have the problem of redundantly accounting for the geometry-
dependant effect. Therefore the random effect model is selected
for model inference.

Crash risk during snow season was estimated to be approxi-
mately 82% higher than the crash risk in dry seasons. Results also
identified clear trends associated with the effect of slopes, i.e. the
steeper the slope, the higher the crash risk; and segments with
upgrade slope are safer than downgrades in the same slope range.
The degree of curvature is negatively correlated with crash risk,
which is consistent with previous studies that some visual varia-
tion of the road alignment may help with drivers’ alertness increase
and hence decrease crash risk. Median width and number of lanes
also showed to be effective in affecting crash risk. Segments with
three lanes are 40% less in crash risk than two-lane roads. Based
on site ranking, segments succeeding the tunnel in both east and
west bounds received the highest rank of hazardous sites. These
segments feature steep slopes and reduction in number of lanes for
the east bound. In particular sites with steep slopes should receive
more attention from officials and decision makers during snow sea-
son to control the excess of crash rate during this season. Also, the
identified sites could be included in the strategy for choosing the
location of future Variable Speed Limits.

While this study is exploratory in nature, it provides good overall
understanding of the effects of roadway geometrics and weather on
crash frequencies of mountainous freeways. This study represents
a step toward future research incorporating real-time weather and
traffic data on the individual crash level.
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