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rates differ from agency to agency because of the large number 
of variables that contribute to failures (12). This failure rate was 
found to be consistent with the failure rate from the literature for 
different states and to vary from 24% to 29% at any given time. 
New nonintrusive detection devices have become technologically 
advanced enough and sufficiently cost-effective that they may start 
replacing the commonly deployed intrusive detection devices. The 
new nonintrusive detection devices include video devices; micro-
wave and laser radar; and passive infrared, ultrasonic, and acoustic 
sensors.

The central Florida expressway system uses an AVI system for 
nonstop toll collection as well as for the provision of real-time infor-
mation to motorists within advanced traveler information systems. 
This system estimates the travel time on a segment by monitor-
ing the successive passage times of vehicles equipped with E-Pass, 
O-Pass, or Sun-Pass electronic tags at expressway open-road toll 
plazas as well as at exit ramps. Data are gathered by AVI tag readers 
that are installed for the purpose of toll collection and additional tag 
readers installed solely for the purpose of travel time estimation.

The speed data collected from ILDs and AVI systems differ sig-
nificantly. One main difference is that ILDs measure time mean 
speed, whereas AVIs measure space mean speed. Time mean speed 
is defined as the arithmetic mean of the speed of vehicles passing 
a point during a given time interval. Time mean speed therefore 
reflects the traffic condition at only one specific point. Space mean 
speed, however, is the average speed of all the vehicles occupy-
ing a given stretch of the road over some specified time period (sev-
eral definitions of space mean speed exist, depending on how it 
is calculated; the definition provided in this paper is the best to 
describe the AVI’s space mean speed). Because not all vehicles are 
equipped with AVI transponders, the accuracy of travel time estima-
tion depends on the percentage of vehicles that are equipped with 
transponders. The penetration of E-Pass users is greater than 80% 
on central Florida’s expressway system, which can provide reliable 
travel time estimates.

It is difficult to delineate from fundamental notions of time mean 
speed and space mean speed the measure of safety risk without 
detailed analyses, and a better understanding of these systems is 
essential in the safety context. Key questions are therefore whether 
AVI can be used to predict the risk of a crash in real time, what level 
of accuracy could be achieved for prediction of all crashes, and if 
that prediction performance can be improved when the single most 
frequent type of crash on freeways and expressways, the rear-end 
collision, is targeted (13). The impacts of these types of crashes 
on roadway operation are the most noticeable because most such 
crashes occur during congested periods (14).
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Although numerous studies have attempted to use data from inductive 
loop and radar detectors in real-time crash prediction, safety analyses 
that have investigated the use of traffic data from an increasingly preva-
lent nonintrusive surveillance system have not included the tag readers 
on toll roads known as “automatic vehicle identification (AVI) systems.” 
This paper (a) compares the prediction performance of a single generic 
model for all crashes and a specific model for rear-end crashes that used 
AVI data, (b) applies a Bayesian updating approach to generate full 
probability distributions for the coefficients, and (c) compares the esti-
mation efficiency of the semiparametric Bayesian modeling with that of 
logistic regression with frequentist matched case control. A compari-
son of AVI data collected before all crashes and rear-end crashes with 
matched noncrash data revealed that rear-end crashes could be identi-
fied with a 72% accuracy, whereas the generic all-crash model achieved 
an accuracy of only 69% when different validation data sets were used. 
Moreover, the Bayesian updating approach increased the accuracy of 
both models by 3.5%.

Intelligent transportation systems rely heavily on detection sys-
tems to collect data that are essential to manage traffic, ease con-
gestion, and provide motorists with travel time information. In the 
past decade, traffic safety studies showed that traffic safety could 
be incorporated into real-time traffic management systems as well 
as provide warnings of the increase in the risk situation to promote 
safety on freeways and expressways (1–9). These efforts have 
been devoted to link real-time traffic conditions to crash occur-
rence statistically. Most of this real-time crash prediction research 
attempted to use data collected from inductive loop detectors 
(ILDs) (2–9); however, traffic safety studies performed with data 
collected from automatic vehicle identification (AVI) systems are 
lacking (10, 11).

ILDs are the most commonly used sensors in traffic management 
systems and have helped with traffic operation for more than 50 
years. Although ILDs suffer from many inherent problems, such as 
high failure rates and difficulty with maintenance, researchers in 
the traffic safety area have found that the data collected from loop 
detectors are useful for crash prediction in real time. According 
to the Traffic Detector Handbook, the actual loop detector failure 
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Background

Real-time crash prediction drew researchers’ attention in the past 
decade because it can help with proactive traffic management. 
Madanat and Liu estimated the likelihood of two types of inci-
dents, crashes and overheated vehicles, using traffic flow and envi-
ronmental conditions measured by surveillance sensors (1). They 
concluded that merging sections, visibility, and rain are the most 
significant factors affecting the likelihood of a crash. Hughes and 
Council used loop detector data to explore the relationship between 
freeway safety and operations during peak periods (2). They found 
that the variability in vehicle speeds was the most significant mea-
sure that affects crash occurrence, whereas macroscopic measures, 
such as annual average daily traffic and hourly volume, were poor 
measures in the analysis of safety.

Oh et al. were the first to show the potential ability to establish a 
statistical relationship to link real-time traffic conditions and crashes 
(3). They used a Bayesian model with traffic data containing the 
average and standard deviation flow, occupancy, and speed for 10-s 
intervals and concluded that the 5-min standard deviation of speed 
contributes the most to the differentiation of precrash and noncrash 
conditions. Lee et al. used the log-linear approach to model traf-
fic conditions leading to crash precursors (4). They added a spatial 
dimension by using data from upstream and downstream detectors 
of crashes. They refined their analysis in a later study by considering 
the average variation of speed on each lane, the average variation 
of the difference in speed across adjacent lanes, and traffic density 
(5). The coefficient of temporal variation in speed was found to 
have a relatively longer-term effect on crash potential than density, 
whereas the effect of the average variation in speed across adjacent 
lanes was found to be insignificant.

Golob and Recker conducted a detailed study to analyze patterns 
in crash characteristics as a function of real-time traffic flow (6). 
Nonlinear canonical correlation analysis and principal component 
analysis were used with three different sets of variables. The first 
set defined lighting and weather conditions; the second set defined 
the crash characteristics of collision type, location, and severity; and 
the third set consisted of real-time traffic flow variables. They con-
cluded that the median speed and the variation in speed between the 
left and interior lanes are related to the collision type. In addition, 
they found that the inverse of the traffic volume has more influence 
than the speed in determining the severity of a crash.

Abdel-Aty et al. used a matched case–control study to link real-
time traffic flow variables collected by loop detectors and the likeli-
hood of a crash (7). They concluded that the average occupancy at 
the upstream station along with the coefficient of variation in speed at 
the downstream station, both during the 5 to 10 min before the crash, 
were the most significant factors affecting the likelihood of a crash. 
Abdel-Aty and Pande were able to capture 70% of the crashes using 
a Bayesian classifier-based methodology, the probabilistic neural net-
work, using different parameters of speed only (8). They found that 
the likelihood of a crash is significantly affected by the logarithm 
of the coefficient of variation of the speed at the nearest crash sta-
tion and the two stations immediately preceding it in the upstream 
direction measured in the 5-min time slice 10 to 15 min before the 
crash. In a later study, Abdel-Aty and Pande (9) developed a strat-
egy to identify real-time traffic conditions prone to result in rear-end 
crashes using freeway ILD data. They were able to achieve accuracy 
greater than that from the single generic model for all crashes, and 
their model was capable of identifying 75% of rear-end crashes 5 to 
10 min before their occurrence with a reasonable false-alarm rate.

Although real-time crash prediction models that use data col-
lected from ILDs have been described in the literature, no safety 
analyses that have been conducted with traffic data from tag readers 
on toll roads (AVI) have been found.

Ahmed and Abdel-Aty identified expressway locations with high 
crash potential using real-time speed data collected from an AVI 
system on 78 mi of the expressway network in Orlando, Florida 
(10). By use of the random forest technique for selection of signifi-
cant variables and stratified matched case–control analysis to link 
the crash data to the space mean speed, the logarithm of the odds of 
a crash occurrence were calculated. It was concluded that none of 
the speed parameters obtained from AVI systems spaced, on aver-
age, 3 mi or more apart was able to identify crash-prone conditions 
in a statistically significant manner. The results suggested that the 
AVI data could be useful only if the segments of the AVI system 
were within 1.5 mi, on average. The results showed that the likeli-
hood of a crash is statistically significantly related to speed data 
obtained from the AVI system, and the model achieved about 70% 
accuracy.

In a later study, Ahmed et al. used 3 years (2007 to 2009) of AVI 
system data collected from a 15-mi segment on I-70 in Colorado 
and real-time weather data collected from three weather stations on 
the roadway segment and concluded that data from an AVI system 
and real-time weather data provide good measures of the risk of a 
crash in real time (11). It was concluded that the 10-min average 
speed at the crash segment during the 5 to 15 min before the crash 
and the average visibility during the 1 h before the crash are the 
most significant factors affecting the likelihood of a crash on a free-
way. The risk of a crash increased 6.5% for each unit decrease in the 
10-min average speed, and it increased 37% for each unit decrease 
in the average visibility measured over the 1 h before the crash. The 
findings from these previous two studies suggest that the speed data 
collected from AVI systems can provide a good measure of the risk 
of a crash within advanced traffic management systems.

In this paper, a generic semiparametric Bayesian matched case–
control model was calibrated for all crash types, and another model 
was calibrated for rear-end crashes. The study also investigated if 
knowledge about the covariates at the same location from previous 
years can provide a better fit and enhance the ability of the model 
to predict crashes more accurately. For this approach to be exam-
ined in real-life applications, data from 1 year (2007) were used to 
calibrate the model by the use of classical (frequentist) matched 
case–control logistic regression. The coefficient estimates were 
then used as priors in a Bayesian matched case–control analysis to 
update the coefficients with data from another year (2008) and data 
from a different year (2009) were used for validation.

Unlike other studies that have been limited by the availability of 
data and so carried out the sensitivity analysis with the same data 
that were used to calibrate the model, this study used a separate set 
of data for validation and scoring of the model.

data collection and PreParation

The SR-417 expressway section under consideration and for which 
AVI data were available is 33 mi long. Central Florida’s express-
ways are equipped with an AVI system for toll collection and travel 
time estimation; the 33-mi section contains 22 AVI tag readers in 
both directions, and the average spacing is 1.47 mi.

Two sets of data were used in the study: archived data from the AVI 
system for SR-417 in Orlando and the corresponding crash data for 
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3 years (2007 through 2009). The Orlando–Orange County Express-
way Authority archives and maintains only the processed 1-min 
space mean speed and the estimated average travel time along the 
defined roadway segments. The unprocessed original time stamps of 
the tag readings are not available; these data are typically discarded 
for privacy reasons after the travel time is processed. The crash data 
were obtained from the Crash Analysis Resource maintained by the 
Florida Department of Transportation for the same years.

In a previous study, it was found that the occurrence of a crash was 
mostly related to the crash segment: one segment in the upstream 
direction and another segment in the downstream direction. There-
fore, these segments were considered in the data extraction process 
and modeling parts of the study (10). The crashes were assigned 
to each segment; upstream and downstream segments were identi-
fied to extract their corresponding data from the AVI system. The 
upstream, crash, and downstream segments were named U, C, and 
D, respectively. The AVI system segment scheme is illustrated in 
Figure 1.

Data from the AVI system corresponding to each crash case were 
extracted in the following process. If a crash occurred on February 
7, 2008 (Thursday), at 2:00 p.m. on SR-417 eastbound, the crash 
segment (C) was identified by the use of geographic information 
system software, and data were obtained for two other segments 
(one in the upstream direction and one in the downstream direction) 
for the period from 1:30 to 2:00 p.m. (30 min). Data for four non-
crash cases for the same season (to control for weather conditions), 
location, and time for different Thursdays were also extracted. Data 
for the crash and the noncrash cases were extracted only when no 
crashes were observed within 1 h of the original crash at the same 
AVI system segment. Four crashes occurred within the crash seg-
ment a few minutes after the first crash, but data for these crashes 
were not considered because all speed parameters would have been 
affected by the first crash event.

The extracted 1-min speed data were aggregated to different 
aggregation levels of 2, 3, 5, and 10 min to investigate the aggrega-
tion level that provides the best accuracy in the modeling part of the 
study. The 5-min aggregation level was found to provide a better 
statistical fit [a smaller deviance information criterion (DIC)] and 
relatively higher classification accuracy. The 30-min speed data 
were divided into six time slices, in which Time Slice 1 represents 
the period between the crash and 5 min before the crash and Time 
Slice 6 represents the interval between 25 and 30 min before the 
crash. The data for Time Slice 1 were discarded in the analysis 
because 5 min would not provide enough time for a successful 
intervention to reduce the risk of a crash in a proactive safety man-
agement strategy. Moreover, the actual crash might not be precisely 
known. Golob and Recker discarded the 2.5 min of traffic data 

immediately preceding the reported time of each crash to avoid the 
uncertainty over the actual time of the crash (6). In general, with 
the proliferation of mobile phones and closed-circuit television 
cameras on expressways, a crash is usually almost immediately 
identified.

Average speeds, standard deviations of the speed, and the log-
arithms of the coefficient of variation of the speed (the standard 
deviation of the speed divided by the average speed) were calcu-
lated over the 5-min time intervals. The measure notations take the 
general form xy_zβ, where xy takes the value of AV, SD, or CV, 
for average, standard deviation, and coefficient of variation of 
speed, respectively; z represents AVI system segments and takes 
the value of U, C, or D, for upstream, crash, and downstream seg-
ment, respectively; and β takes a value of from 2 to 6, which refers 
to the time slices.

Unlike ILD data, which are known to suffer from high percent-
ages of missing observations or bad readings, AVI system data are 
missing less than 5% observations and have no unreasonable values 
of speeds. The missing speed data were imputed by preservation 
of the distribution of the original data, and then the coefficient of 
variation was calculated. The final data set had a total of 45 vari-
ables consisting of three speed parameters for each of the three AVI 
segments at five time intervals (time slices).

Although crashes involving driving under the influence of alco-
hol or drugs and distraction-related crashes were less than 2% of 
total crashes, data for those crashes were excluded from the crash 
data set to examine only the effect of short-term turbulence in traffic 
speed. Hence, the analysis presented in this study is based on 447 
total crashes, 171 of which were rear-end crashes.

Methodology

Matched crash–noncrash analysis

The study design used a matched case–control methodology, which 
is a robust way of examining the crash precursors accounting for 
confounding factors such as time of crash, seasonal effect, and loca-
tion, including all related geometric characteristics. Case–control 
studies are expected to provide more accurate results, as they elimi-
nate confounding factors by matching (15). For each selected crash 
case, a random selection of m controls (noncrash cases) was chosen 
to account for the matching factors of location, time of day, day of 
week, and season (Orlando has two distinct weather seasons, and 
matched noncrash cases were taken from the same season for each 
crash case).

Although the matched case–control methodology can handle the 
confounding factors, other confounding factors, such as the behav-

Up-Stream (U) Crash Segment (C) Down-Stream (D)

Avg. L = 1.47 mile

Travel Direction 

FIGURE 1  Scheme for segments in AVI system (avg. L = average length).
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ior of individual drivers, are not considered because the matching 
is for location and time variables only. Different m:1 ratios (ratio of 
the sample size of noncrash cases to crash cases) were examined, 
and m equal to 4 was found to give an odds ratio of relatively higher 
precision (lower standard error). Previous studies showed that neg-
ligible power is gained through addition of controls beyond 3-to-1 
matching (16). Finally, the matched set (stratum) was formed of 
m(4) + 1 observations.

The modeling is estimated under the conditional likelihood 
principle of statistical theory, which accounts for within-stratum 
differences between crash and noncrash speed parameters. Use 
of the conditional likelihood eliminates the parameters asso-
ciated with the covariates used for matching (e.g., crash time and 
location).

Matched case–control studies are based on the classical prospec-
tive logistic regression model, with binary outcome y (case–control 
status), covariate (x), and stratum level N. Suppose that N stratum 
has one crash and m noncrash cases are in stratum j, where j is equal 
to 1, 2, 3, . . . , N. The term pj (xij) is the probability that the ith 
observation in the jth stratum is a crash, where the vector of k speed 
parameters x1, x2, . . . , xk can be denoted xij = (x1ij, x2ij, . . . , xkij), where  
i = 0, 1, 2, . . . , m and where j = 1, 2, . . . , N. This crash probability 
may be modeled by the following linear logistic regression model 
described in a study by Abdel-Aty et al. (7):

logit p x x x xj ij j ij ij k kij( ){ } = + + + +α β β β1 1 2 2
. . . (11)

where β is a coefficient. The logistic regression model for matched 
case–control studies differs from that for unmatched studies in that 
it allows the intercept to vary among the matched units of cases and 
controls. The intercept α summarizes the effect of variables used 
to form strata on the crash probability, and it is different for the 
different strata.

To account for the stratification in the analysis, a conditional like-
lihood is constructed. The crash probabilities cannot be estimated 
by matched case–control logistic regression by the use of Equa-
tion 1, however, because the conditional likelihood function L(β) 
is independent of the intercept terms α1, α2, . . . , αN; therefore, the 
effects of matching variables cannot be estimated. This conditional 
likelihood function is expressed as follows:
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where u denotes the set of crash cases just before the ith ordered 
event time. However, the values of the β parameters that maximize 
the conditional likelihood function given by Equation 2 are also the 
estimates of the β coefficients in Equation 1. These estimates are 
log odds ratios and may be used to approximate the relative risk 
of a crash.

In this analysis, the PHREG procedure in SAS software (Version 
9.2) is used. PHREG provides the hazard ratio, which is another 
term for relative risk used in SAS. In addition, a prediction model 
can be developed by use of the log odds ratios under this matched 
crash–noncrash analysis. This model can be demonstrated by con-
sideration of two observation vectors, x1j = (x11j, x21j, x31j, . . . , xk1j) 
and x2j = (x12j, x22j, x32j, . . . , xk2j) from the jth strata on the k speed 
parameters. By use of Equation 1, the log odds ratio of the occur-
rence of a crash because of speed parameter vector x1j relative to 
traffic speed vector x2j has the following form:
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The right-hand side of Equation 3 is independent of αj and can be 
calculated by use of the estimated β coefficients. Thus, the relative 
log odds ratio described above (left-hand side of Equation 3) may 
be used to predict crashes by replacement of x2j with the vector of 
values of the traffic flow variables in the jth stratum of noncrash 
cases. One may use the simple average of all noncrash observations 
within the stratum for each variable. Let x–2j = (x–12j, x

–
22j, x

–
32j, . . . , x

–
k2j) 

denote the vector of mean values of noncrash cases of the k variables 
within the jth stratum. Then, the log odds ratio of crash cases relative 
to noncrash cases may be approximated by the following equation:
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Therefore, the log odds ratio can be used to predict crashes by 
establishment of a threshold value that attains the desirable crash 
classification accuracy.

Bayesian updating approach

This study uses the Bayesian semiparametric Cox proportional hazards 
model (PHM) to explain the relationship between an event (crash) 
occurring at a given time and a set of risk factors in a matched case–
control design and to control mainly for the confounding factors of 
time, location, and season. The Cox PHM is commonly used for sur-
vival analysis; an important distinction in survival analysis is how 
the time dependence in the event process (the baseline hazard in 
the absence of any covariate effects) is parameterized. Cox’s semi-
parametric model assumes a parametric form for the effects of the 
covariates, but it allows an unspecified form for the baseline haz-
ard. Therefore, the Cox PHM can be used regardless of whether the 
survival time is discrete or continuous. The Cox PHM is performed 
with the SAS program (Bayes PROC PHREG) (17) by formation 
of a stratum for each matched set, a dummy variable for the survival 
time is created in the data set such that all the crash cases in a matched 
set have the same event time value, and the corresponding noncrash 
cases (controls) are censored at later times.

The classical Cox semiparametric model estimates the coeffi-
cients of parameters solely on the basis of the information from 
the observed data, whereas the Bayesian Cox semiparametric 
model makes use of the combined information of the prior as well 
as the observed data to estimate the coefficients of the parameters. 
In the Bayesian framework, the data are used to update beliefs about  
the behavior of the parameter to assess its distributional properties 
as well as possible. PROC PHREG with the Bayes option generates 
a Markov chain that contains the approximate posterior distribution 
of samples by use of Gibbs sampling and the adaptive rejection 



64 Transportation Research Record 2280

sampling algorithm (18, 19). DIC, a Bayesian generalization of the 
Akaike information criterion, is used to measure the complexity and 
fit of the model (20). In addition, a sensitivity analysis is conducted 
to measure the accuracy of each of the estimated models by use of 
a different set of data from 2009 for validation.

results and discussion

Model estimation and diagnostics for  
all crashes Versus rear-end crashes

As mentioned earlier, a frequentist matched case–control model was 
estimated for all crashes that occurred on the expressway section in 
2007. The data set comprises 690 observations (138 crash cases and 
552 noncrashes as a control). With prior knowledge of the likely range 
of values of the parameters from 2007, informative priors were speci-
fied for parameters for all crashes that occurred in 2008 (165 crashes 
and 660 noncrashes) to avoid use of the same data in the updating pro-
cess. Use of noninformative priors in the Bayesian estimation resulted 
in the same estimate obtained with the frequentist model.

In the Bayesian update, one chain of 20,000 iterations was set up in 
SAS on the basis of the convergence speed and the magnitude of the 
data set. Before inferences are drawn from the posterior sample, the 
trace, autocorrelation, and density plots should be examined for each 
parameter to be content that the underlying Markov chain has con-
verged. According to Brooks and Gelman convergence diagnostics, 
the trace, autocorrelation, and density plots for the two significant 
parameters shown in Figure 2 suggest that the mixing in the chain is 
acceptable with no correlation (21). After the convergence is ensured, 
the first 2,000 samples were discarded as adaptation and burn-in.

A univariate analysis was first conducted to check the signifi-
cance of each variable. Different automatic search techniques (step-
wise, forward, and backward) were attempted to identify significant 
variables in the multivariate analysis. These procedures were imple-
mented to identify which terms were still statistically significant in 
the presence of other factors. Because variables not significant at 
the .05 level may still be associated with the response after adjust-
ment for other covariates, any variable with a p-value of <.25 in the 
univariate analysis results was considered eligible to enter the mul-
tivariate model (17). The three search techniques agreed that two 
variables are significantly associated with crash occurrence.

Table 1 shows the estimates of the means and standard devia-
tions of the beta coefficients, credible intervals, and hazard ratios 
for the all-crashes model; two variables were found to be signifi-
cant: SD_C2 and AV_D2. The standard deviation of speed of the 
crash segment at Time Slice 2 (5 to 10 min before the crash) has a 
positive beta coefficient, whereas the average speed of the adjacent 
downstream segment at Time Slice 2 has a negative beta coefficient. 
These values mean that a high level of variation in the speed at the 
crash segment and a decrease in the average speed at the down-
stream segment may increase the risk of a crash at this location. A 
decrease in speed downstream might represent buildup of a queue.

The hazard ratio is the exponent of the beta coefficient and rep-
resents an estimate of the expected change in the risk ratio of a 
crash versus noncrash per unit change in the corresponding factor. 
The hazard ratio of 1.14 means that the risk of a crash increases by 
13% for each unit increase in SD_C2. The hazard ratio is multi-
plicative in nature for the continuous variables, which means that  
a two-unit increase in SD_C2 changes the risk by 1.142, or 1.28  
(a 28% increase).

With the same methodological updating approach described ear-
lier, a Bayesian matched case–control model was estimated only for 
rear-end crashes that occurred in 2008 by the use of informative pri-
ors from the frequentist model that was estimated with data only for 
rear-end crashes that occurred in 2007. The data set for 2007 had 280 
observations (56 rear-end crash cases and 224 noncrashes as a con-
trol), whereas the data set for 2008 used to update the model coeffi-
cients had 305 observations (61 rear-end crashes and 244 noncrashes). 
The convergence was similarly assessed by the use of plots for trace, 
autocorrelation, and density; and the model converged reasonably.

Table 2 shows the means and standard deviations of the beta 
coefficient estimates, credible intervals, and hazard ratios. SD_C2 
and AV_D2 were found to be significant. However, for the stan-
dard deviation of speed at the crash segment at Time Slice 2, the  
hazard ratio for the rear-end-crash model increased by more than 
twice the hazard ratio for the all-crash model; and for the average 
speed of the downstream segment at Time Slice 2, the hazard ratio 
decreased by about 20%. This result may indicate that an increase 
in the variation of the speed at any given segment coupled with a 
decrease in the average speed at the downstream segment may result 
in a rear-end crash more than any other type of crash.

One limitation in the current AVI archiving system, however, is 
that the system does not record the percentage of lane changes per 
segment. This percentage can be calculated by development of an 
algorithm to compare the unique tag identifier for each individual 
vehicle at the beginning and end of each segment. Moreover, the 
algorithm can process the original raw AVI system data in a way that 
provides space mean speed by lane. In that way, a better picture of 
not only the longitudinal variation in speed at the AVI system seg-
ment but also the variation across the lanes can be comprehended. 
The availability of detailed lane speed data may also help to identify 
other types of crashes, such as sideswipe and angle crashes.

Use of the informative prior slightly enhanced the model fit; the 
DIC decreased from 652.371 to 647.695 for the all-crashes model 
and from 111.278 to 106.097 for rear-end crashes.

classification accuracy for all-crash Model 
Versus rear-end-crash Model

Sensitivity analyses were conducted to implement the estimated 
models in a real-time application. Table 3 shows the sensitivities 
and the specificities for the final models. Sensitivity is the propor-
tion of crashes that are correctly identified as crashes by the model, 
whereas specificity is the proportion of noncrashes that are correctly 
identified as noncrashes by the model (22). The sensitivity and the 
specificity can be calculated by use of the odds ratio given by Equa-
tion 4. For example, the means of the two variables SD_C2 (which 
is the standard deviation of the speed of the crash segment at Time 
Slice 2, which is 5 to 10 min before the crash) and AV_D2 (which is 
the average speed of the downstream segment at Time Slice 2) were 
calculated for all four noncrash cases within each matched set. The 
estimated vector of these means for the noncrash cases replaced the 
vector in Equation 4 for the jth matched set. The odds ratio can be 
estimated by use of the beta coefficients from the model updated 
with the 2008 data set in Equation 4, in which the vector is the actual 
observation in the 2009 data set for all crashes and rear-end crashes.

The sensitivities were found to be 69.44% and 72.22% for all 
crashes and rear-end crashes, respectively, by use of the Bayes-
ian matched case–control model with noninformative priors; and 
they increased to 72.92% and 75.93%, respectively, by use of the 
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(a)

(b)

FIGURE 2  Diagnostics plots for the all-crash model: (a) SD_C2 and (b) AV_D2.

Bayesian updating approach with specified informative priors from 
2007. Both models had reasonable rates of false-positive results. 
At a threshold value of unity, 42.01% of all crashes and 45.83% 
of rear-end crashes were incorrectly classified. Different rates of 
false-positive results can be obtained when the threshold is changed 
on the basis of the management strategy. The threshold should be 

chosen carefully in real-world applications; large numbers of false 
alarms might affect drivers’ compliance with the system and hence 
reduce its effectiveness. Nevertheless, the objective of advanced 
traffic management systems to reduce turbulence to improve oper-
ations can still be achieved even with a high percentage of false 
alarms. Strategies that are part of intelligent transportation system, 
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TABLE 1  SR-417 Model Estimates and Hazard Ratios for All Crashes, 2008

β Coefficient

Hazard Ratio

β Coefficient

Standard
Credible Interval

Standard
Credible Interval

Parameter Mean Deviation 2.5% 97.5% Mean Deviation 2.5% 97.5%

SD_C2  0.1256 0.0639  0.00312  0.2562 1.1362 0.0729 1.0031 1.2920

AV_D2 −0.0614 0.0257 −0.1167 −0.0153 0.9408 0.0241 0.8899 0.9848

Note: Fitness statistics: DIC = 647.695 (a smaller DIC is better); pD (effective number of parameters) = 2.149.

TABLE 2  SR-417 Model Estimates and Hazard Ratio for Rear-End Crashes, 2008

β Coefficient

Hazard Ratio

β Coefficient

Standard
Credible Interval

Standard
Credible Interval

Parameter Mean Deviation 2.5% 97.5% Mean Deviation 2.5% 97.5%

SD_C2  0.9151 0.3852  0.1986  1.7065 2.6949 1.1318 1.2197 5.5096

AV_D2 −0.2627 0.1520 −0.6147 −0.0313 0.7776 0.1124 0.5408 0.9692

Note: Fitness statistics: DIC = 106.097 (a smaller DIC is better); pD = 1.611.

such as variable speed limits, could be introduced so that drivers 
would have no knowledge of the occurrence of a false alarm.

conclusions

Although traffic flow data collected from ILDs are useful for real-
time proactive safety management, no studies have attempted to use 
data from AVI systems for real-time assessments of safety risks. Data 
from AVI systems were found to provide a measure of the risk of a 
crash in real time comparable to that obtained with data from ILDs. 
The operation-based management of expressways can benefit from the 
data collected not only for estimation of tolls collected and travel times 
but also to provide warnings of situations of increased risk.

Few studies have predicted crashes by type using real-time traffic 
data collected on freeways and expressways. In contrast, this study 
explicitly classified and compared a generic model for all types of 
crashes with a model for a specific crash type (rear-end crashes) 
using data collected from tag reader (AVI) systems on expressways.

The paper presents a Bayesian updating framework to identify real-
time traffic conditions prone to cause crashes by the use of express-
way AVI data. Three years of crash data and the corresponding AVI 
data on SR-417 in Orlando were used, and a classical (frequentist) 
matched case–control model was estimated with data from 2007. 
With prior knowledge of the likely range of values of the parameters 
from 2007 on the same expressway corridor, informative priors were 
specified for the parameters in a semiparametric Bayesian matched 
case–control framework to avoid use of the same data in the updat-
ing process. This approach was applied to all crashes and then to 
rear-end crashes. By comparison of the data from the AVI system 
for the period preceding all crash types and rear-end crashes with 
data for noncrashes, the hazard ratio for the standard deviation of 
the speed of the crash segment in the 5 to 10 min before the crash for 

the rear-end crash model was found to increase by more than twice the 
hazard ratio for the overall crash model. The hazard ratio for the aver-
age speed of the downstream segment in the 5 to 10 min before the 
crash decreased. This may indicate that the increase in the variation 
of the speed at any given segment coupled with a decrease in the 
average speed in the downstream segment may result in a rear-end 
crash more than any other type of crash.

The classification accuracy for the model of rear-end crashes is 
greater than that achieved by the generic all-crashes model: 72.22% 
of the rear-end crashes were correctly identified, whereas the generic 
all-crashes model correctly identified only 69.44% of crashes. More-
over, the proposed Bayesian updating approach showed a better fit 
in the form of relatively lower DIC values by the use of informative 
priors. The accuracy of both models also increased to 75.93% and 
72.92% for rear-end and all crashes, respectively.

The proposed methodology leads to an estimate of risk much 
more efficiently than ordinary logistic regression with frequentist 
matched case control. Use of the Bayesian updating approach is 
strongly recommended as a robust technique to reduce uncertainty 
in the parameters and increase the accuracy of the model fit.

Although the AVI system can provide the percentage of lane 
changes per segment by comparison of the unique tag identifier for 
each vehicle at the beginning and end of the segment as well as pro-
vide space mean speed for each lane to estimate the variation in speed 
across lanes, the algorithm and the archiving system of the AVI sys-
tem in their current forms do not report this information, and there-
fore, expressway authorities are encouraged to update their archiving 
systems.

This paper suggests that in their current form, data from AVI sys-
tems can provide an acceptable real-time assessment of the safety 
risk for all crash types in general and for rear-end crashes in particu-
lar. Furthermore, with minor modifications to how tag readers are 
structured and how the data from the AVI system are processed and 
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archived, it will be possible to enhance the predictive accuracy and 
extend the proposed methodology to other crash types.
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TABLE 3  Classification Results

Variable

Predicted

0 (Noncrash) 1 (Crash) Total

All Crashes

Actual
  0 (noncrash)
  Frequency 334 242 576
  Percentage 46.39 33.61 80.00
  Row (%) 57.99a 42.01b na
  Column (%) 89.54 69.74 na

  1 (crash)
  Frequency 39 105 144
  Percentage 5.42 14.58 20.00
  Row (%) 27.08c 72.92d na
  Column (%) 10.46 30.26 na

Total
 Frequency 373 347 720
 Percentage 51.81 48.19 100.00

Rear-End Crashes

Actual
  0 (noncrash)
  Frequency 117 99 216
  Percentage 43.33 36.67 80.00
  Row (%) 54.17a 45.83b na
  Column (%) 90.00 70.71 na

  1 (crash)
  Frequency 13 41 54
  Percentage 4.81 15.19 20.00
  Row (%) 24.07c 75.93d na
  Column (%) 10.00 29.29 na

Total
 Frequency 130 140 270
 Percentage 48.15 51.85 100.00

Note: na = not applicable.
aSpecificity.
bFalse-positive rate.
cFalse-negative rate.
dSensitivity.


