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This paper examined the interaction between roadway geometric char-
acteristics and adverse weather conditions and their impact on crash 
occurrence on rural variable speed limit freeway corridors through 
mountainous terrain. As a quantitative measure of the effect of geomet-
rics in adverse weather conditions, a crash frequency safety performance 
function that used generalized linear regression was developed with 
explanatory variables including snow, ice, frost, wind, horizontal cur-
vature, and steep grades. This research concluded that the inter action 
between grades and horizontal curves with weather variables had a sig-
nificant impact on crash occurrence. The research suggested that dis-
tinct variable speed limit strategies should be implemented on segments  
with challenging roadway geometry.

A variable speed limit (VSL) is a regulatory or recommended speed 
limit that changes according to real time variables such as traffic con-
ditions or weather. VSL systems are typically installed for congestion 
management in urban areas (1–5). Weather-related VSL systems are 
used when weather events (fog, ice, rain) might adversely affect driver 
capabilities and vehicle performance or increase delay. The VSL cor-
ridors that are the subject of this research post regulatory speed limits 
based on real-time weather conditions (6). Sign speeds are set by Wyo-
ming’s statewide Traffic Management Center and speed updates are 
relayed to the Wyoming Highway Patrol for enforcement purposes. 
VSL signs are posted in pairs (on inside and outside lanes) with an aver-
age spacing of 6 mi. Figure 1 shows the two types of sign technology  
used on the study corridors.

Much of Interstate 80 is affected by winter weather events, espe-
cially the mountainous segments through Wyoming. During the 
winter season, heavy snow fall, low visibility, slick pavement surface 
conditions, high winds, and blowing snow conditions contribute to 
a high frequency of crashes. On the Wyoming I-80 corridor, winter 
crashes are almost three times higher than summer crashes and the 
variations of crashes are much higher in winter than in summer (6). 
To improve the safety and operations along this corridor, VSL systems 
have been implemented on four segments in Wyoming, totaling 
143 mi in length (Figure 2). The first VSL corridor was installed in 

February 2009 on the Elk Mountain corridor. The Green River cor-
ridor was deployed in February 2011. The last two corridors, Evanston 
and Laramie–Cheyenne, became operational in October 2011.

It is important to evaluate the effectiveness of the VSL systems 
and to estimate factors that have historically contributed to the like-
lihood of crash occurrence. The corridors feature mountainous road 
geometry that includes frequent steep grades and sharp horizontal 
curves (Figure 2). Because their terrains are mountainous, these 
corridors feature steep grades of up to 5.24% and radii of hori-
zontal curves as low as 1,008 ft. There are 199 vertical curves and 
201 horizontal curves on the 143 mi of VSL deployment.

The current operational procedures for the VSL system do not con-
sider geometric variations when setting appropriate regulatory speed 
limits. The locations for VSL sign installation were selected based on 
historic safety issues; most of the segments with significant geomet-
ric features could therefore be isolated when setting speeds, which 
allowed for geometric conditions to be used as a VSL speed-setting 
variable if the relationship between geometric features, weather, and 
speed could be developed.

Previous research

For safety to be improved, the reasons why crashes occur must be 
understood. Several research efforts have modeled crash occurrence. 
Abdel-Aty and Radwan studied the modeling of traffic accident 
occurrence and involvement (7). Their results showed that annual 
average daily traffic (AADT), speed, lane width, number of lanes, 
land use, shoulder width, and median width have a statistically sig-
nificant impact on crash occurrence. Ahmed et al. investigated the 
safety effects of roadway geometrics on crash occurrence along a 
mountainous freeway corridor in which adverse weather played an 
important role; results showed that segments with steep downgrades 
increased the crash risk drastically (8). Tegge et al. studied safety  
performance functions (SPFs) in Illinois and found that AADT, 
access control, land use, shoulder type, shoulder width, international 
roughness index, number of lanes, lane width, rut depth, median type, 
surface type, and number of intersections have a significant impact on 
safety (9). In their study about the effect of snow events on interstate 
highway crashes, Khattak and Knapp observed that long duration, 
high snow amounts, wind speed, and high traffic volumes during snow 
events significantly increase crash frequency (10). Overall accident 
risk during rainfall increased by 70 percent when compared with 
normal conditions according to Andrey and Yagar (11). Kalokoata 
and Seneviratne observed in their study on crash prediction models  
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that section length, degree of curvature, right shoulder width, and 
number of lanes were significant at the 10% level of significance, 
but percent grade and left shoulder width could not meet the 10% 
significance level (12). Cafiso et al. developed comprehensive 
accident models for two lane rural highways and found that section 
length, traffic volume, driveway density, roadside hazard rating, 
curvature ratio, and number of speed differentials higher than 10 km/h 
increased crash occurrences significantly (13).

Previous research has also investigated the safety effects of dif-
ferent confounding factors on crash occurrence. This research spe-
cifically focused on the interaction between roadway geometry and 
adverse weather conditions and its implications for setting appropriate  
speed limits.

Researchers have used different approaches to understand the rela-
tionship of crash occurrences to geometric characteristics, weather 
variables, and traffic-related explanatory variables. These approaches 

(a) (b) (c)

FIGURE 1  Typical VSL signs with flashing beacon: (a) LED and (b and c) scrolling film.
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FIGURE 2  Wyoming variable speed limit corridors: (a) plan and (b) profile.
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employed statistical models such as multiple linear regression, Pois-
son regression, zero-inflated Poisson regression, negative binomial 
(NB) regression, zero-inflated negative binomial regression. In 1986, 
Jovanis and Chang studied why multiple linear regression was not 
appropriate for modeling crash occurrence since accident frequency 
data did not fit well with the basic assumptions associated with the 
model (14). A major assumption with linear regression models is that 
the frequency distribution of observations must be normally distrib-
uted. Most crash frequency data violate this assumption. Crash fre-
quency data also possess special characteristics such as count data 
and overdispersion. In 1993, Miaou and Lord (15) and Saha and 
Young (16) studied the performance evaluation of Poisson and nega-
tive binomial regression models in modeling the relationship between 
truck accidents and geometric design of road sections. This research 
recommended that Poisson regression or zero-inflated Poisson could 
be the initial model for establishing the relationship because of the 
count data aspect of crash frequencies. However, in most crash data, 
the mean value of accident frequencies is lower than the variance 
(i.e., overdispersion). If overdispersion is present in crash frequency 
data, NB or zero-inflated NB would be the appropriate model since it 
accounts for overdispersion. In most accident data, crash frequencies 
show significant overdispersion and exhibit excess zeroes. In this case, 
the zero-inflated NB regression model appears to be the best model.

It is worth mentioning that when a regression model deals 
with several explanatory variables, correlations between variables 
(i.e., multicollinearity) could be an issue. The problem with multi-
collinearity is that when explanatory variables become highly cor-
related, a larger standard error is produced and determining which 
explanatory variable is producing the effect on the dependent vari-
able becomes much more difficult. (Large standard errors could be 
caused by some property other than multicollinearity, such as high  
amounts of variation in the sample and small sample sizes.) Multi-
collinearity causes estimators to be biased, inefficient, or inconsistent. 
It does not, however, have any impact on the forecasting performance 
of the model, although it can cause coefficients to be insignificant (7). 
Since multicollinearity may mislead the significance of explanatory 
variables, it is very important to know the causes of multicollinearity 
and how the problem can be removed from the model. There are 
several common occurrences that could result in multicollinearity: the 
use of an explanatory variable, the effect of which is already accounted 
for from another variable; failure to exclude a category from a cate-
gorical variable, which often happens because of improper use of 
dummy variables; and the use of the same variable or almost same 
variable more than once. Since multicollinearity may result in an 
erroneous model, predictor variables that are highly correlated with the 
dependent variable and correlated minimally with each other should 
be maintained in the final model. Some of the common methods 
used to determine multicollinearity include large correlation value 
among pairs of explanatory variables, low values of t-statistics, use 
of the variance inflation factor, and variation of coefficient estimates 
between different model runs.

Lord and Mannering studied the fundamental data and method-
ological issues related to modeling crash frequencies (17). These 
issues have been shown as potential sources of error in selecting the 
appropriate model technique, thereby causing erroneous estimates 
of the parameters used in the model. Of the issues mentioned in that 
research, overdispersion, time-varying explanatory variables, spatial 
and temporal correlation, low sample mean and small sample size, 
omitted variable bias, underreporting, and endogenous variables 
could result in erroneous estimates in this research. Human factors 
could also contribute to erroneous estimates of model parameters.

Methodology

In safety modeling, the most commonly employed approach is the 
NB regression technique. As discussed in the previous research sec-
tion, NB and its extensions have been found to be the most accurate 
modeling techniques for modeling crash occurrence. In most cases, 
the crash data set possesses overdispersion in the response variable 
and fits well with NB distribution. In the following sections, NB 
models with both fixed effects (FENB) and random effects (RENB) 
are discussed briefly.

The Poisson regression model is the basis of the NB model. When 
the variance of the response variables exceeds the mean, over- 
dispersion is present, and an NB regression model should be used to 
handle it. The formulation of NB model is as follows:

Y Xi i i= β + βln (1)0

where

 Yi = expected number of accidents in time period i,
	β = parameter coefficient vector to be estimated, and
 Xi = vector of explanatory variables in time period i. 

The NB can also be written as follows:

! 1

1

1
(2)

1

1

1

P Y y x
y

y

x

x x
r

y

( )
( )

( )( ) ( )
( ) ( )

= =
Γ + α

Γ α
αµ
+ αµ





 + αµ







−

−

α−

where Pr is probability distribution.

The mean can be given as

E Y x x( ) ( )= µ (3)

The variance can be given as

Y x x x( ) ( ) ( )= µ + αµvar (4)2

where α is the overdispersion parameter of the NB model. When 
α tends toward zero, the distribution of Y becomes a Poisson 
distribution with equal mean and variance.

Recently, modeling crash occurrence with the use of panel data 
become widely applied (15, 18–21). Because crashes are nonnegative 
count data and often overdispersed, nonlinear FENB and RENB 
models might be better choices for panel crash data. To determine this, 
a Hausman test can be performed to identify the best model between 
FENB and RENB. Generalized versions of FENB (Equation 1) and 
RENB (Equation 2) can be set up as follows:

Y Xit i it it= α + β + εlog (5)

Y X Tit i it it it= α + β + γ + εlog (6)1

for i = 1, 2, . . . , N and t = 1, 2, . . . , Ti

where

 Yit =  crash count at corridor i (i = 1, 2, 3, 4) during week t 
(t = 1 for Week 1, 2 for Week 2, and so forth);

	 αi = state specific effects;
 Xit and Tit = confounding factors and time trend, respectively;
	 β and γ = regression parameters; and
	 εit = the error term.
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The ordinary least square (OLS) and maximum likelihood are the 
common statistical procedures used to fit the data. OLS chooses 
the parameter estimates that minimize the average squared differ-
ence between observed and predicted values. Maximum likelihood, 
on the other hand, chooses the parameter estimates for which the 
observed data are found most likely. OLS is only applicable for 
linear regression but maximum likelihood can be applied to any data 
set for which distribution is known. In that case, if the actual obser-
vations follow normal distribution around the mean, the maximum 
likelihood estimate is the same as the OLS estimate. Increasingly, 
researchers are using maximum likelihood to choose parameter 
estimates. In crash analysis, logistic, Poisson, and NB modeling 
techniques are commonly used to establish the relationship between 
crash frequency and explanatory variables such as AADT, geomet-
ric conditions, and weather variables. In these models, least square 
cannot be used as the estimation method because of the nonlinear 
frequency distribution of the response variable. Instead, maximum 
likelihood is commonly used as the estimation method for crash 
analysis. As NB regression is used in modeling crash occurrence, 
the formulation of maximum likelihood for NB models can be shown 
as follows:
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with a matrix of repressors X, a vector of coefficients β, and the NB 
heterogeneity parameter α.

Many criteria have been developed for comparing the regres-
sion models such as Akaike information criterion (AIC), Bayesian 
information criterion, deviance information criterion, and R2. Basi-
cally these criteria are used to estimate the percentage of variation 
explained by the regression model. For model selection, these criteria 
identify which subset of independent variables should be included 
in regression models. For linear regression models, R2

p is commonly 
used for identifying best subsets. In crash analysis, when SPF need 
to be developed, the models are nonlinear for most of the cases. For 
nonlinear models, sometimes R2

p does not provide accurate results 
(22). Previous research about developing SPFs used AIC, Bayesian 
information criterion, and deviance information criterion to identify 
best set of independent variables (6, 13, 23). AIC was used to measure 
the model complexity and fit as follows:

kAIC 2 ln maximum likelihood 2p p( )= − +

where k is the number of estimated parameters. The smaller the 
value of AIC, the better the model is.

data descriPtion

Data from multiple sources were used in modeling safety on the 
four I-80 VSL corridors. These data included crash data, weather 
data, roadway geometrics, and traffic data. Data from October 2007 
to April 2012 were used to ensure there were no major changes to 
the study area related to roadway geometrics.

The crash data for the study area were obtained from the Wyoming 
Department of Transportation (DOT) and contained information on 
accident time, accident location, accident type, impact type, severity 

level, weather conditions, lighting conditions, road conditions, and 
roadway geometry for each accident.

Weather data used in this research were collected from a weather 
forecasting service the Wyoming DOT has used for many years for 
winter maintenance activities. This service consists of forecasts two or 
three times daily. It assigns numerical values for each weather variable 
(snow, frost, ice, and wind) in a ranking system of 0–10, for which 
10 represents the worst condition and zero represents ideal conditions 
(24). The weather forecasts were specific to the roadway segment so 
different forecast data were used for each of the VSL corridors.

Weather data can also be collected from Road Weather Informa-
tion System (RWIS) stations, which provide the observed weather 
conditions at a roadway. The use of RWIS weather data instead of 
forecast data would have been preferred since RWIS represents the 
weather conditions that actually occurred as opposed to weather that 
was forecasted. For this research, it was not possible to use RWIS 
weather data because the stations were installed at the time of VSL 
system implementation, so weather observations from RWIS were 
not available. Forecast data were used by the Wyoming DOT for 
many years and viewed by maintenance personnel as being highly 
reliable.

The Wyoming DOT maintains a database of roadway geomet-
ric features and records different horizontal and vertical alignment 
parameters. For vertical alignments, the route number, direction of 
travel, reference marker, and curve length and elevation are stored; 
for horizontal alignments, the route number, direction of travel, refer-
ence marker, delta, length in, curve length, and length out are provided 
(Tables 1 and 2).

Bidirectional traffic counts were obtained from the Wyoming 
DOT’s permanent traffic stations (25). Average daily traffic in 
winter on the four corridors were as follows: 8,595 for Elk Moun-
tain, 14,320 for Green River, 10,129 for Evanston, and 10,572 for  
Laramie–Cheyenne. In 2008 there was an average of 1,000 fewer 
vehicles per day, most likely because of the economic decline in fall 
of that year.

To determine the effectiveness of the VSL systems on reducing 
crash frequencies, VSL use was incorporated as a binary explanatory 
variable with a value of one for time periods after the VSL was imple-
mented and zero for periods before implementation. This research 
used an aggregated data set over 7-day time period (e.g., 7-day crash 
frequency, 7-day average daily traffic, and 7-day average weather 
data) normalized over a standard 100-mi corridor length so that the 
corridors could be combined into a single model.

A 7-day crash frequency model was used to eliminate the zero 
inflated issue associated with the low frequency of crashes. Worth 
mentioning is that various time durations were attempted and a 
7-day aggregation level was found to be the best to account for the 
high variability in weather conditions in this region. Also of note 
is that it was initially thought of to include a VSL-use variable that 
reflected the amount of time a speed limit reduction was used during 

TABLE 1  Vertical Alignment Information

ID 
Number Direction

Reference 
Marker

Curve
Length (ft)

Elevation 
(ft)

80 Westbound 0.156 600 6,743

80 Westbound 0.543 1,000 6,753

80 Westbound 0.897 600 6,738
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each 7-day period. Since the VSL systems are weather based, the 
use of the system within is captured by weather variables for that 
period. An aggregated VSL-use variable would be highly correlated 
to the weather variables. Aggregation also prohibits use of actual set 
speed limits in the analysis.

The normalization of the corridors to 100 mi allowed for crash 
frequencies on different corridors to be combined into a single model, 
even with all four corridors having different lengths (Figure 2). 
The scaling of crash frequency to a common corridor length let 
the corridors be treated as individual observations in the model. 
A single observation in the model was for one VSL corridor for 
one 7-day period. Average daily traffic values were modeled for the 
7-day observations by use of weekly modification factors based on 
observed seasonal variations (Table 3). Only the 6 months of winter 
(October 15–April 15) were modeled to correspond to the periods 
of high VSL use.

PreliMinary analysis

A preliminary analysis was conducted on the horizontal and verti-
cal curves to examine important factors potentially contributing to 
crash occurrence. Grade and curve length of vertical curves may 
increase the crash risk. Similarly, radius, curve length, and the delta 
of horizontal curves can also increase the crash risk. Table 4 provides 
the descriptive statistics of the horizontal and vertical alignments  
for the four study corridors.

For roadway segments in which weather has a large influence on 
roadway safety, it is necessary to address variations in the winter 
seasons from year to year. In Figure 3, a comparison of crash fre-
quencies between summer and winter for the Elk Mountain VSL 
corridor is shown. On average, there were 203 reported crashes in 
winter and 72 reported crashes in summer; these reports indicate 
that winter crashes are 2.82 times higher than summer crashes. 
Figure 3 also shows the variation between years in winter is much 
higher than that of summer crashes.

A comparison of the crashes from the periods before and after 
VSL implementation can be seen in Table 5 for the winter seasons 
from October 2007 to April 2012. The last column of the table shows 
the summary results of winter crashes for the four VSL corridors 
separately. Of note is that crashes have decreased by 41%. Weather 
and traffic variations are not considered in this value, which is why 
a full model was estimated (to be discussed in later sections).

Model estiMation

Since this research investigated the effect of adverse weather on 
crash occurrence, geometric characteristics were incorporated with 
weather variables to develop an SPF. The risk of crashes in the 
winter season was found to be 82% higher than in summer; the 
crash risk might have been exacerbated by the challenging roadway 
geometry (i.e., the confounding effects of the snow or icy roadway 
conditions and the steep grades and sharp horizontal curve radii) on 
mountainous freeway corridors (6). Other geometric characteristics 
such as lane width, land use, shoulder width, and median width may 
have also had an impact on crash occurrence but were excluded from 
modeling because there was no variation in those variables among 
the four VSL corridors.

Because sharp horizontal and steep grades may increase the risk 
of crash occurrence, these geometric variables were used as explana-
tory variables in this analysis. For developing a weather-based SPF, 
aggregate forms of roadway geometric conditions that indicated the 
number of sharp horizontal curve and steep grade sections were 
incorporated in modeling to correspond with the aggregate crash 
data. Vertical curve length was included in initial modeling but was 
found not to have enough variation between corridors to be included. 
Aggregation of geometric variables were necessary since each cor-
ridor’s crash frequency for a 7-day period was treated as a single 

TABLE 2  Horizontal Alignment Information

ID 
Number Direction

Reference 
Marker Δ(°)

Length 
In (ft)

Curve 
Length (ft)

Length 
Out (ft)

80 Westbound 0.222 26.34  0 1,756  0

80 Westbound 1.599  3.13  0 4,690  0

80 Westbound 3.733 69.93 360 1,971 360

Note: Δ	= angle between the tangents of a horizontal curve.

TABLE 3  Average Winter Daily Traffic on Elk Mountain Corridor

Winter
Elk 
Mountain

Cheyenne–
Laramie

Rock Springs–
Green River

Evanston–
Three Sisters

2006–2007 9,035 10,672 14,179 10,550

2007–2008 9,264 10,939 14,238 10,936

2008–2009 8,462 10,523 14,294 10,010

2009–2010 8,479 10,551 14,409  9,966

2010–2011 8,504 10,569 14,362 10,007

2011–2012 8,267 10,280 14,297  9,728

Note: Winter defined as October 15–April 15 each year.

TABLE 4  Descriptive Statistics of Horizontal and  
Vertical Alignments

Vertical Curvea Horizontal Curveb

Statistic
Grade 
(%)

Curve 
Length 
(ft)

Radius 
(ft)

Curve 
Length 
(ft) Δ(°)

Mean 1.17 1,139 5,761 1,583 21.1

Standard 
 deviation

1.16 621 4,656 1,363 17.4 

Minimum 0.01 100 50 34 0.38

Maximum 5.24 3,600 32,892 9,857 102.5

aCount = 201.
bCount = 309.
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observation. Segmentation of the corridor by geometric feature 
would result in an unreasonably higher number of zero observations  
for crash modeling.

To include the geometric variables at an aggregated level, it was 
necessary to set the threshold value of curve radii and grades used to 
identify sharp horizontal curves and steep grades. The initial thresh-
old values were selected based on the input of Wyoming DOT road-
way designers and knowledge of the study corridors. Future research 
could be performed to identify appropriate threshold values. In this 
research, grades greater than 4% and radii less than 3,500 ft were 
considered as the initial threshold values. The geometric data pro-
vided by the Wyoming DOT were used to identify steep grades and 
sharp horizontal curves on the study corridors and are summarized in 
Table 6. Since crash frequency was for both directions of the roadway, 
upgrades and downgrades were not treated independently.

The number of horizontal curves having radii less than 3,500 ft had 
to be normalized by corridor length to compare the VSL corridors and 
to correspond with the normalized crash frequency. Table 6 shows 
that the Cheyenne–Laramie corridor has a significantly higher num-
ber of normalized sharp horizontal curves when compared with 
other corridors. Table 6 also shows the total number of steep grades 
and the normalized steep grades on all four corridors.

In the final data set, four weather parameters (snow, ice, frost 
and wind), number of horizontal curves, number of steep grades, 
VSL implementation, and AADT were the explanatory variables 
considered in the initial model. Statistically insignificant variables 
(p-values > .05) were removed one at a time until only significant 
variables remained in the final model. NB, RENB, and FENB mod-
els were all estimated (Table 7) to determine which model performed 

best. As seen by the smaller the value of AIC, the FENB regression 
was determined to be the best statistical technique for developing SPFs 
in this research. Interaction terms between the weather and geometric 
variables were also included in the model. Table 7 presents the results 
from initial and final models for all three methods. Since the FENB 
model was determined to be the best performing model, only the 
results of that model will be discussed.

Safety impacts from the implementation of VSL systems can 
be estimated from these results. The model coefficient for the VSL  
variable was estimated as −0.2446, which is interpreted as a reduction 
of 0.78 crashes per week per 100 mi of VSL corridor length. This crash 
reduction estimate can then be converted from a weekly to a winter 
season value to calculate 20.4 crashes avoided per winter season 
per 100 mi of VSL corridor. To determine the total crashes avoided 
per season, this value is then multiplied by the ratio of 143/100, to 
adjust for the total length of the VSL corridors, for an annual crash 
reduction estimate of 29.1. Of note is that as the number of sharp 
horizontal curves increases, the crash frequency increases (positive 
coefficient), which is as expected. Horizontal curvature was found 
to be significant only in the interaction terms with weather. It was 
also found that as the number of steep grades increased, the crash 
frequency decreased, which could be considered counterintuitive. 
The steep grades may have limited vehicle speeds or prompted more 
cautious driving behavior, which led to crash reductions. Interactions 
between horizontal curves and weather variables and grades and 
weather variables were analyzed. It was found that as the number 
of sharp horizontal curves increased, the crash frequency in ice and 
frost conditions increased while the crash frequency during snow 
conditions decreased. This may indicate that drivers compensated 
for the more obvious hazardous condition of snow. The interaction 
of adverse weather conditions and steep grades was not found to be 
significant in the model.

Because of large differences in the number of horizontal and 
vertical curves among the VSL corridors (Table 6), the VSL cor-
ridors were divided so a more specific modeling analysis could be 
conducted. The Cheyenne–Laramie and Evanston corridors showed 
a higher number of sharp horizontal curves and steep grades. To 
evaluate the VSL effectiveness on these geometrically challeng-
ing corridors, the four corridors were split into two categories and 
additional models were estimated. Table 8 shows the results from 
initial and final FENB models for both the geometrically challeng-
ing corridors (Cheyenne–Laramie and Evanston corridors) and for 
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FIGURE 3  Elk Mountain seasonal variation of crash frequency, 
2001 to 2012.

TABLE 5  Summary of Crash Frequency in Winter Seasons for VSL Corridors, 2008–2012

VSL 
Implementeda

Winter

Average

Crash Reduction 
After VSL  
System (%)bCorridor 2007–2008 2008–2009 2009–2010 2010–2011 2011–2012

Cheyenne– 0 220 132 183 194 na 182 24
 Laramie 1 na na na na 138 138

Elk Mountain 0 329 176 na na na 253 28
1 na na 109 247 202 186

Evanston 0 161 118  76  91 na 119 58
1 na na na na 50  50

Rock Springs and 0 255 159 149 106 na 188 55
 Green River 1 na na na na 85  85

a0 represents periods before VSL implementation and 1 represents periods after VSL is implemented.
bCrash reduction of 41%.
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the other two corridors (Elk Mountain and Green River). For the 
challenging corridors, the VSL system was shown to reduce crashes 
(negative coefficient, shown in bold in Table 8) but was not shown 
to be statistically significant. In this model, only one year of data 
was available after implementing the VSL system. It is antici-
pated that more years of data following implementation of the 
VSL system might result in more conclusive outcomes; however, 
for the Elk Mountain and Green River corridors, the VSL system 
was found to be significant. From these results, it can be inferred 
that the geometric characteristics need to be included in setting 

appropriate speed limits for the VSL system, especially for the 
challenging corridors.

conclusions

The goal of this research was to estimate the effectiveness of VSL 
systems and the effect of grades and sharp horizontal curves on crash 
frequency in adverse weather conditions. To isolate the effects of the 
geometrics on crashes from the effects of mild versus severe winters, 

TABLE 7  Parameter Estimates for Models Incorporating Geometric Variables

NB Model RENB Model FENB Model

Variable Initial Final Initial Final Initial Final

Snow 0.0205 0.2307*** 0.028 NA 0.0256 NA

Ice 0.1062 NA 0.0925 0.1136** 0.0951* 0.105**

Frost 0.02929 NA −0.0804 NA −0.0788 NA

Wind 0.2309*** NA 0.147** 0.0867*** 0.1438** 0.084***

Horizontal curve 0.0123*** 0.0104*** 0.0089** 0.0039** 0.0068* NA

Grade −0.0017 −0.0033*** −0.002* −0.0026*** −0.0025* −0.003**

VSL −0.0194* −0.2296** −0.2009** −0.2219** −0.2122** −0.2446**

GradeSnow 0.0005* 0.0004* 0.0003 NA 0.0003 NA

GradeIce −0.0003 NA −0.0003 NA −0.0003 NA

GradeFrost 0.0021 0.0025* 0.0021 NA 0.0021 NA

GradeWind −0.0003 NA −0.0002 NA −0.0002 NA

HoriSnow 0.0005 0.0008** 0.0005 0.001*** 0.0006 0.001***

HoriIce −0.0008 NA −0.0007 −0.0011** −0.0007 −0.001*

HoriFrost −0.00028 −0.0027* −0.0016 NA −0.0016 −0.00255*

HoriWind −0.0011* −0.0012** −0.0005 NA −0.0008 NA

Constant 0.4259 0.6992** −1.0229*** −0.6677*** −0.8142** −0.341*

Observations 428 428 428 428 428 428

Number of corridors 4 4 4 4 4 4

Walk χ2 NA NA 226.87*** 212.72*** 157.32*** 145.21***

Log likelihood −1,554.06 −1,558.64 −1,582.59 −1,589.08 −1,555.22 −1,562.19

AIC 3,142 3,139 3,201 3,198 3,118 3,138

Note: NA = not available; hori = horizontal.
*p < .05; **p < .01; ***p < .001.

TABLE 6  Summary of Number of Sharp Horizontal Curves and Steep Grades

Horizontal Curvesa Steep Gradesb

Corridor

Length of 
Corridor 
(mi)

Number of 
Horizontal 
Curves

Normalized Number of 
Horizontal Curves by 
100 mi

Number of 
Steep Grades

Normalized Number 
of Steep Grades by 
100 mi

Elk Mountain 53  8  15  8  15

Evanston 23 10  43 54 235

Cheyenne–Laramie 42 61 145  9  21

Green River 25 18  72  2   8

Total 143 97 276 73 279

aRadii < 3,500 ft.
bGrade > 49°.
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TABLE 8  Parameter Estimates for FENB Model of Most- and  
Least-Challenging Corridors

Elk Mountain and  
Green River Model

Laramie–Cheyenne and  
Evanston Model

Variable Initial Final Initial Final

Snow 0.3143* 0.3425*** 0.0614 0.0862***

Ice −0.0016 NA −0.0093 NA

Frost −0.5448 NA −0.2636 NA

Wind 0.2376* −0.2784** 0.0654 0.0648*

Horizontal curve −0.0022 NA 0.0145*** 0.01256***

VSL −0.1726 −0.1683a −0.1355 −0.1322b

GradeSnow −0.0215* −0.0234** 0.0003 NA

GradeIce 0.0063 0.0062* −0.00002 NA

GradeFrost 0.0393 NA 0.0025 NA

GradeWind 0.0273** 0.0306*** −0.00004 NA

Constant −0.4607 −0.5871*** −1.7759*** −1.6279***

Observations 210 210 218 218

Number of corridors 2 2 2 2

Walk χ2 110.74*** 111.29*** 87.34*** 86.06***

Log likelihood −751.89 −752.73 −786.13 −788.55

AIC 1,525 1,519 1,594 1,587

Note: Bold font indicates negative coefficient.
ap = .062.
bp = .286.
*p < .05; **p < .01; ***p < .001.

it was necessary to perform a weather-based safety analyses consider-
ing geometric variations. With a 7-day crash frequency as the response 
variable and weather, traffic, and geometric variables as the explana-
tory variables, a model that used NB, RENB, and FENB techniques 
was performed, and the FENB model was found to perform best. From 
the model results, the VSL system was found to be significant in reduc-
ing crashes in winter. The model also found that horizontal curves 
alone had no statistically significant effect on crashes but were signifi-
cant as an interaction term with weather. Steep grades were found to be 
statistically significant but had the effect of reducing crashes.

A specific modeling analysis was also conducted on the most geo-
metrically challenging corridors and the less-challenging corridors 
to compare VSL effectiveness. The VSL system was found to reduce 
crashes for both types of corridors, but only the less-challenging 
corridors were found to be a statistically significant difference. Since 
the data were limited for the challenging corridors for time periods 
after the VSL systems were deployed, conducting similar analyses 
once more crash data become available is advised.

Currently the VSL control algorithm does not include geometric 
variations in selecting appropriate speed limits in adverse winter con-
ditions. The findings of this research indicate that a more effective 
VSL system could be developed and implemented, one that utilizes 
geometric variables in additional to real-time weather variables for 
corridors in which geometrics play a large role.

The aggregation of the corridors into a single model was necessary 
because of the limited post-VSL data in some of the corridors. As crash 
data become available, future research will look at corridor-specific 
models. Empirical Bayes methodology will also be considered as 
more data become available. Future research will also investigate the 
areas within each corridor that have the highest crash occurrences, 

especially during severe weather conditions. Future work will also 
conduct a benefit–cost analysis associated with the reduction in crash 
frequency.

acknowledgMent

The authors thank the Wyoming Department of Transportation for 
supporting this research.

references

 1. Krause, B., C. von Altrock, and M. Pozybill. Intelligent Highway by 
Fuzzy Logic: Congestion Detection and Traffic Control on Multi-
Lane Roads with Variable Road Signs. Proc., 5th IEEE Conference  
on Fuzzy Systems, New Orleans, La., Vol. 3, IEEE, New York, 1996, 
pp. 1832–1837.

 2. Lin, P.-W., K.-P. Kang, and G.-L. Chang. Exploring the Effectiveness 
of Variable Speed Limit Controls on Highway Work-Zone Operations. 
Journal of Intelligent Transportation Systems: Technology, Planning, 
and Operations, Vol. 8, No. 3, 2004, pp. 155–168.

 3. Buddemeyer, J., R. Young, V. Sabawat, and E. Layton. Variable Speed 
Limits System for Elk Mountain Corridor. Report FHWA-WY-10/04F. 
FHWA, U.S. Department of Transportation and Wyoming Department 
of Transportation, Cheyenne, 2013.

 4. Saha, P., R. Liu, C. Melson, and S. D. Boyles. Network Model for Rural 
Roadway Tolling with Pavement Deterioration and Repair. Computer-
Aided Civil and Infrastructure Engineering, Vol. 29, No. 5, 2014,  
pp. 315–329.

 5. Boyles, S. D., and P. Saha. An Optimization Model for Roadway Pricing 
on Rural Freeways. Report MPC 12-246. Mountain-Plains Consortium, 
North Dakota State University, Fargo, 2012.



Saha, Ahmed, and Young 53

 6. Young, R., V. Sabawat, P. Saha, and Y. Sui. Rural Variable Speed Limits: 
Phase II. FHWA-WY-13/03F. FHWA, U.S. Department of Transporta-
tion and Wyoming Department of Transportation, Cheyenne, 2013.

 7. Abdel-Aty, M. A., and E. A. Radwan. Modeling Traffic Accident Occur-
rence and Involvement. Accident Analysis and Prevention, Vol. 32, 2000,  
pp. 633–642.

 8. Ahmed, M., H. Huang, M. Abdel-Aty, and B. Guevara. Exploring a 
Bayesian Hierarchical Approach for Developing Safety Performance 
Functions for a Mountainous Freeway. Accident Analysis and Prevention,  
Vol. 43, No. 4, 2011, pp. 1581–1589.

 9. Tegge, R. A., J. Jo, and Y. Ouyang. Development and Application of 
Safety Performance Functions for Illinois. Illinois Center of Transporta-
tion, Rantoul, 2010.

10. Khattak, A. J., and K. K. Knapp. Snow Event Effects on Interstate High-
way Crashes. Journal of Cold Regions Engineering, Vol. 15, No. 4, 2001,  
pp. 219–229.

11. Andrey, J., and S. Yagar. A Temporal Analysis of Rain-Related Crash 
Risk. Accident Analysis and Prevention, Vol. 25, 1993, pp. 465–472.

12. Kalokoata, K., and P. Seneviratne. Accident Prediction Models for Two-
Lane Rural Highways, Utah Transportation Center, Utah State University,  
Logan, 1994.

13. Cafiso, S., A. Di Graziano, G. Di Silvestro, G. La Cava, and B. Persaud. 
Development of Comprehensive Accident Models for Two-lane Rural 
Highways using Exposure, Geometry, Consistency and Context Variables. 
Accident Analysis and Prevention, Vol. 42, 2010, pp. 1072–1079.

14. Jovanis, P. P., and H.-L. Chang. Modeling the Relationship of Accidents 
to Miles Traveled. In Transportation Research Record 1068, TRB, 
National Research Council, 1986, pp. 42–51.

15. Miaou, S.-P., and D. Lord. Modeling Traffic Crash-Flow Relationships 
for Intersections: Dispersion Parameter, Functional Form, and Bayes 
Versus Empirical Bayes Methods. In Transportation Research Record: 
Journal of the Transportation Research Board, No. 1840, Transportation 
Research Board of the National Academies, 2003, pp. 31–40.

16. Saha, P., and R. K. Young. Weather-Based Safety Analysis for the Effec-
tiveness of Rural VSL Corridors. Presented at 93rd Annual Meeting of 
the Transportation Research Board, Washington, D.C., 2014.

17. Lord, D., and F. Mannering. The Statistical Analysis of Crash-Frequency 
Data: A Review and Assessment of Methodological Alternatives. Trans-
portation Research Part A: Policy and Practice, Vol. 44, No. 5, 2010,  
pp. 291–305.

18. Shankar, V. N., R. B. Albin, J. C. Milton, and F. L. Mannering. Evaluat-
ing Median Cross-Over Likelihoods with Clustered Accident Counts: 
An Empirical Inquiry Using the Random Effects Negative Binomial 
Model. In Transportation Research Record 1635, TRB, National Research 
Council, Washington, D.C., 1998, pp. 44–48.

19. Yaacoob, W., M. Lazim, and Y. Bee Wah. Evaluating Spatial and Tem-
poral Effects of Accidents Likelihood using Random Effects Panel 
Count Model. Presented at International Conference on Science and 
Social Research, Kuala Lumpur, Malaysia, Dec. 5–7, 2010.

20. Chin, H. C., and M. A. Quddus. Applying the Random Effect Negative 
Binomial Model to Examine Traffic Accident Occurrence at Signalized 
Intersections. Accident Analysis and Prevention, Vol. 35, No. 2, 2003, 
pp. 253–259.

21. Guo, F., X. Wang, and M. A. Abdel-Aty. Modeling Signalized Inter-
section Safety with Corridor-Level Spatial Correlations. Accident 
Analysis and Prevention, Vol. 42, No. 1, 2010, pp. 84–92.

22. Kvalseth, T. O. Cautionary Note About R2. American Statistician, Vol. 39, 
No. 4, 1985, pp. 279–285.

23. El-Basyouny, K., and T. Sayed. Safety Performance Functions with 
Measurement Errors in Traffic Volume. Safety Science, Vol. 48, No. 10, 
2000, pp. 1339–1344.

24. NorthWest Weathernet Inc., Issaquah, Wash., http://www.nw-weathernet 
.com/AppliedMeteorology/Our-Services.php. Accessed Jan. 10, 2014.

25. 2009–2012 Automatic Traffic Recorder Report. Wyoming Department 
of Transportation, Cheyenne, 2013.

The Standing Committee on Geometric Design peer-reviewed this paper.


