# SheepSer

**Understanding Winter Range Nutrient Composition** to Guide Supplementation Decisions in the **Wyoming Ewe Herd** 

## Summary

Grazing rangelands throughout the winter months as a cost-effective method of providing winter feed to the ewe herd is a crucial component of many Wyoming sheep operations. Wyoming's rangelands, covering about 85% of the state, host diverse forage and browse species that vary by region. Surveys show 73% of range herds use winter range for 90-103 days annually. As imoportant as these rangelands are, much of this available feed is highly variable in quantity and overall nutrient composition. For most operations, the window between breeding and lambing coincides with the lowest quality and quantity of range forages available to the herd. Whether on sagebrush steppe or shortgrass prairie, winter range alone is often not enough to meet the requirements of late gestation and early lactation. By understanding the composition and availability of winter forage, producers can formulate an efficient and economical supplement program.

## **Understanding Nutrient Composition of Winter Range**

As plants mature, protein in forages and digestibility decline. Once crude protein drops below 7%, rumen microbes slow, reducing intake and performance. Understanding the specific nutrient composition of a range is essential for designing an effective supplementation plan. While table 1 provides average nutrient values for common Wyoming grasses, these estimates vary widely; forage testing offers a more accurate assessment to guide supplementation decisions

## LOOKING FOR MORE **INFORMATION?**

- Winter Ewe Management
- Evaluating Distiller's Grains
- Nutritional Flushing on the Range



**Extension** Sheep Program



## **Plant Composition of Winter** Range

Winter rangelands in Wyoming support diverse forage species. Cool-season grasses are generally higher quality than warm-season types, but forbs and shrubs play a key role in balancing diets when grass quality declines. The ratio of monocots (grasses, sedges) to dicots (forbs, shrubs) can determine diet quality. Research from the University of Wyoming have shown that dicot-dominated ranges—rich in sagebrush, rabbitbrush, and winterfat—offer more available protein and minerals, allowing sheep to better meet nutrient needs through selective grazing and often reducing supplementation requirements than those dominated by grasses and sedges.

## **Estimating Forage Availability**

To determine whether supplementation or substitution is needed, ranchers must first assess expected forage availability. As sheep graze through winter, both forage quantity and quality decline. Estimating available forage in each pasture helps plan grazing duration, stocking rate, and when to begin substitution. Various tools are available to predict forage supply throughout the year and guide these decisions.

- UW Stocking Tools: ranchtools/stocking-tool
- NRCS Web Soil Survey: websoilsurvey.nrcs.usda.gov
- Rangeland Analysis Platform: rangelands.app

# **Example:**

- A 640-acre pasture producing 1,200 lb/acre supports ~180 grazing days for 500 170 lb. ewes.
- At 500 lb/acre (drought), only ~75 days requiring supplemental feed or reduced stocking over winter.

| Good Year    | 1,200 lb/acre | ~180 days |
|--------------|---------------|-----------|
| Drought Year | 500 lb/acre   | ~75 days  |

# Supplementation vs. Substitution

Whether to **supplement** or **substitute** depends on forage availability. **Supplementation** provides specific missing nutrients—such as protein, energy, or minerals—when forage quantity is adequate, but quality is low. This can include sources like alfalfa hay, grain, or mineral blocks. **Substitution**, by contrast, is needed when total forage supply is insufficient or inaccessible due to overgrazing, drought, or snow cover. In this case, harvested forage or concentrates replace the missing dry matter to meet the animals' nutritional needs.



## When to Supplement

Once the availability and nutrient quality of winter range land is understood, supplementation/substitution needs can be tailored around the changing requirements of the ewe herd throughout the winter, to economically address shortfalls in available grazing. Dormant forage (4-6% CP, 45-55% TDN) often won't meet gestation or lactation needs.

| Stage of Production     | Crude Protein<br>(Lbs./day) required | TDN (Lbs./day)<br>required |  |
|-------------------------|--------------------------------------|----------------------------|--|
| Early Gestation (Twins) | 0.28-0.36                            | 1.8-2.3                    |  |
| Late Gestation (Twins)  | 0.38-0.51                            | 2.4-3.1                    |  |
| Early Lactation         | 0.62-0.74                            | 2.7-3.4                    |  |

Adapted from Nutrient Requirements of Sheep

# **Example:**

- If a 165 lb. ewe eats ~2.5% of her bodyweight in forage dry matter per day, total DM forage intake is 4.13 lbs. (165 lbs x 2.5%)
- If forage is only 6% CP, then 4.13 lbs. forage = 0.25 lbs. of CP/day (4.13 x 6%), which is below the required protein intake at all stages of production.
- Remember, is CP drops below 7%, protein supplementation is required to maintain rumen function.

# What to Supplement

#### Protein

Protein is the most common winter deficiency and essential for rumen function. Ewes supplemented with 0.25-0.33 lb./day of protein weaned lambs 5-10 lb. heavier than unsupplemented ewes.

**Sources:** Alfalfa hay, DDGS, soybean meal, pulse by-products.

By-product meals provide more undegradable intake protein (UIP), improving digestion and aiding recovery and milk production in ewes with multiples.

#### Energy

Measured as Total Digestible Nutrients (TDN), energy becomes limiting when forage digestibility declines or during late gestation and lactation. Feeding 0.25-0.5% of body weight in high-energy concentrate increases forage intake, improves colostrum production, reduces pregnancy toxemia risk, and supports lamb performance.

**Sources:** Corn, barley, oats, cereal grains

#### Minerals

Dormant grasses are low in phosphorus, calcium, and other macro-minerals. While shrubs and forbs help, supplementation is often required. Mineral levels also vary, with key macro-minerals like calcium, phosphorus, and potassium often deficient. Even in diverse plant communities, many Wyoming operations fall short - 42% of ranches do not provide adequate mineral supplementation. Options: Fortified pellets or cake combining nutrients, custom mineral mixes (\$10 - \$25/ton), or mineral tubs/blocks for extensive systems.

## **DID YOU KNOW?**

- Protein supplementation of 0.25-0.33 lb/day can result in 5-10 lb heavier lambs at weaning.
- Shrubs and forbs are critical winter nutrient sources, especially for protein and minerals.

## **Cost Effective Supplementation**

A well-informed supplementation plan depends on knowing both the nutrient composition of winter range and the nutrient requirements of the ewe flock. Using range monitoring tools, forage testing, and targeted supplements allows Wyoming sheep producers to maintain production efficiency while minimizing feed costs and preserving valuable winter range resources.

Always compare feeds by cost per pound of nutrient, not by price/ton.

Table 3: Cost per pound of common supplemental feeds

| Feed          | Crude<br>Protein<br>(%) | Cost per<br>lb. CP |  |
|---------------|-------------------------|--------------------|--|
| Alfalfa Hay   | 16                      | \$0.58             |  |
| DDGS          | 29                      | \$0.29             |  |
| Whole<br>Corn | 9                       | \$0.76             |  |

# **QUICK FACTS:** SUPPLEMENTING ON WINTER RANGE

- A ewe's protein requirement nearly doubles from early gestation to early lactation, making supplementation timing crucial.
- Dormant winter grasses can drop low enough in protein that rumen microbes begin to shut down, reducing forage intake even when forage is available.
- Supplementation and substitution are not the same, supplementation fills nutrient gaps, while substitution replaces forage when supply is too low.



| Table 1: Seasonal Forage Value of Common Range Grasses |              |           |      |        |  |  |  |
|--------------------------------------------------------|--------------|-----------|------|--------|--|--|--|
|                                                        | Spring       | Summer    | Fall | Winter |  |  |  |
| Warm Season                                            |              |           |      |        |  |  |  |
| Big Bluestem                                           | Good         | Good      | Fair | Poor   |  |  |  |
| Little Bluestem                                        | Fair         | Good      | Poor | Fair   |  |  |  |
| Blue Grama                                             | Good         | Excellent | Good | Good   |  |  |  |
| Sideoats Grama                                         | Good         | Excellent | Good | Fair   |  |  |  |
| Cool Season                                            |              |           |      |        |  |  |  |
| Smooth Brome                                           | Excellent    | Fair      | Good | Fair   |  |  |  |
| Green Needlegrass                                      | Excellent    | Good      | Good | Fair   |  |  |  |
| Crested Wheatgrass                                     | Excellent    | Fair      | Good | Poor   |  |  |  |
| Western Wheatgrass                                     | Good         | Good      | Good | Fair   |  |  |  |
| Adapted from Sedivec et a                              | d. 2008-2009 |           |      |        |  |  |  |

UNIVERSITY
OF WYOMING

Extension
Sheep Program

# This brief was created by UWyo Sheep Task Force - 11.25

#### **Author:**

Dagan Montgomery, Sublette County Agriculture and Natural Resources Educator, dmontgo8@uwyo.edu

#### **Edited by:**

**UW Sheep Extension Team** 

#### Sources:

Julian, A., Scasta, J., Stewart, W. (2024). Sheep Winter Diets Parameterized With Fecal DNA Metabarcoding and Forage Sampling Informs Mineral Nutrition Management. Rangeland Ecology & Management. 94. 168-177. <a href="https://doi.org/10.1016/j.rama.2024.03.003">https://doi.org/10.1016/j.rama.2024.03.003</a>

Julian, A., Scasta, J., Stam, B., Sebade, B., & Page, C., Springer, B., Renner, W., Cunningham-Hollinger, H., Stewart, W. (2020). Mineral element concentrations of common grass and shrub species on sheep winter range in Wyoming: insights for mineral supplementation strategies1. Translational Animal Science. 4. S11-S16.. <a href="https://doi.org/10.1093/tas/txaa088">https://doi.org/10.1093/tas/txaa088</a>

Quintana, J., Stewart, W., Scasta, D. (2022). Supplementation Considerations for Ewes Managed on Dormant Winter Pastures and Rangelands. University of Wyoming Extension Publications. B-1379. <a href="https://www.wyoextension.org/agpubs/pubs/B-1379-ewe-web.pdf">https://www.wyoextension.org/agpubs/pubs/B-1379-ewe-web.pdf</a>

Sedivec K. K., D. A. Tober, W. L. Duckwitz, D. D. Dewald, J. L. Printz, and D. J. Craig. 2009. Grasses for the Northern Plains: Growth patterns, forage characteristics and wildlife values, Volume II. Warmseason. Bulletin R1390. Fargo, ND: NDSU Extension Service. <a href="https://www.nrcs.usda.gov/">https://www.nrcs.usda.gov/</a> Internet/FSE\_PLANTMATERIALS/publications/ ndpmcbk9425.pdf



