Edited by M. Wendisch and J.-L. Brenguier

Airborne Measurements for Environmental Research

Methods and Instruments

Table of Contents

3.7 Chemical Conversion Techniques

3.8 Whole Air Sampler and Chromatographic Techniques

Chapter 4: In Situ Measurements of Aerosol Particles

- 4.1 Introduction
- 4.2 Aerosol Particle Number Concentration
- 4.3 Aerosol Particle Size Distribution
- 4.4 Chemical Composition of Aerosol Particles
- **4.5 Aerosol Optical Properties**
- 4.6 CCN and IN
- 4.7 Challenges and Emerging Techniques

Chapter 5: In Situ Measurements of Cloud and Precipitation Particles

- **5.1 Introduction**
- 5.2 Impaction and Replication
- 5.3 Single-Particle Size and Morphology Measurements
- 5.4 Integral Properties of an Ensemble of Particles
- 5.5 Data Analysis
- 5.6 Emerging Technologies
- Acknowledgments

Chapter 6: Aerosol and Cloud Particle Sampling

- **6.1 Introduction**
- **6.2 Aircraft Influence**
- **6.3 Aerosol Particle Sampling**
- **6.4 Cloud Particle Sampling**
- 6.5 Summary and Guidelines

Chapter 7: Atmospheric Radiation Measurements

- 7.1 Motivation
- 7.2 Fundamentals
- 7.3 Airborne Instruments for Solar Radiation
- 7.4 Terrestrial Radiation Measurements from Aircraft

Chapter 8: Hyperspectral Remote Sensing

- 8.1 Introduction
- 8.2 Definition
- 8.3 History
- **8.4 Sensor Principles**
- 8.5 HRS Sensors
- 8.6 Potential and Applications

- 8.7 Planning of an HRS Mission
- **8.8 Spectrally Based Information**
- 8.9 Data Analysis
- **8.10 Sensor Calibration**
- **8.11 Summary and Conclusion**

Chapter 9: LIDAR and RADAR Observations

- 9.1 Historical
- 9.2 Introduction
- 9.3 Principles of LIDAR and RADAR Remote Sensing
- 9.4 LIDAR Atmospheric Observations and Related Systems
- 9.5 Cloud and Precipitation Observations with RADAR
- 9.6 Results of Airborne RADAR Observations-Some Examples
- 9.7 Parameters Derived from Combined Use of LIDAR and RADAR
- **9.8 Conclusion and Perspectives**
- **Acknowledgments**

Appendix A: Supplementary Online Material

- A.1 Measuring the Three-Dimensional Wind Vector Using a Five-Hole Probe
- **A.2 Small-Scale Turbulence**
- A.3 Laser Doppler Velocimetry: Double Doppler Shift and Beats
- A.4 Scattering and Extinction of Electromagnetic Radiation by Particles
- A.5 LIDAR and RADAR Observations
- **A.6 Processing Toolbox**

List of Abbreviations

Constants

Greek

Latin

<u>References</u>

Index