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4. Fluid Statics, Dynamics, and Airspeed Indicators

From our previous brief encounter with fluid mechanics we devel oped two equations: the
one-dimensional continuity equation, and the differential form of Bernoulli’ s equation. These
are repeated here:

Continuity (1-D):

The general form of the 1-D continuity equation is:

m = const = pAV
A =p, A (@
P AV = 4,7,

For incompressible flow, p = const = p, = p,, and Eq. (1) reducesto asimpler form.

I ncompressible flow 1-D continuity equation:

AV = const = 4,V, = 4,7V, (2)

Differential form of Bernoulli’s equation:

P vav + gdn, - 0 3

p

We can examine an example of using the continuity equation for incompressible flow.

Example: The Virginia Tech Stability is alow speed facility and hence the air may be treated as
an incompressible fluid. The air flow into a 6ft x 6 ft test section from aregion of the tunnel
(plenum) that is 24 ft x 24 ft. It the air in the plenum is moving at 10 ft/sec, what is the speed of
the air in the test section?

Since the flow is considered incompressible, then we can use the incompressible
continuity equation to estimate the speed. Lets designate the plenum section as location 1, and
the test section aslocation 2. Since no air leaves the wind tunnel we have:

A,V =4,V, =24 (10) = (V) = V,= %20 = 160 ft/sec



At the propeller (fan) the tunnel is circular and has a diameter of 15 ft. What is the velocity
through the propeller?
Again we can use the continuity equation to get:

2
AV, = 4,7, = 242(10) = ﬂ( 1—25) V, =V, =32.59 fisec

Furthermore the amount of air moving through the tunnel is:
AV = 242(10) = 6*(160) = = 7.5%(32.59) = 5760 ft3/sec

The Measurement of Pressure:

In the previous example problem, asthe air flows around the wind tunnel, there are
variations of pressure. We determine how the pressure varies in the next section. Here, we want
to discuss some ways that are use to measure the pressure in awind tunnel or any other air flow
situation, such as flow over awing surface. We measure the pressure of any flow over asurface
(such as awing surface, or wind tunnel wall) by making a hole perpendicular to that surface,
called a pressure tap, and measuring the pressure in that hole. The resulting pressureis called the
static pressure of the fluid at that point.

Manometers

One way to measure pressure is to use amanometer. A manometer isa U tube filled with
aliquid (such as mercury, water, or acohol). One end of the tube is exposed to the atmosphere,
and the other end is attached, using flexible tubing to the pressure tap. The difference in pressure
will cause the fluid to risein one leg of the U (the lower pressure side) and drop in the other (the
higher pressure side). The difference in the heights of the two sidesis supported by the pressure
difference. This pressure differenceis related to the height of the fluid by the hydrostatic
equation (Bernoulli’ s equation with velocity equal to zero):

dP = -pgdh (4)

From Eq. (4) we can see that for any given (non-moving) fluid, the pressure at any level, h, isthe
same. Hence the differencesin the levels of the fluid in the U tube can be related directly to the
differencein pressure by Eqg. (4). Since the fluids in manometers are incompressible, and gravity
may be considered constant over the length of the manometer, we can easily integrate Eq. (4) to
get:

P, - P = -pg(h, - h) (%)

where p. = density of thefluid in manometer

pressure at level h,

Pl =
P,= pressureat level h,



D

The figure at the right represents a pressure - A
tap at point 3 attached to a U tube
manometer that is open to the atmosphere, 1,
P,. Hence P; is the static pressure in the wind h
tunnel, P, is atmospheric pressure, and P, is , )
some intermediate pressure (that we will A/ -
show shortly is approximately equal to P).

h,
Here we can apply the hydrostatic \/
equation twice, once to the column of air

between P, and P,, once again to the column

of manometer fluid between P, and P,
Just applying the equation strictly asit is written, we have:

P3_P1
P

_pag(h3 - hl)
1 ~ Py = -p,8(h -hy)

where p = density of tunnel fluid (in this case air).
p,,= density of manometer fluid (in this case water).

If we combine the equations we can determine the tunnel pressure from:

P3 - P2 = _pag(h3 - hl) + pwg(h2 - hl)

This equation tells us the difference between atmospheric pressure (P,) and the tunnel pressure,
(P;). However, if we look at the equation carefully, we can see that if the tunnel fluid isair, the
density of air p, is much, much less than the density of the manometer fluid, p,, . Assuming the

manometer tubes are not too long, (h, - k) isof order (h, - h, ), then we can neglect the
first term and arrive at the required result. It isequivaent to assuming that P, = P;, so we have:

Py - P, = -p,g(h - h) (6)



Specific Gravity (o)

The density of afluid divided by the density of an equivalent amount of water is called
the specific gravity, or

pﬂuid = 0-sg X pw (7)

Example:

A mercury barometer works by putting mercury into a closed tube and inverting it and
putting the open end in areservoir of mercury. Hence the pressure on the reservoir surfaceis
atmospheric, and the pressure on the upper surface of the column of mercury is zero sinceitisin
avacuum. If we designate the surface of the reservoir as point 1, and the upper surface of the
mercury column as point 2, we can write:

P, - P = -p,8(h, - hy)
We would like to find, the barometric reading for the standard atmosphere at sea-level. For our

problem, P,= 0 sinceit isavacuum, (we will assume it is avacuum) and the above equation
becomes:

Py = Py = P8 (hy ~ hy)

The specific gravity of mercury is 13.598. If we use US customary units we have:

2116.217 lbs.ft*> = 13.598 (1.940) (32.174) Ibs/ft?) (h, - h))
(h, - h;) = 24933 ft = 29.92 inches of hg = 0.0.760 m

Hence the “pressure” at sea-level in a standard atmosphere is designated as 29.92 inches of
mercury. To get the real pressure you need to convert that number to feet, and then multiply by
the “weight density” of mercury ( or the specific gravity times the density of water times the
gravitational constant).

Some specific gravities of typical manometer fluids are:

Water 1.00 And in case your wondering:
Mercury 13.595 Ice 0.92
Ethyl Alcohol 0.81 Lead 11.3
Benzene 0.8846 Platinum 21.4
Gasoline 0.68 Crude Oil 0.87

The density of water is: US - 1.940 slugs/ft? Sl - 1000 kg/m?®

4



| ntegrating Bernoulli’s Equation

The differential form of Bernoulli’ s equation is given by Eq. (3). We would now like to
apply that equation to aerodynamic flow problems. In this case V will not be zero, and in fact can
be quite large. There are three termsin the equation, dP/p, V dV, gdhg. Sinceweknow gasa
function of hg as established in the discussion of the atmosphere, the last two terms can be
integrated directly. However, the first cannot be integrated until we know how the density varies
with pressure. Consequently there must be some relation p(P) that is known before we can
integrate the equation.

Werealize that in many cases of interest, we may be dealing with relatively high speeds
with little change in altitude. Recall that the last time we used this equation we had zero velocity
and huge changesin altitude! Hence the last term was large because of the large changesin
atitude. With small changesin altitude, up to several tens of meters, thelast term in the equation
can be ignored. Hence we have the reduced form of the differentia form of Bernoulli’ s equation:

P\ yav -0 ®)

p

We can integrate this equation under assumptions associated with two special cases. Thefirst
somewhat restrictive, and the second |ess so.

Case 1 - Special Case - Incompressible Flow

The most common form of the integrated Bernoulli’s equation is for the special case of
incompressible flow. Under this assumption, p = constant, and Eqg. (8) is easily integrated (thus
the popularity of this case). We should also remember that Eg. (3) and hence Eq. (8) was derived
for flow along a streamline so that Bernoulli’ s equation is restricted to that situation. All that
being said, if the density is assumed constant, then the above equation isintegrated to give:

I ncompressible Bernoulli’ s Equation

constant

P, = constant

0

1 2 2
P, +EPVI =P, +EpV2 =P,

1




Assumptions:

1. Inviscid (no viscosity) - since only forces due to pressures were considered
2. Incompressible flow - p = const
3. Flow along a streamline

4 Steady flow
Definitions:
1. The pressure P = Static pressure
2. The pressure P, = Stagnation pressure

3. The quantity% p V2 = dynamic pressure = g
Definition (3) holds for all flow regimes, incompressible or compressible.

Finally we can note that if all the streamlinesin the flow originate from some common flow
condition, then Bernoulli’ s equation holds throughout the flow.

Case 2 - Special Case - Compressible Flow (I sentropic - Adiabatic)

In order to integrate Eq. (8) for the case where the density is not constant, we must
determine how the density changes with pressure. If we assume certain conditions on the flow,
such as 1) no viscosity (friction), called an isentropic process, and 2) no heat added or taken
away, called an adiabatic process, then a rule under which the fluid variables behave is given by
the equation:

% = constant = C (20)
p
where P=  pressure

p=  density

y = ratio of specific heats= 1.4 for air

It is only important to know that such arule exists, and that it is a good approximation of how the
pressure and density are related. If w solve for the density we get:

1
p=(—)Y (12)

We can now substitute Eq. (11) into Eqg. (8) so that we can integrate it.



1
cvd_f VAV =0
pY

This equation is easily integrated to obtain the following:

1
1 1-=
- Y 2
CYP 7 +7=constant
1-—=
Y
, X1
il Y 2
CYP . +V7=constant
Y_
Y
1 1
Wecannotethat CY = — ,sothat CYP Y = —P Y = Z Whenthe smoke clears,
P P P

we have the following integrated form of Bernoulli’ s equation:

Compressible Bernoulli’s Equation

+

constant

=<
Y
N oY

constant

+

< =<
|
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=+
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YRT,
y-1

-
"
el

Assumptions:
1. Non-viscous
2. Adiabatic, Isentropic
3. Steady flow

Definitions.  Thetemperature T = local temperature (absolute)
The temperature T, = stagnation temperature (temperature when the fluid is
slowed to rest)



Speed of Sound

Equation (12) takes on an interesting form if we introduce the concept of the speed of

sound. Without proof, the speed of sound can be shown to be given by: a? = Q. If we use

dp
the same adiabatic process that we used to get Eq. (12) it is easy to show that the speed of sound
is determined from:

We can note that the speed of sound depends only on the temperature!

For example, in a standard sea-level atmosphere, the speed of sound is determined from:

a = YRT = 1.4(287.05)(288.16) = 340.36 m/s = 1116.7 ft/sec

If we introduce the speed of sound expressions into the compressible Bernoulli’s
equation, we can perform the following operations:

YRT . V?> _YRIT,

a? . Lz _ %
y-1 2 y-1
(14)
1L 17 _ % 1
Yy-1 242 g2y-1
1 X yp b D
2 a2 T
where a=  loca speed of sound
&=  Speed of sound in stagnation region
T=  local temperature
T,= stagnation temperature
V = local airspeed
vy = 14 (ratio of specific heats)



Definition: Mach number = the local airspeed over the local speed of sound: M =

Q| <

Essentially, Eqg.(14) gives us the temperature distribution in a compressible flow with
Mach number. We need now to determine the pressure and density distributions with Mach
number. To do this we need to use the process equation, Eq. (10), and the perfect gas law,
P =pRT. Thefundamental equation to arrive at all these resultsis given by

P _P P p_ PRT
Then
-1 1
L _[p] L P Ll
T p p T
and

Bo _
P

v
So|v-1
T

Putting it al together, we have the equations for compressible flow:

Equations for Compressible Flow

Thefirst equation above is the integrated compressible Bernoulli’ s equation. The remaining
equations relate pressure and density to the temperatures determined from Bernoulli’ s equation.
The last equation (for the pressure) is the one that should mostly resemble the incompressible
Bernoulli’ s equation.

We can examine that idea by expanding the pressure equation in abinomial series:



2 3
(1 +x)y"=1+nx + n(n—l)x7 + n(n—l)(n—2)% + oees

If we apply the binomial series to the pressure equation, we can determine the following:

1

P0=P+5pV2 (16)

LM 2oy 0, 2B -2Y) 4,
4 24 192

The terms in the square brackets together are considered the compressibility factor. Hence for the
value of M = 0, the compressibility factor is 1, and the equation reduces to the incompressible
Bernoulli’ s equation. For M = 1, the compressibility factor becomes 1.276. Hence the
incompressible Bernoulli’ s equation would give a 27.6% error if it were used. For the value

y = 1.4. the above equation has the values:

P,=—pV*1 + (16a)

M M M
+ + + e
4 40 1600

| =

Example: (High speed subsonic flow)
An aircraft isflying at sea-level at aspeed of M = 0.8.

a). Determine the speed of the aircraft.

b) Determine the actual difference between the stagnation and static pressure sensed by the
aircraft.

c) Determine the speed of the aircraft based on incompressible flow with the same pressure
difference.

a) V= aM, whereaisthe speed of sound.
a=yRT = /1.4(287.05)288.16 = 340.36 m/s = 1116.7 fi/sec

V = (1116.7) 0.8
= (340.36) 0.8

893.3 ft/sec
272.3 m/s

b) Pressure difference: First, compute the pressure ratio:
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oV

Y v
_ = 5 Y_l = 1 +’Y—_1M2 Y_l
T 2

1.4
(082) } 14-1

14-1

= 1+

[1 +0208)F
1.5243

We can determine the pressure difference from:

P,-P
1= S 15243 - 1 - 05243

i
P
P, - P

(0.5243) P = (0.5243)2116.2  or (0.5243) 1.01325x10°
1109.5 Ibs/ft? 53124.7 Pa

C) Inthis part it is assumed that we measure the pressure difference and that would be the true
pressure difference we just calculated. However, we will calculate the airspeed assuming the
flow isincompressible and use the incompressible form of Bernoulli’ s equation:

1 2 1 2
P, =P+ pV> = P low
0 2p 2P

then, substituting:

1109.5 % (0.002377) V2

V = 966.2 ft/sec = 294.5 m/s

compared to the actual airspeed of 893.3 ft/sec or 272.3 m/s or about an 8.2 % error!

(Note that if we calculated the pressure difference using the correct airspeed and density using
the incompressible Bernoulli’ s equation, we would have encountered a 17 % error (too low) in
the pressure difference, see Eq. (16a))

M easur ement of Airspeed

The problem we wish to deal with now is how to measure airspeed in awind tunnel or in
an aircraft. Furthermore, in an aircraft the information available may not be the same asitisin
the wind tunnel. In addition, we must consider what information is most useful to a pilot. . One
must consider the sensors required to measure airspeed and what sensors are available in the
different environments.

11



General Comments::

As can be seen from previous work, two key ingredients for measuring airspeed are the
total (or stagnation) pressure, P, , and the static pressure, P. These pressures can be measured
using atotal pressure tube, or pitot tube. A pitot tubeis atubewith aholeinitsendthat is
aligned with the flow so the flow the strikes the end of the tube is brought to rest at the hole, and
the pressure recorded at the hole will be total pressure.

A sketch of apitot tubeis
shown to theright. The end of the
center tube is attached to a pressure K
sensor and it will read the pressure > P,
P, since the flow will come to rest at
thetip of the tube. These tube can
be observed to be located at various
points on different aircraft. In flight-
test aircraft it isusually located at
the nose on an “instrumentation
boom.” On typical general aviation aircraft it islocated on the outboard of the wing so as not to
be in the propeller wash, and on jet propelled aircraft, it can generally be found on the side of the
fuselage or on the top of the vertical tail, again, out of the region of jet wash or other jet effects.

Static pressure is measured by putting a pressure tap in a surface parallel to the flow. One
way to do thisisto use a static tube. A static tube is shaped like a pitot tube, but the pressure taps
are along the side, rather than at the front. Here the flow is still moving at the free stream speed
and the pressure will be the static pressure. In an aircraft, the static pressure taps can be located at
points along the fuselage. In fact one of the pre-flight inspection checklist item isto be sure the
static pressure ports are not clogged or
obstructed. These pressure taps are the
source of the static pressure for
airspeed measurement, and for the e
altimeter discussed previously. vV i LP
Generally, asindicated in the drawing, —
the pressure taps are located on both
sides (actually all around) the tube and
on both sides of the fuselage. The
reason for these locations is to account
for any misalignment of the tube (or
fuselage) with the wind.

Finally, in wind tunnel applications, it is convenient to combine the pitot tube with the
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static tube to provide a pitot-static tube with a hole in the front to measure the total pressure, and
holes around the side to measure the static pressure. We can make use of the total and static
pressure to estimate the airspeed. How we do this depends on some assumptions that we make.

Incompressible Flow

For flow at Mach numbersin the range of M < 0.3, the errorsin the total and static
pressure difference is approximately 2% and can be neglected. Under these conditions, the flow
may be considered incompressible, and we can use the incompressible form of Bernoulli’s
equation to determine the airspeed.

1
Py =P+ pV” (17)

D (18)
p

V in this equation is called the true airspeed.

From which we can solve for V:

In order to measure the true airspeed for low speed flow, we need the difference in the
stagnation and static pressure and the density. We can generally get the density from measuring
the temperature, and using the perfect gas law:

p = RT (29

In the wind tunnel we can generally use a pitot-static tube to measure P, and P and a temperature
sensor to measure T. We can then compute the airspeed.

I ncompressible Airspeed I ndicator

In an aircraft, we generally attach the pitot tube and the static port to a pressure sensor so
that the output of the sensor is the difference of the two pressures. This difference is what the
airspeed indicator receives, and that isall! So how isthe airspeed determined, since we don’t
have T? The airspeed indicator is calibrated as if the density is sea-level density. So that what the
airspeed indicator reads is airspeed that would give the same pressure difference at sea-level.
Hence we have:

13




Incompressibly Calibrated Airspeed | ndicator

2(P,-P
y oo |25 P) (20)
Inc pSL

Definition: Equivalent Air Speed - Equivalent air speed is defined by the following equation.
The definition holds for all flight regimes, low speed, high speed and supersonic.

where:
q = dynamic pressure
Py = density at standard sea-level conditions
p = local density
Vv = true airspeed
Vi = equivalent airspeed
o = ratio of density over standard sea-level density (often tabulated in standard
atmosphere tables)
Example:

An aircraft isflying at 3000 m and has atrue airspeed of 120 kts. What is the reading
observed on the airspeed indicator? What is the dynamic pressure, the static pressure and the
total pressure?

0.5144 m/s

V =120 kts x = 61.728 m/s

Vcal,.m - Veq - \/6 4

= [ 9909 1 728) mss
12250

(0.8614) (61.728)
53.1736 m/s = 103.4 kts
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The dynamic pressureis given by:

pV?==py Vezq = —0.9090 (61.728)> = 1731.8 Pa = 36.2 Ibs/ft?

-1 1
2 2

Note that at these low speeds, the dynamic pressure is << than the static pressure at 3000 m
(70,100 Pa, or 1,464 |bs/ft?)

Thetotal or stagnation pressure is determined from Bernoulli” s equation:

P, =P + %pV2 =P +gq =70100 + 1731.8 = 71831.8 Pa

Compressible Airspeed I ndicator

In order to have an airspeed indicator that accounts for compressibility effects at high
subsonic Mach number we need to use the compressible form of Bernoulli’ s equation. Recall:

Py y-1 . 5
0o+ X2t - [1 + 02M2}
P 2

y-1 0.2871
wr- 2 | Dol ) LS| D -1
y-1\ P P
¢ p e (22)
V2 — 2a _0 Y _ 1
y-1[\ P
2| P, -P 1
— 2611 OP + 1 Y _ 1]
Y- 1l
Hence true airspeed is given by: (numbersfor y =1.4)
2| P.-P y-1 P _p 0.2857
o2 |l Dy S| =sa?|| T 1] @
y -1 P P

Unfortunately, only P, - P isavailable to the airspeed indicator. We now define the calibrated

airspeed by using the above equation with the value of the speed of sound, and the lone pressure
in the denominator defined at sea-level:
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0.2857

Fo - P “1 @

LA —5a§L(° +1

calwmp - y - 1 P

SL

2
2 _ 2ag (PO_P
SL

Calibrated airspeed for compressible subsonic flow (M > 0.3).

Example

An aircraft is at a pressure altitude of 10 km altitude where the temperature is measured
to be 230 deg K. The stagnation pressure is measured to be 4.24x10* N/m?. Find the true
airspeed, calibrated airspeed., and equivalent airspeed.

At a pressure altitude of 10k, the static pressureis P = 26420 N/m?. We can calculate the
Mach number from Eq. (22):

y-1
- 2 || By
y -1 P
4 ) 02857
_ || 424x10 _
2.642x10*
= 0.7235
M =085

Sinceit is not a standard atmosphere, (temperature is given), we must cal cul ate the speed of
sound using the given temperature:

a = yRT = |/ (1.4)287.05 (230) = 304.02 m/s

V =aM = 304.02(0.85) = 258.4 m/s
Calibrated airspeed

In order to compute the calibrated airspeed, we need the sea-level speed of sound, and
pressure. Theseare a = Yy RT = /1.4 (287.05)288.16 = 340.3 m/s, and 1.01325"10° N/m?*
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Then:

202 [ P -P vl
chalwmp - S—+1| T -
y -1 PSL
4 4 0.2857
_ 5036y | | A25%10* - 2642010 o
1.01325x103
- 24739.63
vV . =1573 m/s

ol cony

Equivaent airspeed is given by Vg = y/o V. Hence we need to know the density. Sinceit is not
a standard atmospheric condition, we must calculate it from the pressure and temperature:

P 2.642¢10*

p = = = 0.4002 kg/m?
RT  (287.05)230
0.4002
Vv = 258.4) = 147.7 m/s
a4\ 1.2250( )

Calibrated,,,, airspeed gives areading closely related to (by not exactly equal to) equivalent
airspeed (it is equal to equivalent airspeed for an incompressibly calibrated airspeed indicator).

Supersonic Airspeed I ndicator

Although the above equations hold for supersonic flow, M > 1, they cannot be used to
measure airspeed. The reason is that as the supersonic flow comesto rest at the tip of the pitot
tube, a shock wave forms so that the assumptions used to derive the high speed flow equations
above are no longer valid. We can, however develop equations that can be used across a shock
wave, after which the above equations can work. If we combine these two sets of equations, we
can come up with the arelation between the total pressure after the shock, Py, the static pressure,
P, and the Mach number, M. Thisrelation is called the Rayleigh Pitot tube formula:

Rayleigh Pitot Tube Formula (Supersonic flow)

_Y _ )
y-1 ( 1 YY++21Y M ] (23)

&:

P

(y +1)y M?
dyM?*-2(y-1)
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where P, = stagnation pressure after the shock wave
P = static pressure (same before or after shock wave)
M = Mach number before the shock wave

Measuring Airspeed in a Subsonic Low-Speed Wind Tunnel

We can measure the airspeed in alow
speed wind tunnel in severa different ways. One
way isto insert a pitot-static tube directly into the

airstream and apply the incompressible form (for

low speed, and the compressible form (for high m
subsonic speed) of Bernoulli’s equation. AY | A
However, another method is often used to L-//

measure speed in low-speed wind tunnels that
does not require any instrument to be inserted into
the flow. This method makes use of the
incompressible form of Bernoulli’ s equation, and
the incompressible form of the continuity
equation:

1 2 1 2
P, +§PV1 =P2+§PV2

(24)
AV, = 4,7,

Here the points 1, and 2 refer to two different locations in the wind tunnel.

The location of point 1 isup stream of the test section in the settling or plenum chamber
of the wind tunnel, and the location of point 2 isin the test section of the wind tunnel where the
airspeed is to be determined. We can measure the static pressure at each of these locations by
putting a pressure tap in the wall of the wind tunnel. Then by knowing the pressure difference,
the area ratios and properties of the fluid, we can determine the speed in the test section. From
the continuity equation, we have:

If we substitute this expression for V, back into Bernoulli’ s equation we obtain:

2

- P, %p{Vj S HE (25)

pVi|1 -

1
1 2

-2
4,
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or equivalently:

2(P,-P)
v, = - ,
4, (26)

pil-| =

Al

Example
In alow-speed wind tunnel, the contraction ratio (area of plenum over area of test section)

is 3. What would be the pressure difference (P, - P,) in inches of water between the pressurein
the plenum and the pressure in the test section, that is required to maintain a dynamic pressure of
4 inches of water in the wind tunnel?

From Bernoulli’ s equation we have for the dynamic pressure:

1
Py~ P, = opV; = p,80y-h)
_ 1.94 5988 (35 174 f/sec?) 4 in — L
ft3 (12 ft/in)
= 20.80 lbs/ft>
Then for the wind tunnel we have:
1 2
P,-P, =—pVi1-|2
1 275 P72 4,
- 20.80[1 - (13 7]
= 18.49 lbs/ft>
The manometer reading then is given by:
_ P =P 1849

P, - Py = p,g|AR| - Ah 296 f

o £ 1042178y
Ah = 0269 ft x 12 % = 3.55 in H,0

Hence if we set the tunnel manometer attached to the plenum and the test section to 3.55 inches
of water, we will achieve adynamic pressure in the wind tunnel of “4 inches of water” or 20.80
| b/ft?
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