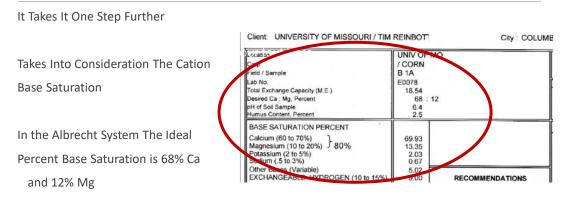

The Albrecht System and Study Results

2ND TALK CODY WYOMING

Dr. Albrecht System


The Base Saturation of Cations is Key.

- The Cations: Ca+², Mg⁺², K⁺, Na⁺, H⁺
 - Because the soil is negatively charged (clay and humus)
- Other Nutrients are Also Held But Are Negative
 Phosphorus, Sulfur, Boron

PLOT ID: G4W9S

Dr. Albrecht Found That the Ideal Base Saturation of Ca is 68% and Mg is 12%. Doesn't Mean That The Albrecht System Does Not Utilize Yield Response or Other Nutrients.

3

Steve King-Words of Wisdom-Pronhetic

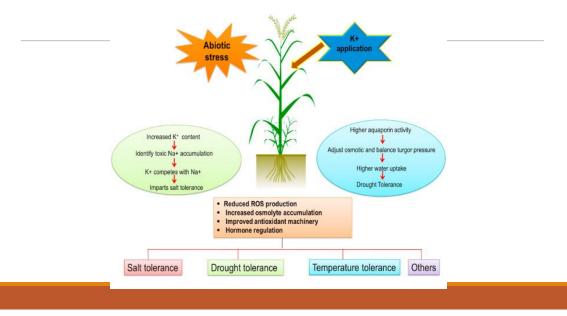
		Berrole		UNIV OF / CORN B 1A	MO			Previou	is Analysei	& Applicat	tions
	Desire	0. Exchange Capacity (M. d Ca. Mg, Percent Soll Sample a Content, Parcent	n	E0078 18.54 68 6.4 2.5	12						_
"Start At The Top, Get That Corrected and Then Move Down"	BASE SATURATION PERCENT Cakium (60 to 20%) Magnosaim (10 to 20%) - 8 0% Pidasaim (2 to 5%) Soduri (5 to 5%) Other Basis (Validatio) Chen Basis (Validatio) EXCLAVAGALE HYDROGEN (16 to 15%)		09.93 13.36 2.03 0.67	13.36 2.03			Γ	*		*	
			5.02	5.02 9.00 RECOMMENDATIONS			÷				
0		NITROGEN Lise/Acre	ENR Value	70	Amendment UREA 46-0-0 (a) AMSULF 21-0-0-24 (b) LIQUID N 32% (c)	Lbs/Acre 100 300 350					
	2 I O X	SULFATE - S	Value Found	15	SULFUR 90-92%	15					-
		PHOSPHATES as (P206) LawAore	Desired Value Olsen Value Value Found Deficit/Surplus	320 204 -116	DAP 18-46-0	250					_
Contraction of Contract of	Π	CALCIUM LBs/Acre	Desired Value Value Found Deficit/Burplus	5043 5186 +143	PELLETED CA LIME (d)	300	Amand	atted	Amand	added /	krieni
and the second s		MAGNESIUM Lite/Apre	Desired Value Value Found Deficit/Burplus	534 594 +60	NONE						_
And the second	0 .	POTASSIUM Lite/Acre	Desired Value Value Found Deficit/Surplus	723 294 -429	POT CHLORIDE 6-0-40	200					
Contraction of the second s		SCOIUM Lite/Arre	Value Found Deficit/Surplus	85 57 -28			PPM	_	PPM	21	PB
0	TRACES	Boron Iron Manganese Capper Zinc	рем, еем, еем, еем, гем,	0.31 421 54 1.80 4.00	BORON 14.3% (e) CU SULFATE 23% ZINC BULFATE 26%	15 5 20					
		0) Apply as assessed	planting In the rate only if no Line I there on forumer 21 Conce the standar	16 with 32%	as been added in the last three ye Liquid Nifrogen adedress. 3 has been applied here, Bor when they would rank equa	on and 7					_

The Most Balanced Soil? NW MO Who Was From NW MO? General Pershing Walt Disney Omar Bradley

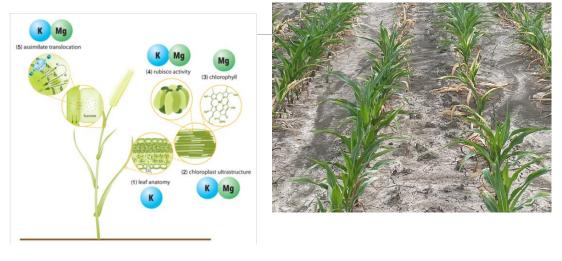
\odot	Symbiosis
---------	-----------

REGENERATIVE AGRICULTURE WHY COVER CROPS NATURES TEACHING CONTA-

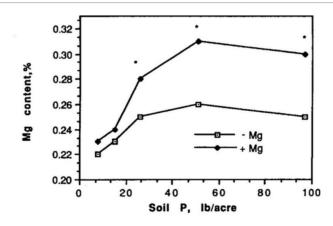
Key ratio	Target ratio	Description
Calcium (Ca) to Magnesium (Mg)	3:1 in sandy soil 7:1 heavy clay soil	The calcium to magnesium ratio is critical as it determines soil structure and associated gas exchange. Soil aeration is essential as oxygen is required for soil microbes and plant roots while carbon-dioxide is needed for photosynthesis. Calcium flocculates and helps to form stable aggregates, resulting to good spore space for water, roots and microbes.
Magnesium(Mg) to Potassium (K)	1:1	Mg to K ratio is almost as important as Calcium to Magnesium ratio. An ideal stimulates Phosphorus intake and ensures optimal plant availability of both Mg and K.
Phosphorus (P) to Sulfur (S)	1:1	An appropriate P to S ratio helps to optimize the performance of these two key anions. Sulfur is critical for healthy root growth, protein formation (plant immunity) and chlorophyll density.
Phosphorus (P) to Zinc (Zn)	10:1	An ideal P to Zn ratio will ensure maximum performance of both minerals. Too much either inhibits the other, however this should not be targeted in high P soils as Zn would tie up other elements
Potassium (K) to Sodium (Na)	4:1 or 5:1	The K to Na ratio is critical to ensure availability of the second most abundant mineral in plants (K). If Na exceeds K in terms of base saturation, then Na will become detrimental for plant health.
Iron (Fe) to Manganese (Mg)	1:1 or 2:1	The Fe to Mg ratio is important to ensure optimum uptake of both minerals. Ideally, Fe should be always higher than Manganese on a soil test.

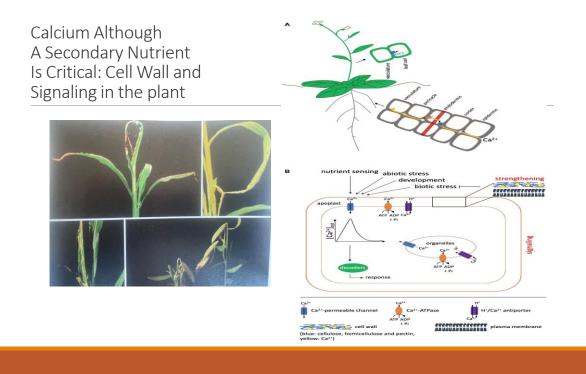

Brief Summary of The Role of Nutrients In the Plant.

Name	Chemical symbol	Relative % in plant*	Function in plant	Nutrient category
Nitrogen	N	100	Proteins, amino acids	
Phosphorus	Р	6	Nucleic acids, ATP	Primary macronutrients
Potassium	K	25	Catalyst, ion transport	macronationto
Calcium	Са	12.5	Cell wall component	
Magnesium	Mg	8	Part of chlorophyll	Secondary macronutrients
Sulfur	S	3	Amino acids	macronationto
Boron	В	0.2	Cell wall component	
Chlorine	CI	0.3	Photosynthesis reactions	
Copper	Cu	0.01	Component of enzymes	
Iron	Fe	0.2	Chlorophyll synthesis	Micronutrients
Manganese	Mn	0.1	Activates enzymes	MICIONULITERIIS
Molybdenum	Мо	0.0001	Involved in N fixation	
Nickel	Ni	0.001	Component of enzymes	
Zinc	Zn	0.03	Activates enzymes	

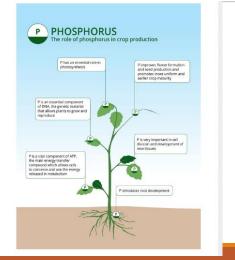

Table 1. Essential plant nutrients.

*Relative amounts of mineral elements compared to nitrogen in dry shoot tissue. May vary depending on plant species.

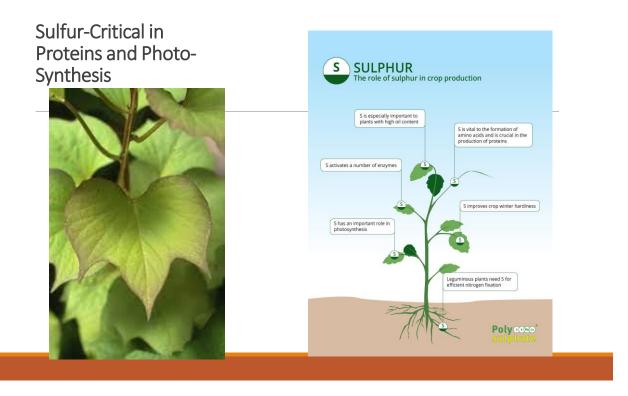

Potassium-Stress Reducer-Water, Temperature, Salt, etc

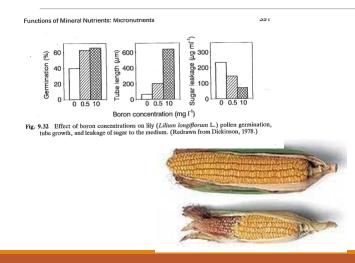


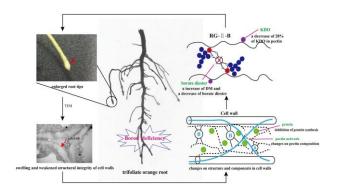
Role of K and Mg And How They Are Connected In Photosynthesis and Growth



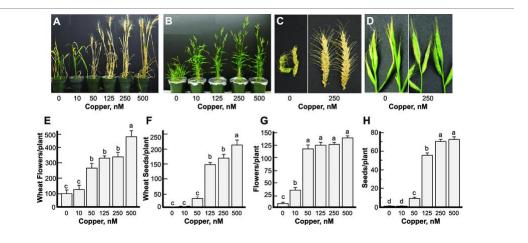
Nutrients Are Often Tied To One Another-Mg Uptake is Dependent Upon P

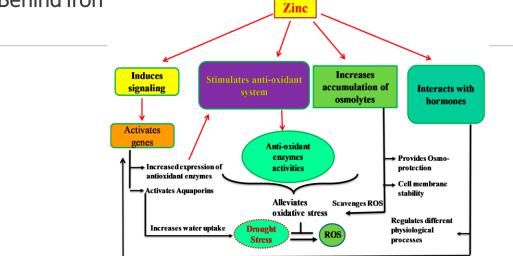



Role of Phosphorus-Energy Currency, DNA, Sugar Transport



Micronutrients: Boron In Reproduction


Boron Is Key To Root Growth, Cell Wall Expansion


Copper-Needed in Plants For Reproduction, Cell Walls-Critical In Human Health

					Skin	Copper as the escential nutriend: Aller copper is inspected, it is abouthed in the stormach and anal remarks. It is abouted from the adversarial and multi- bouted means and the count of the stormach and is adversed to the luce. From the love it is startickast fronzalisout the book to places where it is needed.
Relationship bet	tween Cop	bution in Red Peppe	owth and Dry Matte	r Distri-	Reproduction	
Copper supply (µg per pot)	Roots	Leaves and stem	Buds and flowers	Fruits		
(µg per pot)		Leaves and stem	Buds and flowers 0.16	Fruits	Kidneys	
(µg per pot) 0.0	0.8				Kidneys	
(µg per pot) 0.0 0.5	0.8 1.6	1.7	0.16	None	Kidneys	
(µg per pot) 0.0	0.8	1.7 3.3	0.16 0.28	None	Kidneys	

Copper Influence on Reproduction in Wheat

Zinc Activates The 2nd Most Enzymes In The Plant Behind Iron

It Can Not Be Stressed Enough That You Don't Always See A Nutrient Deficiency Symptom To Have A Deficiency.

ENGINE EXAMPLE

Does This Corn Have Enough Of All Its Nutrients?

Studies To Examine the Albrecht System

Original Questions That I Had About The Albrecht System:

Does The Level of Base Saturation of Ca and Mg Really Make A Difference? • Is the 68% Ca and 12% Mg Base Saturation really important?

Aren't proper levels of P and K enough? • Some don't think that we can get a response from P and K

Do We Need "Fresh" Calcium

Are Micros Really That Important

Sulfur?

Original Soil Test

Ca Base Saturation: 70% Base Saturation Mg Base Saturation-13% Base Saturation K-2.03% Base Saturation

P- minus 113 lb/acre Ca- Plus 143 lb/care Mg-plus 60 lb/acre K-minus 429 lb/acre Need Sulfur, B, Cu, and Zn

Recommendations P-250 lb/acre DAP K-200 lb/acre KCl S-15 lb/acre Ca-Pell Lime-300 lb/acre Mg-0 lbs/acre B-15 lb/acre Borate Cu-5 lb/acre CuSO4 Zn-20 lb/acre ZnSO4

Setup Treatments

No P, K, S, Micros or anything else except N for Corn

Full Recommendations

NPKS only no micros

Recommendations except KMg used

Recommendations except KMg and no Pell lime

Micros only

P and K only

Soybean Yield, wet and dry in the late summer. Note That Added MgSO₄ Had Higher Yield

	Wet Year	Dry Year
Treatment	Yield	Yield
	bu/acre	bu/acre
Control	42	54
Recommendations	45*	63*
PKS only	43	52
Recom.+Mg	41	61
Recom. No lime +Mg	39	65*
Micros only	40	57
P and K only	35	
		South Farm
		Research Cente University of Missouri

Corn Yield

	Dry Year	Wet Year
Treatment	Yield	Year
	(bu/acre)	bu/acre
N only	161 c	178 b
Recommendations	203 a	190 a
PKS only	183 a	193 a
Recom+Mg	174 bc	179 b
Recommendations: No Lime+Mg	185 ab	173 b
N and Micros only	178 bc	179 b
P and K only	-	175 b

Letters indicate significance at the 0.10 probability level

Corn Yield: Another Hot and Dry Summer

Treatment	Yield (bu/acre)
Control	169 c
Recommendations	199 ab
PKS only	203 a
Recom.+Mg	190 ab
Recom. No lime+Mg	185 abc
Micros only	162 c
PK only	<u>201 a</u>

Different Letters indicate significantly different-0.10 level

Soybean Yield-How Long Does the Fertilizer Last?

Treatment	Bu/acre
Control	61 b
Recommendations	69 a
Recom. Without Pell Lime	58 b
Recom.+Mg and Lime	69 a
Recom+Mg no lime	60 b
Micros Only	64 ab
P and K only	61 b

29

Soybean Yield after P, K, S treatment in May of Different Ca/Mg Treatments

Treatment	Yield	Test Weig
	Bu/acre	lb/bu
Natural	44	49
68/20	50	50
?/20	49	51
?25	59*	51*
?/30	59*	52*
?/35	56*	52*
68/10	57*	51*
68/12	59*	52*
80/10	56*	51*

How pH Soil

Soils High Ca (over 80% Base saturation) Low Sulfur (1 Ib/acre) Corn and Soybean

Treatment	Corn	Soybean
	bu/acre	bu/acre
Control	111 b	62 b
Recommendations	142 a	69 a
Recommendations w/o S	118 b	63 b
Recommendations w/Mg	145 a	68 a
Micros Only	124 ab	<u>63 b</u>

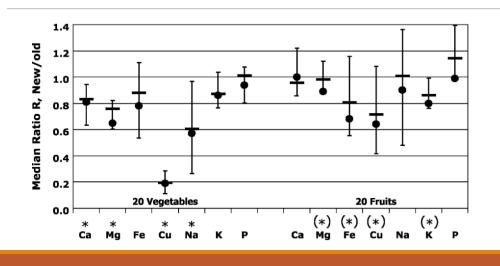
Different Letters Indicate Significant Differences at the 0.05 level

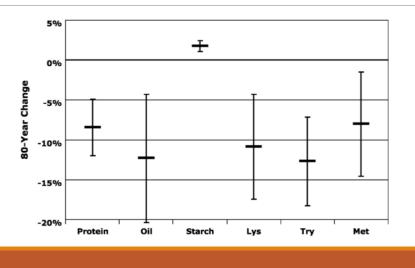
Study Whe	n pH is over	7.0 in	2023
-----------	--------------	--------	------

Treatment	Ca/Mg	CC	Yield	Dry Matter	
			Bu/acre	g/5 plants	
Low P and K	77/16	-	171	272	
		+	172	183	
Recommendations	74/15	-	181*	332*	
		+	189*	204*	
Rec P and K no S	82/12	-	184	298	
		+	166	204	
Rec+Gypsum	81/12	-	180	270	
		+	179	167	
Rec+MgSO4	74/18	-	194*	287*	
		+	165*	200*	
Rec P and K and S	79/14	-	183	272	
		+	166	205	

What About Nutrient and Protein Concentration?

Nutrient Dilution in Raspberry When Fertilizer

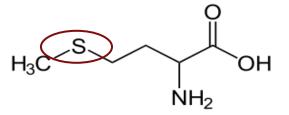

Fig. 1. Dilution effects of phosphorus fertilization in red raspberry plants; 0, 22, and 44 ppm added to soil containing 12 ppm (Hughes et al., 1979; dry weight basis). The relative plant dry weight was, respectively, 1:1.4:2.2.

D.R. Davis, 2009

Dilution of Vegetables and Fruits from the 1930's-1990's

Change in Nutrient Concentration in Corn Over 80 Years.

Corn Grain-Nutrient Content

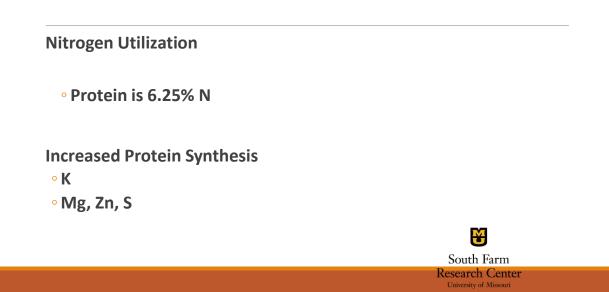

Treatment	Crude Protei	n Ca	Р	Mg	к	s
			%			
Control	7.5	0.013	0.26	0.113	0.39	0.09
Recommendations	8.2*	0.020*	0.27	0.115	0.42*	0.09
Rec No Pell Lime	7.7	0.010	0.26	0.115	0.42*	0.09
Rec Mg+Pell Lime	8.3*	0.018	0.27	0.118	0.42*	0.09
Rec Mg no Pell Lime	7.7	0.015	0.25	0.108	0.41	0.09
Micros only	7.5	0.015	0.24	0.105	0.40	0.09
P and K only	7.2	0.018	0.24	0.105	0.38	0.09

*indicate Significant difference at the 0.05 level

Lysine and Methionine Are The Two Most Limiting in Animal Production

Lysine: Very high in legumes, very low in grasses and grains -synthesized from Vitamin C -not synthesized by animals

Methionine-very low in many food stuffs • Sulfur is essential in synthesis



Corn Grain-Amino Acid Content

Treatment	Lysine	Methionine
	%	%
Control	0.21	0.16
Recommendations	0.23*	0.18*
Rec No Pell Lime	0.22	0.16
Rec Mg+Pell Lime	0.24*	0.18*
Rec Mg no Pell Lime	0.22	0.16
Micros only	0.21	0.17
P and K only	0.21	0.16

*indicate Significant difference at the 0.05 level

What Increases Protein Content?

41

Conclusions-Grain Production

Following The Albrecht System-Higher Soybean and Corn grain yield-especially in dry years

Adding Mg without Ca nullifies most positive responses from other NPKS and micronutrient treatment

Additive effects of PKS and Micronutrients

Increase in Grain Quality-Protein, Amino Acid Profile and Nutrient Content

Forages

Treatments

Control-N only-Urea-otherwise testing adequate Recommendations-NH₄SO₄+Urea, P, K, Micros, Pell Lime Recommendations-no pell lime P and K only Recommendations-no lime plus Mg Recommendations-no sulfur Recommendations-no micros P and K and S only Micros only

Forage-Harvested In Vegetative Stage, Before Stem Elongation

Following Full Recommendations Had The Greatest Forage Yield. With The Treatments Additive-P, K, Micros, Sulfur

	Year 1	Year 3
	lb/acre	lb/acre
N only	3500 b	3841 b
Recommendations	4578 a	<u>5058 a</u>
Recom. No pell lime	3820 ab	3841 b
Recom. No sulfur	3607 b	<u>3937 b</u>
Recom. No micros	3436 b	4369 ab
P and K only	3937 ab	4433 ab
PKS only	3831 ab	4177 ab
Micros only	3745 b	3697 b

Different letters indicate significance at the 0.10 probability

Late April Harvest				
	Р	Mg	К	S
		%		
N only	0.31	0.16	2.4	0.26
Recommendations	0.42*	0.28*	3.3*	0.34*
Recom. No pell lime	0.41*	0.26*	3.2*	0.34*
PKS only	0.40*	0.28*	3.1*	0.31*
P and K only	0.36*	0.26*	2.8	0.29
Recom. No sulfur	0.34	0.24	2.7	0.27
Recom. No micros	0.37*	0.24	2.7	0.29
Micros only	0.38*	0.22	2.8	0.32*
*Indicate significance at the	e 0.05 level			

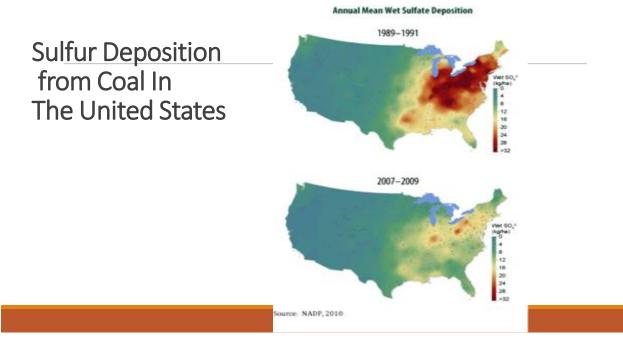
Forage Nutrient Analysis-Again Sulfur Makes a Tremendous Difference

Forage Quality Analysis-Sulfur Makes A Tremendous Difference Late April Harvest

	СР	Lysine	Methionine
			%
N only	15	0.53	0.20
Recommendations	21*	0.73*	0.27*
Recom. No pell lime	20*	0.71*	0.27*
PKS only	19*	0.66*	0.25*
P and K only	18*	0.63*	0.24*
Recom. No sulfur	16	0.56	0.21
Recom. No micros	17	0.59	0.22
Micros only	18*	0.63*	0.23

*Indicate significance at the 0.05 level

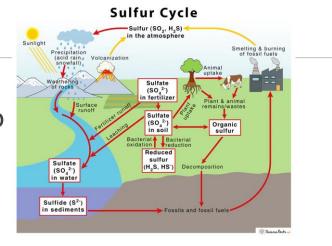
Conclusions on Forage Yield and Quality


Balancing The Soil and Supplying Adequate P, K, and Micronutrients Results in Greater Yield

Sulfur is Extremely Important For Protein and Amino Acid Profile

What About Sulfur?

High Sulfur Coal-Prior to 2000 A Lot of Concern About Acid Rain-H $_2\rm SO_4$ -Sulfuric Acid



Reducing Sulfur In Diesel

ULTRA-LOW-SULFUR HIGHWAY DIESEL FUEL (15 ppm Sulfur Maximum)

- Required for use in all highway diesel vehicles and engines.
- Recommended for use in all diesel vehicles and engines.

Sulfur Cycle-Elemental Has To Go Through Soil Microorganisms

53

Many University Recommendations of No Sulfur Applied If CEC is Above 6.5

Sulfur (S). Crops may respond to sulfur applied on coarse-textured soils low in organic matter that have been producing high yields. As the soil sulfate-sulfur level or cation exchange capacity increases in soils, the potential response to sulfur decreases. Table 8 outlines sulfur interpretations, based on soil sulfate-sulfur and cation exchange capacity. When these tests show a need for fertilizer sulfur, 10 to 20 pounds of sulfur is suggested for row crops, small grains and alfalfa. In Missouri, most other forages do not require sulfur, even on soils testing low in sulfur.

Table 8. Ratings of extractable soil sulfur test.

	Cation exchange c	apacity (meq/100 g)
Soil sulfate-sulfur (ppm SO ₄ -S)	0 to 6.5	6.5+
0 to 7.5	Low	Adequate
7.5 +	Adequate	Adequate

Older Data Is Often Cited As the Reason For Not Applying Sulfur

Table 1. Grain yields averaged across sites for 1991 and 1992.

	S rate, lb/a	cre			
Year	0	15	30	60	
		bu/acre			
1991	159	160	160	158	
1992	184	184	181	184	
1991–1992	174	174	172	174	

Albrecht vs University: Base Saturation Albrecht-75/15 University 82/10.5

Analysis					
	Ρ	К	Ca	Mg	S
		lb,	/acre		ppm
Albrecht	131	476	5399	646	15
MU	34	361	5921	457	3.8
Recommendations					
	lb/acre	lb/acre			lb/acre
Albrecht	115	95	-	-	25
MJ	40	30			0

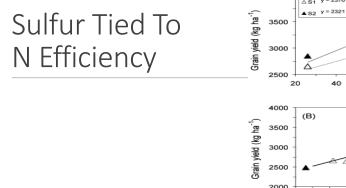
Sulfur Deficiency in Corn?

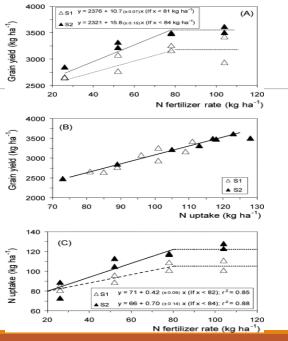
Following Full Recommendations Had The Greatest Forage Yield. With The Treatments Additive-P, K, Micros, Sulfur

	Year 1	Year 3	
	lb/acre	lb/acre	
N only	3500 b	3841 b	
Recommendations	4578 a	<u>5058 a</u>	
Recom. No pell lime	3820 ab	3841 b	
Recom. No sulfur	3607 b	<u>3937 b</u>	
Recom. No micros	3436 b	4369 ab	
P and K only	3937 ab	4433 ab	
PKS only	3831 ab	4177 ab	
Micros only	3745 b	3697 b	

Different letters indicate significance at the 0.10 probability

Forage Nutrient Analysis-Again Sulfur Makes a Tremendous Difference


	Р	Mg	к	S
		%		
N only	0.31	0.16	2.4	0.26
Recommendations	0.42*	0.28*	3.3*	0.34*
Recom. No pell lime	0.41*	0.26*	3.2*	0.34*
PKS only	0.40*	0.28*	3.1*	0.31*
P and K only	0.36*	0.26*	2.8	0.29
Recom. No sulfur	0.34	0.24	2.7	0.27
Recom. No micros	0.37*	0.24	2.7	0.29
Micros only	0.38*	0.22	2.8	0.32*


*Indicate significance at the 0.05 level

Forage Quality Analysis-Sulfur Makes A Tremendous Difference Late April Harvest

	СР	Lysine	Methionine
			%
N only	15	0.53	0.20
Recommendations	21*	0.73*	0.27*
Recom. No pell lime	20*	0.71*	0.27*
PKS only	19*	0.66*	0.25*
and K only	18*	0.63*	0.24*
Recom. No sulfur	16	0.56	0.21
Recom. No micros	17	0.59	0.22
Micros only	18*	0.63*	0.23

*Indicate significance at the 0.05 level

Question: Is Potassium Sulfate a Better Source of Potassium Than Potassium Chloride?

2022 Data Compares Using KCl vs K₂SO₄ In the Recommendations

Treatment	lbs/acre
Control	3116
Rec.w/KCl	3351
Rec w/K2SO4	4098*
P and K only	3180
P, K, elemental S	3681
P,K, elemental S+MgSO4	2935

Treatment	СР	S	Lysine	Methionine
Control	14.8	0.22	0.52	0.19
Rec.w/KCl	14.2	0.24	0.49	0.19
Rec w/K2SO4	15.5	0.24	0.54	0.20
P and K only	14.3	0.23	0.50	0.19
P, K, elemental S	15.1	0.22	0.53	0.20
P,K, elemental S+MgSO4	14.7	0.22	0.51	0.19

Crude Protein Higher With K₂SO₄ vs KCl

Forage Yield and Quality Following Albrecht Recommendations Using KCl or $\rm K_2SO_4$

Forage KCl vs K ₂ 2O ₄				
	Yield	СР	Lysine	Methionine
	lb/acre	%	%	%
Control	3521 c	17.7 c	0.62 c	0.23 c
ксі	4073 b	19.8 b	0.69 b	0.26 b
<u>K₂SO₄</u>	<u>5026 a</u>	21.9 a	0.76 a	0.29 a

Different letters indicate significance at the 0.1 probability level

Forage Nutrient Content Following Albrecht Recommendations Using KCl or K₂SO₄

Forage KCl vs K₂2O₄

	Р	Mg	К	S
	%	%	%	%
Control	0.37 b	0.21 b	3.21 b	0.28 c
КСІ	0.38 b	0.23 b	3.28 b	0.33 b
<u>K2SO4</u>	<u>0.45 a</u>	0.26 a	3.78 a	0.37 <u>ab</u>

Different letters indicate significance at the 0.05 probability level

When N as Urea, P and K are Applied with Different Sources of K

Sulfur Source 2022	
Treatment	lbs/acre
Control	3063
KCl	3511
K2SO4	3756*
KCl+Elemental S	3265
K2S04+Elemental S	<u> 3938*</u>

With Sulfur Either as Sulfate or Elemental Then Crude Protein is Greater

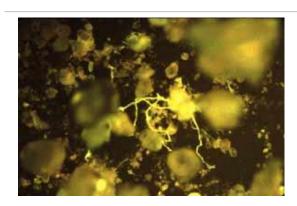
Treatment	СР	S	Lysine	Methionine
	•⁄₀			
Control	15.1	0.25	0.52	0.20
KCl	16.4	0.27	0.57	0.21
K2SO4	17.4*	0.30*	0.60	0.23*
KCl+Elemental S	18.0*	0.28*	0.62*	0.23*
K2SO4+Elemental S	18.0*	0.28	0.63*	0.24*

*=Signficantly different at the 0.05 level

Conclusions-Forage Yield and Quality

Following Recommendations Increased Yield and Crude Protein • Importance of sulfur for yield and nutrient quality

Lysine and Methionine Increased Following Recommendations

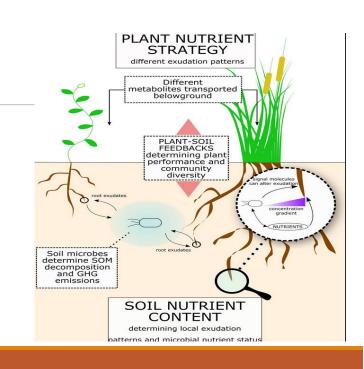

There Was An Advantage Using K2SO4 Rather Than KCl • Yield

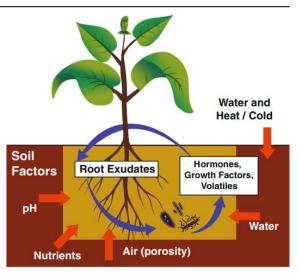
Quality

How Do Nutrients Affect Root And Shoot Growth And Ultimately Yield

AND WHY EACH NUTRIENT IS SO IMPORTANT

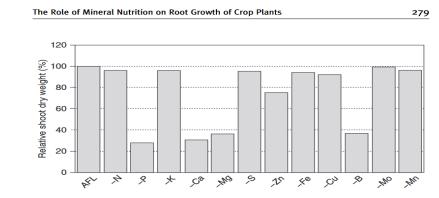
Living Plant Roots Exudates Feeds The Bacteria, Fungi, and other Life-20-40% of Carbon Fixed By The Leaves Is Exuded By the Roots




Plants Can Even Regulate What Compounds That They Exudate From the Roots Depending Upon What Microorganism Or Nutrient That They Need.

The Feedback Between The Plant and Soil Microbes Determines Plant Performance And Microbe Composition

Canarini et al, 2019


Root Exudates -Interact With Soil Factors and Changes Soil Structure. Also, Release Hormones and Growth Factors

What Affects Root Growth? Nutrients

75

The Largest Affect on Root Growth Is Phosphorus: Followed Closely By Ca, Mg, and Boron

Figure 12 Relative shoot dry weight of dry bean as influenced by adequate fertility level (AFL) and other nutrients were not applied or omitted from the Oxisol. amount of reduction depended on the nutrient. The impacts of deficiencies on growth were in the order of P > Ca > Mg > N = K > S among macronutrients and B > Zn > Cu > Fe > Mn > Mo among micronutrients. Similarly, the influence of N, P, and K on shoot and root growth of

N and P Deficiency Affect Root Growth More Than Shoot Growth.

Figure 12 Relative shoot dry weight of dry bean as influenced by adequate fertility level (AFL) and other nutrients were not applied or omitted from the Oxisol.

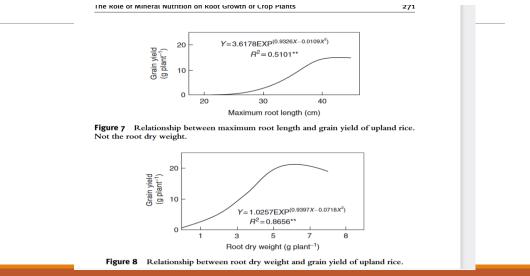
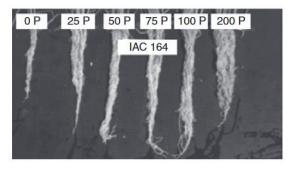
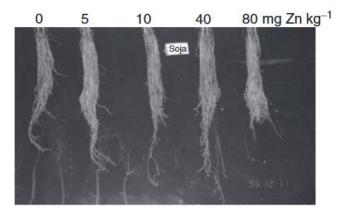
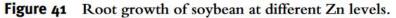
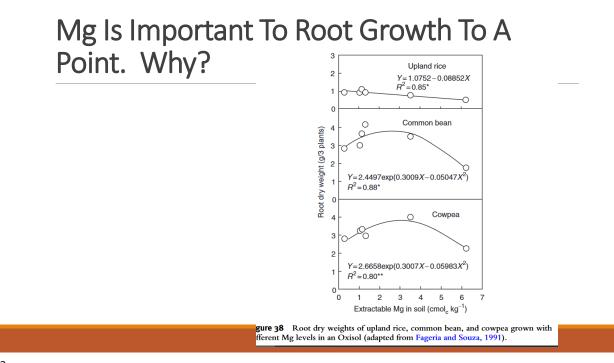



Figure 13 Relative dry weight of shoot and root of dry bean as influenced by N, P, and K fertilization.

But Can You Have Too Much Of A Good Thing?

Rice Root Growth Related to P Nutrition-But Too Much Reduces Growth


Figure 30 Root growth of upland rice cultivar IAC 164 at different P levels.

The Role of Mineral Nutrition on Root Growth of Crop Plants. Fagerial and Moreia, 2011.

Soybean Root Growth Responds to Zn Nutrition to a Point-Remember Zn and P Negative Interaction

Soil Physical Properties From the Ca/Mg Base Saturation Percentage

Planter Marker-Near Plot is Recommendations, Far Plot is Magnesium Added

85

As the Soil Dried a Crack Appeared In the 4 ton/a Dolomitic Lime Plot But Ended At the Recommendation Plot

Conclusion

Following the Albrecht System Results in Greater Grain and Forage Yield The Albrecht System Results in Greater Crude Protein Content Sulfur Is Extremely Important (more on that Wednesday) Root and Shoot Growth are Affected Differently By Nutrients Root and Shoot Growth are Dependent Upon Each Other