

Most limiting factor

Plants grow until they are stopped by the lack of something they need: light, water, oxygen, carbon dioxide, or essential nutrients.

STUKENHOLTZ LABORATORY NG

Nitrogen	& pH
100 Pounds of <u>Nitrogen</u> Calcium Nitrate	Pounds of CaCO ₃ <u>Neutralized</u> -20
Ammonium Nitrate	62
Urea	71
Thio-Sul	112
Ammonium Sulfate	110
Anhydrus Ammonia	148*
STUKENHO LABORATO	*final effect

96.7 4,212,00	,		
		1.55	Sand
87.3 3,804,00		1.30	Sandy Loam
74.9 3,260,00		1.20	Loam
71.7 3,124,00		1.15	Silt Loam
68.6 2,989,00		1.10	Clay Loam
65.5 2,717,00		1.05	Clay
71.7 3,124, 68.6 2,989, 65.5 2,717,		1.15 1.10 1.05	Silt Loam Clay Loam Clay

ppm to lb	s/acre [.] ft	
Soil Texture	ppm to lbs per acre ft	
Sand	4.2	
Sandy Loam	3.8	
Loam	3.3	
Silt Loam	3.1	
Clay Loam	3.0	
Clay	2.7	
STUKEN LABORA	HOLTZ ATORY NG	

Lime Particle Size					
Mesh Size = Number of wires per inch, each size of grid					
Mesh Size	Relative Liming Effectiveness				
>50	100%				
10-50	50%				
<10	0%				
	STUKENHOLTZ LABORATORY MC				

%N in Flag L	eaf at Late Boot
<u>%N</u>	<u>% Protein</u>
4.5	15
4.2	14
4.0	13.5
3.5	12
3.0	11
	University of Idaho

	RESULTS				
Crop	WHEAT	SUFFICIENCY RANGE	Topdress or Water Application		Foliar Application
Field	YELLOW		Units per Acre		Units per Acr
Total N, %	3.7	3.50-4.50		Nutrient	
Nitrate-N, ppm	1500	2000-4000	10	N	2
Phosphorus, %	0.27	0.30-0.50	10	P205	1
Potassium, %	3.0	2.0-3.0	0	K ₂ O	0
Calcium, %	0.49	0.35-1.00	0	Ca	0
Magnesium, %	0.17	0.18-0.50	0	Mg	0
Sulfur, %	0.10	0.20-0.40	20	S	0
Zinc, ppm	24	30-50	0	Zn	0.05
Iron, ppm	115	80-125	0	Fe	0
Manganese, ppm	45	40-70	0	Mn	0
Copper, ppm	7	6-12	0	Cu	0
Boron, ppm	13	9-20	0	в	0
REMARKS :			1		

	RESULTS				-
Crop	WHEAT	SUFFICIENCY	Topdress or Water		Foliar
Field	LOOKS GOOD	RANGE	Application		Application
Total N, %	3.0	3.50-4.50	Units per Acre	Nutrient	Units per Acre
Nitrate-N, ppm	720	2000-4000	20	N	2
Phosphorus, %	0.21	0.30-0.50	15	P205	2
Potassium, %	2.9	2.0-3.0	0	K ₂ O	0
Calcium, %	0.45	0.35-1.00	0	Ca	0
Magnesium, %	0.16	0.18-0.50	0	Mg	0
Sulfur, %	0.23	0.20-0.40	0	S	0
Zinc, ppm	30	30-50	0	Zn	0
Iron, ppm	160	80-125	0	Fe	0
Manganese, ppm	52	40-70	0	Mn	0
Copper, ppm	10	6-12	0 O	Cu	0
Boron, ppm	15	9-20	0	в	0

- Typical efficiency gain for non-split application = 10-15%
- NSN Urea applied as a topdress in Missouri

 2005 12% gain in efficiency over urea
 2006 no gain

Plots had rain 2 days after Urea application

65

Controlled Release N

Best fit is:

- Where N cannot easily be applied mid season
 - Small grains
 - Drip irrigated Crops
 - Corners
- Large fall N applications
- Where topdress Urea cannot be watered in
 - Flood & furrow irrigated fields
- Severe leaching or denitrification situations
 - Flood irrigation, very sandy soil or clay pans