
Connecting Soil Health and Human Health-Crop Management

TALK THREE-CODY WYOMING

1

A little over 100 Years Ago MU Hired A Young Soil Scientist-Dr. William Albrecht to Study Soil Microbiology

Dr. Albrecht Taught Students Not Only In the Class But In the Field

3

Sanborn Field That Was Established in 1888 and Still Going! The Third Longest Continuous Research Station in

the World

With Dr Albrecht's Help Aureomycin was Discovered on Plot 23. 2003 is the 75th Anniversary of the Discovery of Aureomycin at Sanborn Field

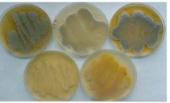
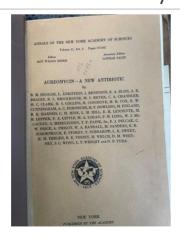
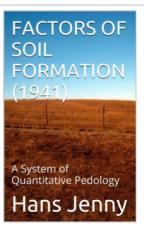



Fig. 7 Agricultural testing ground of the University of Missouri. The sample came from plot 23 of the test site, untreated since 1888, of the University of Missouri and was planted with timothy grass (*Phleum pratense*). The mycelium-building bacterium from this sample, ini-

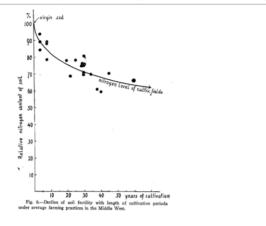
tially A-377, later called *Streptomyces aureofaciens* (photograph), produces a potent compound against, for example, *Staphylococcus aureus* (© lwtwb8, PD Dr. Joachim M. Wink, Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig)

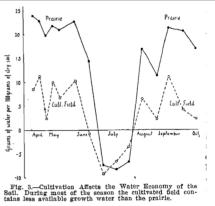
5

75th Anniversary Aureomycin


A soil sample from plot 23 is stored in the Smithsonian Institution.

Dr. Albrecht Was At MU At A Very Special Time


7


Hans Jenny-Father of Soil Chemistry and a Colleague of Dr. Albrecht

Hans Jenny work demonstrated the degradation of Soil Productivity Including Water Holding Capacity

*Prairie · 210--0.032% · Cultivated field : 1.30-0.01

9

Drs. Bradfield and Baver Were Also Colleagues and Contributed To the Understanding of Base Saturation And Soil Fertility

Some of Their Groundbreaking Research

THE CHEMICAL NATURE OF A COLLOIDAL CLAY

RICHARD BRADEIELD

Abstrate—The fresh subsoil of Patsam sill toam, predominating prairie and oil of Northeast Missouri, was assepanded in five parts of water by clarms oil of Northeast Missouri, was assepanded in five parts of water by clarms and a centrifugal force of about 40000 times gravity. This fraction was nouseally high in AOV and PeO', almost all of which was soluble in hot HCL. This indicated that the colloids fraction might be ing; colloids AOV, PeO' and SOV. A synthetic mixture of these colloids having a chemical composition similar to the antural colloid was prepared and their physico-hemical recognition in the colloid of the property of the colloids of the property o

The Petnam silt loam, which is the predominating soil type on the level prairies of northeastern Missouri, is underlaid at a depth of 13 to 30 inches with a very heavy clay layer. This heavy layer is so compact that there is practically no water or air movement through it, except when it is cracked by drought. For this reason crops growing on it suffers severly in periods of wet weather, for the surface soil is kept saturated until the excess of water is removed by surface evaporation. Crop yields are probably reduced even more by the drought periods in the summer, because the sup-

Soil Erosion in Missouri

L. D. Baver*
INTRODUCTION

The problem of soil erosion in Missouri is unusually serious as evidenced by data compiled in the recent reconnaissance erosion survey of the state. It is the purpose of this report to (1) present the picture of the seriousness of erosion in the state as it now exists, (2) to call attention to the factors that have contributed to soil lossee by erosion, and (3) to suggest possible means of controlling erosion most effectively throughout the various sections of the state in accordance with the properties of the soils.

Chart 1.—Soil erosion affects the general public as well as the

11

Dr. Albrecht Started Putting Together All of These Different Disciplines Which Leads to How They Affect Soil Microbial Activity-June 22, 1922

In Annual Cropping Systems Even With Manure Applied There Was A Loss of Soil C and N. Only in a Perennial System With Manure Did Soil C and N Accumulate.

Table 2

TOTAL CARBON AND NITROGEN CONTENTS TOGETHER WITH THEIR RATIOS AT TWENTY-FIVE-YEAR INTERVALS ON SANBORN FIELD

		After 25 Years			After 50 Years			Chang- es in	Chang- es in
Plot No.	Crop and Treatment	Car- bon %	Nitro- gen %	C/N	Car- bon %	Nitro- gen %	C/N	Car- bon	Nitro- gen
2	WheatFertilizer	1.13	.107	10.5	1.02	.100	10.3	11	07
5	WheatManure 6T, 25 yrs. Manure 3T, 25 yrs.	1.52	.140	10.8	1.27	.119	10.6	25	21
29	WheatManure 6T, 25 yrs. Ammonium sulfate, 25 yrs.	1.38	.145	9.5	1.07	.081	16.2	31	64
30	WheatManure 6T, 25 yrs. Sodium nitrate, 25 yrs.	1.61	.171	9.4	1.30	.094	13.8	31	77
23	WheatNo treatment	1.33	.141	9.4	1.45	.135	10.7	+.12	06
22	WheatManure 6T.	1.69	.177	9.5	2.04	.195	10.4	+.35	+.18

Timothy

13

When Soils From Rotations Were Treated With Lime (Ca Source) then Nitrifying Activity Increased, Especially When Fertilizer Had Not Been Applied

THE PAST HISTORY OF CROPPING AND SOIL TREATMENTS. (SOILS FROM SAMEORN FIELD)

			(Pour	as Nitrog	en per Ac	re)	
		La	boratory Tr	eatments			
Cropping History and Field Treatment		and No Org		Organic Matter	Lime and Organic Matter	Mean of All Treatment	Increase over Lowest Item
	Corn	25	83	55	122	71	
Continuous	Oats	30	26	121	190	92	21
Crops	Wheat	59	102	52	172	96	25
	Timothy	48	104	110	183	111	40
	Six-year	34	52	74	176	84	
Rotation	Four-year	56 .	75	109	208	112	28
	Three-year	44	97	. 182	219	135	51
	None	40	61	92	179	93	
	Manure	49	93	120	196	114	21
Soil	Phosphate	50	106	184	282	155	62
Treatments	Fertilizers	43	94	149	222	127	34
	Ammonium Sulfate	60	113	150	193	129	36
	Sodium Nitrate	62	87	174	216	134	41
	Lime	36	74	223	267	150	57

Dr. Albrecht's 1939 Manuscript Soil Science Society of America

VARIABLE LEVELS OF BIOLOGICAL ACTIVIT SANBORN FIELD AFTER FIFTY YEARS OF TREATMENT Wm. A. Albrecht

Concluded that soil microorganisms were dependent upon:

soil N, P, and Ca

15

Dr. Albrecht Didn't Have The Tools That We Have Today: What Does Today's Data Say?

<u>Fertility</u>	рН	TN	Р	SOC	Microbes	Agg. Stab.
		g/kg	mg/kg	g/kg	pmols/g	%
No Fertility	5.5 a	1.15 a	5.2 a	10.7 a	72,334 a	15 a
Full Fertility	5.7 a	1.45 b	37.0 b	14.0 b	90,902 b	17 b
Manure	6.9 b	1.78 c	56.2 c	17.5 c	121,854 c	25 c

Different letters indicate significance at the 0.05 probability level

Norkaew, 2018

Dr. Albrecht Understood the Importance of Organic Matter

17

In 1938, Dr. Albrecht Wrote An Article on Soil Organic Matter For the Special Issue of the USDA Annual Yearbook of Agriculture

THIS article tells why organic matter in the soil may be considered our most important national resource. The author describes how it furnishes fuel for "bacterial wrecking creus" and how it is turned into plant nutrients. He shows that many of our farm practices have enormously reduced the supply originally present in the soil and warms that we must expect a permanently lower level of agricultural efficiency if we do not take steps to counteract this waste. The problems involved in maintaining an adequate supply of organic matter in the soil are dealt with from a practical standpoint.

Loss of Soil Organic Matter and Its Restoration

By WILLIAM A. ALBRECHT 1

ENTURIES before there was any science that acquainted people with the intricacies of plant autition, decaying organic matter, as the intrinace of plant autition, decaying organic matter, as the intrinace of plants. The high productivity of most virgin soils has always been associated with their high content of organic matter, and the decrease in the supply with cultivation has generally been paralleled by a corresponding decrease in productivity. Even though we can now feed plants on diest that produce excellent growth without the use of any soil whatever, yet the decaying remains of productivity that the second plants on diest that produce excellent growth without the use of any soil whatever, yet the decaying remains of producing plant generations, resolved by bacterial wrecking crews into simpler, varied nutrients for rebuilding into new generations, mailled the most effective basis for our most important national forms. The stock of organic exploitation has been devastating; and it must farmers. The stock of organic matter in the virgin soils taken over by the homesteading pioneers was a heritage from an extensive past. Its elementary of the compounds that were ready to be used quiedly by growing plants.

The stock of organic compounds that were ready to be used quiedly by growing plants.

In temperature, the glacial residue of pulverized rock offered minerals in solution for plant growth. As the plants found nitrogen to combine with these minerals, they grow, died, and began to accumulate in the soil. Then, as the rate of rock weathering increased, bringing a larger usually of soluble minerals, the accumulation of plant remains became

Albrecht and Organic Matter

NEW AWARENESS AND NEW RESPONSIBILITY

American citizens are becoming conscious of the fact that loss of fertility and the depletion of organic matter in the soil are partly responsible for the menace of erosion. The first step in remedying this situation is to restore fertility by the use of lime and fertilizer. The second step is to put some lands permanently into sod crops—legumes wherever possible, and the better grasses—and to use sod more regularly in rotations on tillable cropped lands. The conservation and use of such farm wastes as crop residues and manures should be included as the third step.

If these practices are recommended as proper soil management by all agricultural agencies, their adoption by individual farmers will become so common that the rate of soil depletion will be lessened. The need for long-time investments in materials that build up the soil in organic matter and fertility should be recognized in granting credit to farmers.

tion and work for it cooperatively. Uncarned increment, the great wealth producer of the past, should be recognized as largely responsible for the mining of soil fertility and the burning up of soil organic matter until it has reached such a low level that this source of wealth has an extremely uncertain outlook in the future. The heritage of soil fertility and organic matter that we are handing on to the next generation is not large enough to be used lavishly. Careful conservation and thrifty management will be imperative if it is to yield even a moderate income.

19

Charles Kellogg Chief Of USDA Soils, Was Not A Fan Of Dr. Albrecht and Noted So

P38 yearbook Soils & Men, for which William Holecan hapter on the loss of soil organic matter and its restoration [33]. In 1933, hapter on the loss of soil organic matter and its restoration [33]. In 1933, harles Kellogg, could have taken a position at the University of Missouri, when William Albrecht took a leave of absence for a year, but at the time, when William Albrecht took a leave of absence for a year, but at the time, when William Albrecht took a leave of absence for a year, but at the time and after the visit, he noted in his diary: "Albrecht had been furiously writing and after the visit, he noted in his diary: "Albrecht had been furiously writing a great deal of nonsense about the direct effects of liming on food quality. I secal commenting on this in the speech and pointing out that if a diet were made up from crops grown on the best soils in Missouri and a comparable on the poorest soils, the first would be somewhat more nutritious. But by adding or subtracting a quart of milk a day the small differences would be verwhelmed. Prof. M. F. Miller and the others were highly amused. It was a difficult to understand how M. F. Miller, whom everyone respected, and the others at the University let this quack stay on as Head of the Department of Soils. He wrote bulletins and hundreds of papers, and all sorts of

Doe Better Fertility Increase Organic Matter? Yes!

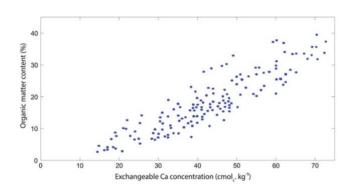
Increase in soil organic carbon due to fertilizer application compared to unfertilized control in long-term experiments from all over the world.

Percent increase
in soil organic
carbon due to
fertilizer
application
compared to
unfertilized
control

104 long-term experiments (6-158 years old) (Ladha et al., 2011)

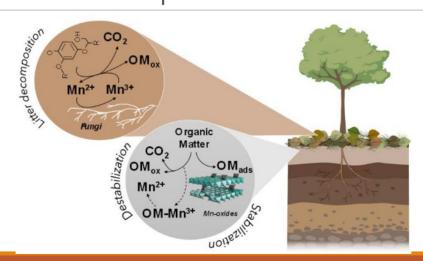
64 long-term experiments (non-lowland rice, 5-130 years old) (Geiseller and Scow, 2014)

20 long-term experiments (from Europe, 16-108 years old) (Körschens *et al.*, 2013)


21

Improved Soil Fertility Had An Even Larger Impact On Organic Matter Than Manure!

	Treatment	Mean yield of wheat over	Soil organic carbon content
N-P-K (kg ha ⁻¹)	Farmyard manure (t ha ⁻¹)	9 years (t ha ⁻¹)	in 0-15 cm top soil (t ha ⁻¹) after 9 years
0-0-0	0	1.30	14.10
0-0-0	10	1.71	15.44
120-26-33	0	2.40	16.91
120-26-33	10	3.04	18.62
LSD (p = 0.05)		0.21	1.89


^

Increasing Ca Soil Availability Increases Soil Organic Matter

23

Manganese Is Important For Organic Matter Decomposition and Stabilization.

Soil Organic
Matter Is
Involved In
All Aspects
Of Soil Health

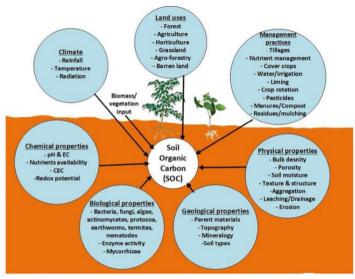
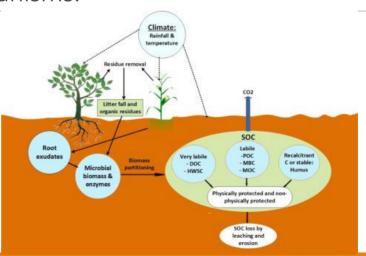
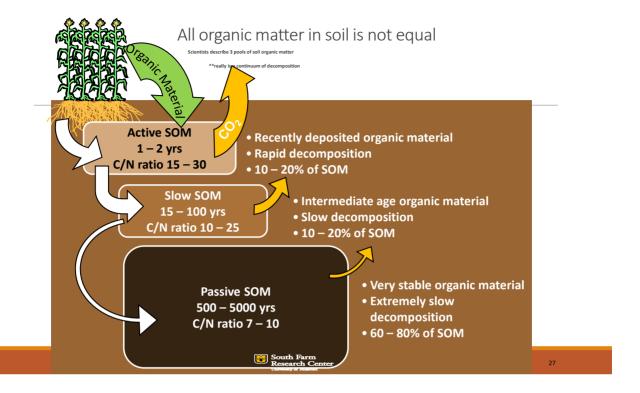
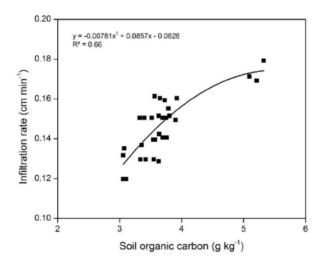




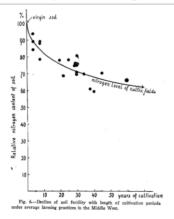
Fig. 2 Schematic diagram of the factors influencing organic carbon dynamics in soil.

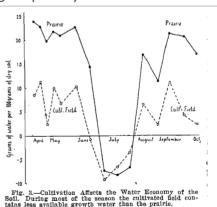
25


Soil Organic Matter Is From Plant and Animal Materials That Is Broken Down By Soil Microbial Organisms.

27

Infiltration rate in clay, sand and silt soils


From Symbiosis


Soil organic carbon improves water infiltration rate (Kaur et all, 2015)

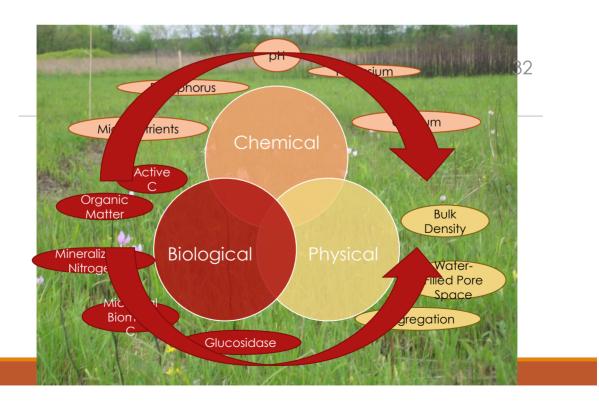
What is a Healthy Soil?

29

Hans Jenny work demonstrated the degradation of Soil Productivity Including Water Holding Capacity

*Prairie · 210--0032% · Cultivated field : .130--001

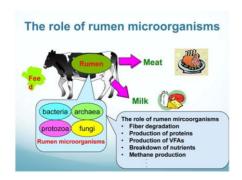
Tilled vs No-Till-We Have Destroyed Much of Our Soil Structure-Lets Talk About Regenerative Agriculture

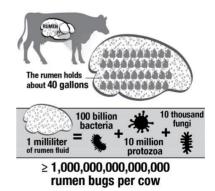

LONG TERM PASTURE

TILLED IN AN ANNUAL CROP

31

Soil Biology: Microorganisms:


Bacteria-100 million-1 Billion!
Fungal Filaments-Several Yards
Protoza-Several Thousand
Nematodes-10-20



33

Cow's Stomach and The Soil-Feed The Microbes Fed The Cow and Plant

Annual Cover Crops and Perennial Crops Are a Way To Increase Soil Biology

35

Cover Crops Nothing New: Did This is the 1930's.

Often When You Plow Up a Pasture You Have A Bumper Yield The First Year, Maybe the Second and Then It Goes Down. Why?

37

Example: Tilling Under a Perennial Cover

In the Short Term, You May Even Improve Yield When Killing and/or

39

Longer Rotations Using Cover Crops, Using Perennial Crops Can Also Improve Soil Health

Cover Crop (left) Larger and More Robust Than No Cover Crop (right)-Dry Year and Better Soil Health=More Water

41

Lengthening the Rotation Resulted In Greater Soybean Yield

_	0		,	
	Rotation	Cover Crop	Crop(s)	Soybean Yield
				Bu/acre
	Continuous	none	Soybean	39
		Yes		46
	Two-Year	none	Corn/soybean	42
		Yes		42
	Three-Year	none	C/Soy/Wheat	42
		Yes		52
	Four-Year	none	C/Soy/W/Red Clover	52
		Yes		52
	Five Year	none	C/Soy/W/2 Alfalfa	54
		Yes		58
	LSD (0.05)			9
	LSD (0.10)			8

In Only Two Years A Perennial Cover Crop Can Make Huge Differences In Soil Health

	Aggregate	Active		Soil Organic	Total
Treatment	Stability	Carbon	B-Glucosidase	Carbon	Nitrogen
	g/kg	g C/kg soil	μg PNP/g soil/hr	g/kg	g/kg
Alfalfa	33.0	0.39	65.8	1.53	0.15
Tilled annual	13.3*	0.33*	45.6*	1.33*	0.12*

• Indicates significant difference at the 0.05 probablity level

43

What About Soil Chemistry-Nutrients?

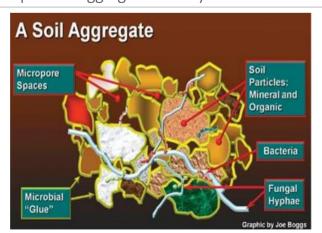
IS THERE AN INTERACTION WITH SOIL BIOLOGY?

What Does Recent Data From Sanborn Tell Us About the Interaction of Soil Chemistry and Biology?

_		Biological			
<u>Fertility</u>	рН	TN	Р	soc	Microbes
		g/kg	mg/kg	g/kg	pmols/g
No Fertility	5.5 a	1.15 a	5.2 a	10.7 a	72,334 a
Full Fertility	5.7 a	1.45 b	37.0 b	14.0 b	90,902 b
Manure	6.9 b	1.78 c	56.2 c	17.5 c	121,854 c

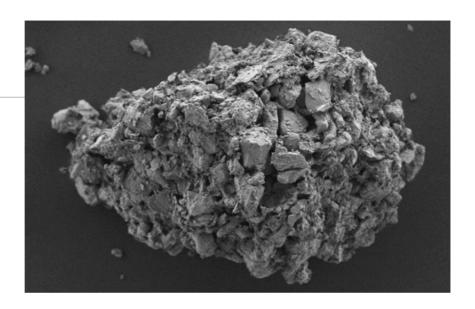
Different letters indicate significance at the 0.05 probability level

Table 1. Soil health indicators from the upper soil horizon from four soil cores taken in November 2020. Saturated hydraulic conductivity (Infiltration) 2023 Rotations species include corn (C), wheat (W), red clover (RC), grain sorghum (GS), Timothy, tall fescue or in restored prairie. Soil fertility include no fertility, full (fertility: N,P,K, lime), manure (13.5 Mg dairy manure ha⁻¹).


	2020								
Plot, Rotation, Fertility	crop	OC	POXC	TN	PMN	WSA	Respiration	Infiltration	PLFA Wt
-		mg kg ⁻¹	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg CO ₂ kg	cm hour-1	pmols mols-1
4-C-W-RC-Full Fertility	C	1.50	383	0.165	64.4	19.3	628	7.4	79,406
6-Cont. Corn-Full Fert. tille	1 C	1.25	270	0.133	33.9	12.8	474	7.8	54,514
7-Cont. Corn-Full Fert. noti	1 C	1.33	423	0.144	52.4	19.3	413	4.3	43,109
9-Cont. Wheat-no fert	W	1.18	333	0.127	52.8	33.3	523	10.4	57,826
10-Cont. Wheat-manure	\mathbf{W}	2.08	588	0.210	90.8	32.5	794	14.4	74,064
17-Cont. Corn-no fert	С	0.85	222	0.092	16.8	11.0	293	4.0	51,331
18-Cont. Corn-manure	С	1.58	498	0.162	67.0	27.0	575	14.4	104,922
22-Cont. Timothy-manure	T	2.30	733	0.236	84.6	54.5	879	6.8	114,261
23-Cont. Timothy-no Fert	T	1.70	330	0.173	81.6	77.5	1007	8.1	101,869
45 Restored Prairie	P	2.00	463	0.181	73.6	50.8	1156	8.8	97,717
Tucker Prairie	P	3.30	585	0.319	162	83.0			345,700
LSD (0.05)		0.19	110	0.016	13.9	12.0	248	ns	20,257
LSD (0.10)		0.16	92	0.014	11.7	10.0	208	4.5	16,959

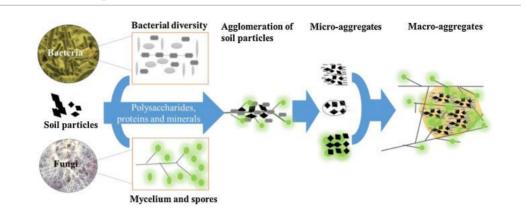
What About Our Study? After Five Years of Albrecht Recommendations?

			Total
Treatment	Cover Crop	Mycorrhizae	Microbes
		pmols/mol	pmols/mol
Control	no	2957	103,374
64/14	Yes	3813	119,222
Recommendations	no	3388	109,809
68/12	Yes	4225	124,127
Rec+Magnesium	no	2445	94,118
54/20	Yes	3544	118,691
LSD (0.05)		522	9,960

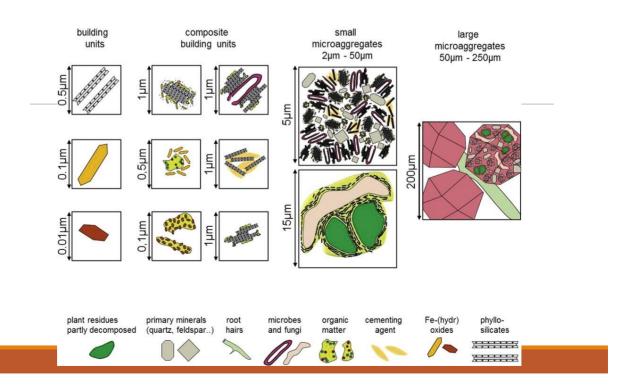

47

The End Product of the Interaction of Soil Chemistry and Biology is Good Physical Soil Properties=Aggregate Stability

South Farm Research Center A Soil Aggregate



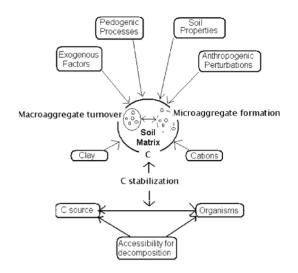
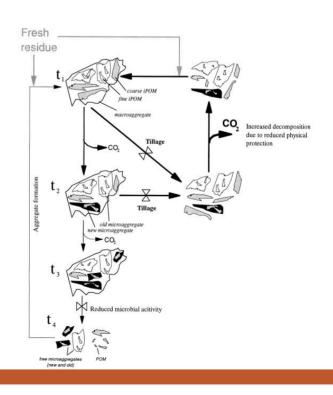
49

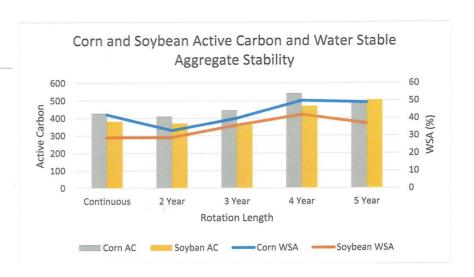

Longer Rotations Using Cover Crops, Using Perennial Crops Can Also Improve Soil Health

How Are Aggregates Formed? Microorganisms

51

Aggregates Formed By The Attraction of Cations to Clay and Organic Compounds


Fig. 2. Factors affecting soil aggregation.

53

Macroaggregates
Are Constantly Being
Broken Down to
Microaggregates.
Tillage Speed This Up



Lengthen
Rotation
Increase
Active C and
Aggregate
Stability

55

Longer Rotation More Soil Biology

Different Crops Affect Soil Aggregation Differently: Cereal Crops and Corn Much Better Than Soybeans-Why?

57

How Does Soil Aggregate
Stability Relate Back To
Organic Matter and The
Calcium/Magnesium Base
Saturation?

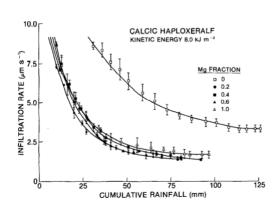
The Interaction of Chemical, Biological and Physical Properties at Sanborn Field

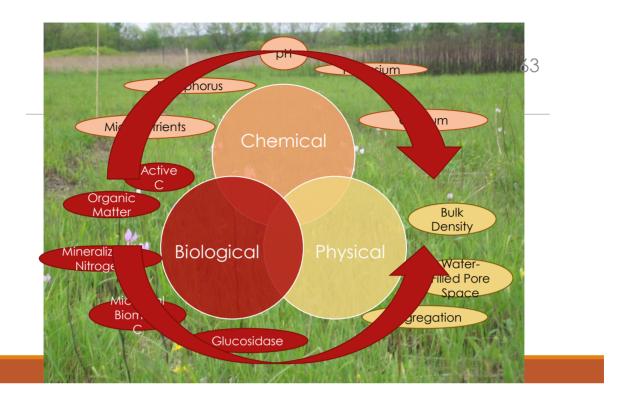
	Chemical					Physical
<u>Fertility</u>	рН	TN	Р	soc	Microbes	Agg. Stab.
		g/kg	mg/kg	g/kg	pmols/g	%
No Fertility	5.5 a	1.15 a	5.2 a	10.7 a	72,334 a	15 a
Full Fertility	5.7 a	1.45 b	37.0 b	14.0 b	90,902 b	17 b
Manure	6.9 b	1.78 c	56.2 c	17.5 c	121,854 c	25 c

Different letters indicate significance at the 0.05 probability level

59

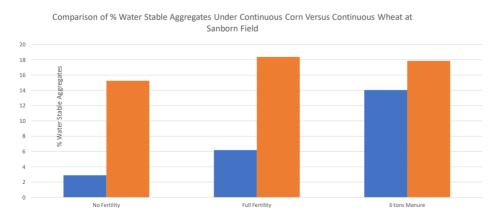
What is the Difference? Better Aggregation Better Drought Tolerance


Change In Active Carbon and Aggregate Stability After 5 Years of Albrecht Treatments


			Total	
Treatment	Cover Crop	Active Carbon	Agg. Stab.	
		mg/kg	%	
Control	no	458	15	
64/14	Yes	458	23	
Recommendations	no	523	21	
68/12	Yes	490	28	
Rec+Magnesium	no	516	15	
54/20	Yes	491	27	X
LSD (0.05)		63	6	South Farm
				Research Center

Research Center University of Missouri

61


Remember, High Soil Mg or Na, Then Water Infiltration Decreased

63

Sanborn Field Study-Higher Fertility and Wheat Has Greater Aggregate Stability: Why?

Norkaew, 2018

Why More Yield Response In a Dry Year Than A Wet Year?

Treatment	Wet Year Yield	Dry Year Yield
	bu/acre	bu/acre
Control	178	161 c
Recommendations	190*	203 a
Recom. Without Pell Lime	193*	183 a
Recom.+Mg and Lime	179	174 bc
Recom+Mg no lime	173	185 ab
Micros Only	179	178 bc
P and K	175	*

South Farm Research Center

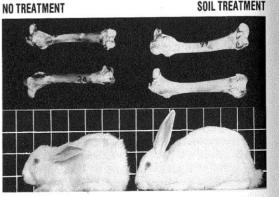
65

Conclusions:

All Factors of Soil Health Are Changed By the Albrecht System

Soil Biology-more soil Microorganisms

Soil Chemistry-balanced Ca and Mg and available P, K, S and micronutrients


Soil Physical –greater Aggregate Stability=better soil water infiltration, water availability and soil aeration

Soil Health Leads To Healthy People (and animals)

67

Dr. Albrecht Put Together The Concept of Healthy Soil, Healthy Plants, Healthy Animals (People).

The weanling rabbits had the same pedigree, so did the crop plants making up the hay, but treatment of the soil with some extra fertility to grow better feed made the rabbit on the right different in appearance and body structure as the bones also illustrate.

Inductees Correlated To The Soil Fertility of Their Home

UNIVERSITY OF MISSOURI

COLLEGE OF AGRICULTURE

AGRICULTURAL EXPERIMENT STATION J. H. LONGWELL, Director

CIRCULAR 333

DECEMBER, 1948

Our Teeth and Our Soils

WM. A. ALBRECHT, A.B., B.S., M.S., Ph.D.
Department of Soils, College of Agriculture, University of Missouri

Department of Sails, College of Agriculture, University of Miscouri
The knowledge about the human body and its many functions has been
accumulating seemingly very slowly. The additions to our information have
awaited the coming of each new science and the contributions by them in their
respective fields. Dentistry as well as the medical profession has been ready and
quick to accept and use any new knowledge that might alleviate human suffering.

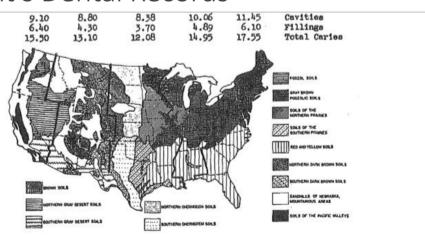
Very probably the twentieth century will be credited with the addition of
the science of nutrition as a major contribution to the better life of our people.

Better nutrition is leading us to think less about medicine as cures and less
about fighting microbes with drugs. In a more positive way it is helping us to
think more about helping the body defend itself by being well-fed and therefore
healthy.

think more about helping the body detenunced by the healthy.

For such defense, the science of the soil and its fertility, by which alone high quality foods can be provided, may well be a present century addition to our knowledge of the better functions and better health of our bodies. It is proposed therefore in this discussion to lead you to think about the health condition of only one part of our body, namely, our teeth as they are related to the fertility of our soils.

the fertility of our soils.


Some Basic Facts Involved

In dealing with the subject of soil fertility and its implications for our teeth, or for any other part of our anatomy and our physiology, it is essential that one establish certain facts and principles at the outset and then follow through as these seem to have causal connections with the phenomena under consideration, moderate temperatures the increase in annual rainfall from zero of the superextures the increase in annual rainfall from zero of the superextures the increase in annual rainfall from zero of the superextures the increase in annual rainfall from zero of the superextures the increase and the superexture that the superexture superexture that the superexture is a superexture to the superexture that the superexture is a superexture to the superexture superexture that the superexture is a superexture to the superexture that the superexture is superextured. The superexture is superextured to the superexture that the superexture that the superexture the superexture that the superexture that the superexture the superexture that the superexture the superexture the superexture the superexture the superexture that the superextur

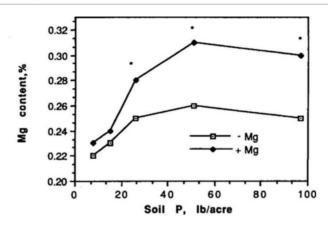
rinted from Annals of Dentistry, Vol. 6, No. 4, December, 1947

69

Albrecht's Dental Records

Worn Out Soil And Childhood Ailments

Fig. XIII. Human health goes with the soil and its fertility. Courtesy F.S.A. Scene from Wadesboro, N. C.


cattle market. That honor now rests on Kanena City. From al. Laurender.

71

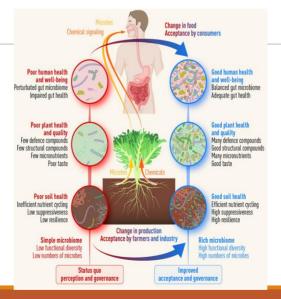
Connecting Ca/Mg, Soil Heath, and Wheat Quality-Sanborn Field

Plot	Ca	Mg	СР	Lysine	Methon.	Ca	Mg	K	P	S	Agg. Stab
	%	%					%				
3	71	11	13.8	0.39	0.33	0.06	0.14	0.46	0.39	0.14	20
25	78	13	13.3	0.37	0.21	0.05	0.14	0.43	0.35	0.14	29
26	63	9	11.9	0.33	0.19	0.05	0.14	0.44	0.35	0.13	13
28	70	8	11.7	0.33	0.19	0.05	0.13	0.46	0.36	0.13	16

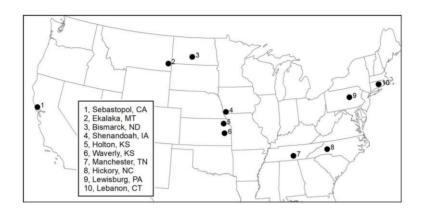
Nutrients Are Often Tied To One Another-Mg Uptake is Dependent Upon P

73

How Soil P Affects Blood Serum of Lactating Cows

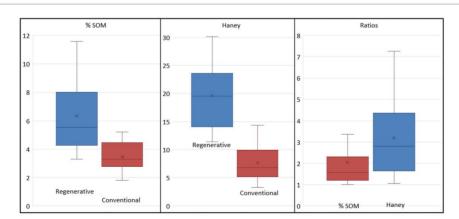

Treatment	Mg	Са	К	<u>P</u>
		mg/dl		
Control-no P Fertilizer	1.47	7.52	26.4	4.90
Mineral Block-no P fertilizer	1.72*	7.63	26.6	6.05*
P Fertilizer Treatment-	1.72*	7.35	26.9	6.24*

• Indicates significant differences at the 0.05 level


How Does Soil Biology Affect Human Health?

75

Improved Soil Biology Improves Human Health


A Study To Compare Regenerative Management Such As Cover Crops Vs Conventional Crops-David Montgomery and Ray Archuleta

Montgomery et al, 2022

77

Comparison of Soil Organic Matter and the Haney Soil Health Index In Conventional and Regenerative Systems

Montgomery et al, 2022

suos

Wheat: Cover Crop vs No Cover Crop after Several Years

	Regenerative	
Nutrient	Cover Crop	No Cover Crop
	ppm	ppm
В	0.90*	0.64
Mg	1439*	1112
K	7219*	5750
Mn	50.96*	37.66
Fe	40.78	34.10
Cu	2.56	2.17
Zn	18.99*	12.21
Mo	0.220*	0.053

^{*}significantly different from the no cover crop at the 0.05 level

Montgomery et al, 2022

79

Beef Fatty Acid Composition

Fatty Acid	Regenerative	Conventional	Ratio
	g/100 g	g/100 g	
Total Omega-3	0.1056	0.0358	2.9
Total Omega-6	0.1416	0.2216	0.6
Omega-6/Omega-3	1.3140	6.1933	0.2

Montgomery et al, 2022

Conclusions

Soil Nutrients Levels Affects Soil Microorganisms and Soil Structure

The Albrecht System Improves Soil Microorganisms and the Soil Structure-Soil Health

This Improves Water Infiltration and Reduces Soil Runoff

Improving Soil Health Results In Better Nutrient Density of Food

A Healthy Soil=A Healthy Plant=Healthy Animal (People) Just Like Dr. Albrecht Said that it Would.