

STUKENHOLTZ LABORATORY

Sulfur and Micronutrients in High pH Soils

Paul Stukenholtz

Sulfur

- Plants absorb Sulfate (SO₄-²) form.
- Concentration in the soil is reported as: SO₄-S "Sulfate sulfur" Pounds of sulfur in the sulfate form
- Sulfate is water soluble and moves freely with soil water.

Sulfur

- Amino acid synthesis
- Component of protein
- Nitrate reduction
- Electron transport
- Chlorophyll synthesis
- Moderately mobile in plants

STUKENHOLTZ LABORATORY, INC. 2924 Addison Avenue East, P.O. Box 333 Twin Falls, ID 80401

3009	208-7	34-3050	Fax: 208-734-3919	www.stukenholtz	.com	
STUKENHOLTZ, PAUL				Tel: 208-734-3050 Fax: 208-734-3919		
2924 ADDISON AVE. EAST				Report No: 1484	176	
TWIN FALLS, ID 833030353				Date Received: 1	11/14/2023	
				Date Reported: 1	11/15/2023	
SOIL TEST DATA	<u>Sample</u>	1	Sample 2		Sample 1	Sample 2
pН	7.7	Н		Grower	U OF WY	
Salts, mmhos/cm	0.9	L		Sample Identity	GOSHEN 2 COR	N
Chlorides, ppm	8	VL		Crop	SUNFLOWERS	
Sodium, meq/100g	0.20	VL.		Yield Goal	27 BU	
CEC, meq/100g	14.8	M		Acres	80	
Excess Lime, %	0.8	L		Prev Crop T/Acre	FIELD CORN 1	
Organic Matter, %	1.56	M		Manure T/Acre		
Organic N, Ib/Acre	60	M		Prev Applied Nut		
Ammonium - N, ppm	2.4	VL		RECOMMENDATIONS, ibs Nutrients or Units per Acre		
Nitrate - N, ppm	11	M		Nitrogen	105	
Phosphorus, ppm	10	L		P ₂ O ₅ – Phosphate	60	
Potassium, ppm	338	н		K ₁ O - Potash	0	
Calcium, meq/100g	11.6	н	Vo	TTU LOW S	Julfur	
Magnesium, meq/100g	1.9	L		IY LOW S	bullul	
Sulfate - S, ppm	3	VL		Sulfate - Sulfur	25	
Zinc, ppm	0.4	VL		Zinc	9	
iron, ppm	5.5	м		Iron	0	
Manganese, ppm	2.5	L		Manganese	0	
Copper, ppm	0.4	L		Copper	٥	
Boran, ppm	0.43	L		Boron	1.0	
				Elemental Sulfur	٥	
	(CT	TIKENI	IOLT7		
		∑ ‡				
			ABORA	I UKY INC.		

Sulfur Deficiency in Alfalfa

Sulfur Deficiency

Plant Uptake

Crop	<u>Yield</u>	Uptake (lbs. S)
Potatoes	500 cwt/Ac	25
Sugar Beets	30 T/Ac	45
Alfalfa	8 T/Ac	40
Corn	200 bu/Ac	38
Wheat	130 bu/Ac	32

Sulfur Oxidation

Oxidation / Sulfur Products

11

Soil Microbes Require:

- Water
- Food Source
- Adequate Temperature
- Oxygen (aerobes only)
- Proper pH
- Nutrients

- Most limiting: N and P

Sulfur Required to Lower Soil pH to 6.5

(pounds per Acre)

Soil pH	Light Soil	Medium to Heavy Soil		
7.5	400-600	800-1,000		
8.0	1,000-1,500	1,500-2,000		
8.5	1,500-2,000	2,000+		
V	What's wrong with	this chart?		
STUKENHOLTZ LABORATORY NG				

Sulfur Required to Lower Soil pH to 6.5

(pounds per Acre)

Soil pH	Light Soil	Medium to Heavy Soil		
7.5	400-600	800-1,000		
8.0	1,000-1,500	1,500-2,000		
8.5	1,500-2,000	2,000+		
STUKENHOLTZ LABORATORY NG				

17

Sulfur Fertilizers

Soluble

Ammonium Sulfate	$(NH_4)_2SO_4$	21-0-0 24s
Potassium Sulfate	K_2SO_4	0-0-50 17s
Sulfuric Acid	H_2SO_4	0-0-0 33s
MAP-AMS NH ₄ H ₂ PC	$O_4 \cdot (NH_4)_2 SO_4$	16-20-0 15s
Ammonium Thiosulfat	te $(NH_4)_2S_2O_3$	12-0-0 26s

Sulfur Fertilizers

Somewhat Soluble

Gypsum	$CaSO_4 \cdot H_2O$	0-0-0 188
(1 Acre-ft of w	vater will dissolve about	1 T gypsum)

Insoluble

Disintegrating Sulfur S 0-0-0 90s

Won't break down during the land-lease time. Flaked Elemental Sulfur S 0-0-0 100s STUKENHOLTZ LABORATORY

19

Elemental Sulfur Fertilizers

Flaked Elemental Sulfur / Granulated ES / "Popcorn Sulfur" 100% Elemental Sulfur Takes many, many years to oxidize Not effective as a soil amendment Flammable

Elemental Sulfur Fertilizers

Micronized Sulfur 100% Elemental Sulfur Oxidizes in 1-3 Months if mixed with soil EXTREMELY Flammable Has been successfully mixed with compost for application

STUKENHOLTZ LABORATORY

21

Elemental Sulfur Fertilizers

Tiger-Sul / Tiger 90CR / Disintegrating Sulfur 90% Elemental Sulfur + 10% Bentonite combined in Pastille Much safer than micronized sulfur Can be blended with other fertilizers Slower to oxidize than micronized sulfur Much faster to oxidize than "popcorn" granulized sulfur Has micronutrient blends

Elemental Sulfur Fertilizers

KegRiver 85S / Disintegrating Sulfur 85% Elemental Sulfur + 15% Bentonite combined in Pastille Much safer than micronized sulfur Can be blended with other fertilizers Slower to oxidize than micronized sulfur Slightly faster to oxidize than 10% Bentonite ES Much faster to oxidize than "popcorn" granulized sulfur

23

Elemental Sulfur Fertilizers

SRx Thrive (11-0-0 75s),
Two Rivers Terminal
11% Nitrogen
75% Elemental Sulfur
Pastille of Urea and Micronized Elemental S
NH₂ form of Nitrogen
Claimed 100% S converted to SO₄-S in 60-80 days
3x more acid forming than 21-0-0 per lb product

Elemental Sulfur Fertilizers

Arctic S (11-0-0 75s), Northern Nutrients

11% Nitrogen
75% Elemental Sulfur
Pastille of Urea and Micronized Elemental S
NH₂ form of Nitrogen
Claimed 100% S converted to SO₄-S in 60-80 days

3x more acid forming than 21-0-0 per lb product

STUKENHOLTZ LABORATORY NG

25

Elemental Sulfur Fertilizers

MESZ

Mosaic

12% Nitrogen 40% P₂O₅ 5% SO₄-S 5% Elemental Sulfur 1% Zn Basically 11-52-0 + 21-0-0 +ES+ ZnO

Oxidation Rate

Micronized S vs Phos+ES vs Bentonite+ES in Ideal Conditions

From: Oxidation of Elemental Sulfur in Granular Fertilizers Depends on the Soil-Exposed Surface Area, Soil Sci. Soc. Am. J 80:294-305 April 22, 2016

- Micronized / blended ES oxidizes in about 10 weeks $T^{1/2} = 35$ days
- Soluble fertilizer + ES oxidizes in about 40 weeks $T^{1/2} = 140 \text{ days}$
- 10 % Bentonite + 90% ES with no tillage oxidizes in about 300 weeks $T^{1/2} = 900 \text{ days}$

27

Oxidation Rate Micronized S vs Phos+ES vs Bentonite+ES 100 80 Control $-(NH_4)_2SO_4$ 60 ES particles MES10 Tiger90 40 From: Oxidation of Elemental Sulfur in Granular Fertilizers Depends on 20 the Soil-Exposed Surface Area, Soil Sci. Soc. Am. J 80:294-305

40

50

60

ъо 0 0

10

20

30

Time (weeks)

Using Disintegrating Sulfur + Bentonite

TigerSul, Tiger 90, Keg 90S, Keg 85S

- Apply as early as practical, usually Fall
- Till the soil again after previous application of pastilles have absorbed water
- Expect 3-5 years to fully oxidize in no-till applications such as topdress on alflafa.

29

Spring Elemental Sulfur Application

For 1 year rental, faster oxidizing Elemental Sulfur is preferred over ES + Bentonite.

- Urea + ES like SRx Thrive or Arctic S
- Dry phosphate + ES like MESZ
- Liquid Thio-Sul, KTS, or CaTs
- Soil application of H₂SO₄
- Ammonium Sulfate (Ammonium is acidifier)
- Soluble Ca like CaTs or CaNO₃ (to reduce Na)

Zinc, Iron, Manganese, Copper & Boron

In high pH soils

STUKENHOLTZ LABORATORY

31

Mineral Micronutrients

Zn - Zinc
Fe - Iron
Mn - Manganese Needed in smaller
Cu - Copper amounts
B - Boron
Mo- Molybdenum
Ni- Nickel

Micronutrients

- Just as important as primary and secondary nutrients.
- Needed in smaller amounts
- Often deficient in high pH, limey soils

Other Micronutrients

Mo - Molybdenum More available high pH Not usually needed in the West

Ni - Nickel Needed for life cycle in vanishinglysmall amounts

Beneficial (not essential) Elements

Not necessary for a plant to complete its life cycle, but may be helpful

Si - Silicon

Increases cell wall strength

Se - Selenium

Improves growth

Essential element for Animal Growth

Co - Cobalt

Essential for nitrogen fixing bacteria in legumes

Na - Sodium

Improves photosynthesis in certain C-4 plants.

STUKENHOLTZ LABORATORY NC

35

HOW SOIL PH AFFECTS AVAILABILITY OF PLANT NUTRIENTS

Total vs. Available Nutrients at pH of 8.0

<u>Nutrient</u>	<u>Total in Soil</u>	<u>Plant Avail.</u>
Zinc (Zn)	<u>(ppm)</u> 50	<u>(ppm)</u> 0.2-0.5
Iron (Fe)	35,000	2-10
Manganese (Mn)	500	1-10
Copper (Cu)	30	0.1-4.0
Boron (B)	40	0.1-2.0

37

Forms of Micronutrients

- Copper Cu^{2+} In basic soils: mostly Cu^{2+}
- Boron $B(OH)_4^-$ Same in basic soils

Molybdenum MoO_4^- Same in basic soils

Nutrients Removed by Alfalfa

Nutrient	#/Ac Removed	#Ac Removed
	4T yield	8T yield
P (phosphate)	24 (56)	48 (112)
K (potash)	192 (232)	384 (464)
Ca	120	240
Mg	24	48
S	24	48
Mn	0.5	1.0
Fe	1.2	2.4
Zn	0.2	0.4
Cu	0.04	0.08
В	0.24	0.48

STUKENHOLTZ LABORATORY NG

39

Nutrients Removed by Timothy Hay

Nutrient	#/Ac Removed 4T yield	#Ac Removed 6T yield
Ν	150	225
P (phosphate)	24 (55)	35 (82)
K (potash)	210 (250)	315 (375)
Ca	120	180
Mg	10	15
S	16	24
Mn	0.5	0.8
Fe	1.4	2.1
Zn	0.2	0.3
Cu	0.05	0.07
В	0.26	0.39

Nutrients Removed by Dry Beans

Nutrient	#/Ac Removed	#Ac Removed
	25 cwt/Ac	35 cwt/Ac
N	175	265
P (phosphate)	18 (40)	26 (60)
K (potash)	166 (200)	250 (300)
Mg	12	18
S	10	15
Zn	0.2	0.3
Fe	0.8	1.2
Mn	0.3	0.5
В	0.18	0.25

STUKENHOLTZ LABORATORY NG

41

Zinc

- Constituent of many enzymes
- Controls synthesis of indoleacetic acid
 A plant growth regulator
- Important for protein formation
- Corn, Beans, Onions, & Potatoes are particularly sensitive to deficiency

Zinc Deficiency Symptoms

- Severely reduced growth rate & yield
- Decrease in stem & leaf length
- "Bushy" leaf appearance
- Reduced bud formation
- Interveinal chlorosis in some crops
- White striping or banding in some crops
- Dieback of young shoots
- Deformation of fruit

43

Zn Deficiency

45

Zn Deficiency in Apples

Zn Deficiency in Stone Fruits

Zn Deficiency in Onions

Zn Deficiency Alfalfa

49

Zn Deficiency Corn

Zn Deficiency Dry Beans

STUKENHOLTZ LABORATORY NG

51

STUKENHOLTZ LABORATORY, INC. 2924 Addison Avenue East, P.O. Box 353 Twin Palls, ID 83301

208-734-3050 Tax: 208-734-3919 www.stukenholts.com

3009 STUKENHOLTZ, PAUL 2924 ADDISON AVE. EAST

TWIN FALLS, ID 833030353 SOIL TEST DATA

Sample 1

VI. 0.20

М 60

L

٧L 4

L

7.7 Н

0.9 L VL.

8

14.8 М

0.8 L

1.56 M

2.4 VL

11 М

10

338 н

11.6 н

1.9 L

3

0.4 ٧L

5.5 м

2.5 L

0.4

0.43

pН Salts, mmhos/cm Chlorides, ppm Sodium, meq/100g CEC, meq/100g Excess Lime, % Organic Matter, % Organic N, lb/Acre Ammonium - N, ppm Nitrate - N, ppm Phosphorus, ppm Potassium, ppm Calcium, meq/100g Magnesium, meq/100g Sulfate - S, ppm Zinc, ppm iron, ppm Manganese, ppm Copper, ppm

Boran, ppm

	Report No: 148	476	
	Date Received:	11/14/2023	
	Date Reported:	11/15/2023	
Sample 2		Sample 1	Sample 2
	Grower	U OF WY	
	Sample Identity	GOSHENI Z CORN	l i
	Crop	SUNFLOWERS	
	Yield Goal	27 BU	
	Acres	80	
	Prev Crop T/Acre	FIELD CORN 1	
	Manure T/Acre		
	Prev Applied Nut		
	RECOMMENDATIO	NS, ibs Nutrients o	r Units per Acre
	Nitrogen	105	
	P ₂ O ₅ – Phosphate	60	
	K ₂ O - Potash	0	
	Calcium	0	
Ver	y Low Z	inc	
	Zinc	9	
	Iron	0	
	Manganese	Q	
	Copper	٥	

1.0

Tel: 208-734-3050 Fax: 208-734-3919

Baron

Zn Activity vs. pH

100 x decrease in Zn²⁺ Concentration

FIGURE 9.3 The solution Fe species in equilibrium with soil Fe (a) and the influence of pH on solution Fe3+ concentration relative to other cations (b). (a) Lindsay, Chemical Equilibria in Soils, John Wiley & Sons, 1979; (b) Lindsay, Chemistry in Soil Environment, p. 189. Madison, Wisc.: ASA.

53

STUKENHOLTZ LABORATORY, INC. 2924 Addison Avenue East, P.O. Box 353 Twin Palls, ID 83301

3009 208-734-3050 Fax: 208-734-3919 www.stukenholtz.com STUKENHOLTZ, PAUL Tel: 208-734-3050 Fax: 208-734-3919 2924 ADDISON AVE. EAST TWIN FALLS, ID 833030353 Report No: 148466 Date Received: 11/14/2023 11/15/2023 Sample 1 ⁵ Neutral pH Sample 2 Sample 1 SOIL TEST DATA U OF WY pН 6.7 M SUBLETT GRS Salts, mmhos/cm 1.0 L. Not-Alkaline GRASS Chlorides, ppm 11 L. Yield Goal 3 T Sodium, meq/100g 0.10 ٧L 80 CEC, meq/100g 15.8 М Acres Prev Crop T/Acre GRASS Excess Lime, % 0.0 VL. Manure T/Acre Organic Matter, % 6,46 VH Organic N, lb/Acre 120 н Prev Applied Nut RECOMMENDATIONS, lbs Nutrients or Units per Acre Ammonium - N, ppm 4.7 ٧L Nitrate - N, ppm 2 VI Nitrogen 125 P2O3 - Phosphate 35 Phasphorus, ppm 14 М K₂O - Potash Potassium, ppm 139 ĩ. 40 Calcium, meq/100g 11.3 н Magnesium, meq/100g 3.0 Μ Adequate Zinc Sulfate - 5, ppm 20 М Zinc, ppm 2.5 н Zinc 0 Iron, ppm 56.1 VН Iron 0 Manganese, ppm 5.9 н Manganese 0 Copper, ppm 1.8 Н Copper 0 Baron, ppm 0.44 L Boron 1.0 Elemental Sulfur 0 Gypsum 0 Lime TUKENHOLT LABORATORY 🚾

- Build up soil Zn levels
 - 33 to 36% ZnSO₄
 - 78 to 80% ZnO
 very low solubility at high pH
 10% in one Nebraska study at pH 7.5
- Apply 4 to 12 lb Zn / Acre
 - High rates give adequate coverage
 - About 1 lb / year is removed + tied up
- 3-5 tillage operations to completely disperse Zn
- Acid producing fertilizers help keep available

STUKENHOLTZ LABORATORY

55

Correcting Zn Deficiencies

- Apply enough Zinc for just this year Use available form that gives adequate coverage
- Product that coats other fertilizer prills. – Wolf Trax Zn, GET
- Low concentration soluble product – microSync
- Uniprill product containing Zn
 - Elemental Sulfur with Zn
 - 40 Rock, MESZ, NPSZ, GET 12-30-0
 - TranZform with Zn

Wolf Trax Zn 62%

- -60% ZnO and 40% ZnSO₄
- Apply up to 1 unit Zn per 100# fertilizer
- Also has foliar label

GET, LandView

- 11.7% Zn, 4.7% Mn
- ZnSO₄ MnSO₄

TUKENHOLT

57

Correcting Zn Deficiencies

- microSyncZINC, Verdesian
 - 10% Zn
 - -8% water soluble Zn from ZnSO₄
 - -2% Zn from Zn Sucrate (ZnO reacted w/ molasses)
 - -12% SO₄-S
 - Has polymer complex resin like Avail, NSN
 - Designed to not segregate when blended with other fertilizer

- Tiger Potato Mix
 - 82% ES, 1.5% Zn, 2.0 % Fe, 0.03% Cu
 - All micronutrients are Oxide forms (less soluble)
 - Oxidation of S should make them available

STUKENHOLTZ LABORATORY

- 40 Rock, Simplot
 12-40-0 6.5 S 1.0 Zn
 11-52-0 + 21-0-0 + ZnSO₄
 S is SO₄-S
- MESZ, Mosaic 12-40-0 10 S 1.0 Zn 11-52-0 + 21-0-0 +ES+ ZnO 5% SO₄-S + 5% ES STUKENHOLTZ

61

Correcting Zn Deficiencies

- NPSZ, Valley Agronomics

 12-45-0 5S 1.0 Zn
 11-52-0 + 21-0-0 + (Mg,Fe,Al)HPO₄ + CaSO₄ + ZnO
 S is SO₄-S
- TranZform, CHS 20-0-0 24 S 0.9 Zn 21-0-0 + ZnSO₄ S is SO₄-S STUKENHOLT

GET 12-39-0 5S, LandView
 12-39-0 5S 0.2 Zn 0.05 Mn
 11-52-0 + 21-0-0 + ZnSO₄ + MnSO₄
 Unipril (similar to 16-20-0)
 S is SO₄-S

STUKENHOLTZ LABORATORY NG

- Liquid Zn in starter fertilizer bands Zn Chelates are most effective Zn Complex fertilizer also work at higher rates
- Zn foliar sprays at 0.1 to 0.4 lbs. /Ac

Iron

- Required for Chlorophyll complex
- Activator for respiration, photosynthesis & nitrogen fixation
- Immobile once fixed in the plant
- Electron carrier
- Exists as Fe³⁺ "Ferric" Not very soluble Fe²⁺ "Ferrous" Soluble

STUKENHOLTZ LABORATORY NG

65

Iron Deficiency Symptoms

- Halting of new growth
- Interveinal chlorosis (yellow between leaf veins)
- Interveinal necrosis if severe (dead spots between leaf veins)
- Newest leaves are white

Iron Deficiency in Apples

Interveinal Chlorosis symptom of Iron Deficiency in Potatoes

69

Iron Deficiency is More Common if:

- pH >7.3 or <4.5
- Soil is calcareous (has excess lime)
- Low O.M.
- Heavy soils
- Excessive water / poor aeration
- Excess of Zn, Mn, & Cu
- Excessive P (Especially in Acid soils)

1 unit pH increase 1,000 x decrease in Fe³⁺ Concentration

FIGURE 9.3 The solution Fe species in equilibrium with soil Fe (a) and the influence of pH on solution Fe3+ concentration relative to other cations (b). (a) Lindsay, Chemical Equilibria in Soils, John Wiley & Sons, 1979; (b) Lindsay, Chemistry in Soil Environment, p. 189. Madison, Wisc.: ASA.

71

Iron Availability

FIGURE 9.6 The influence of pH total solution Fe concentration and its relationship to and Fe required by plants. Lindsay, Plant Root and Its Environment, p. 508, Univ. Press of Virginia, 1974.

Natural Chelates

FIGURE 9.8 The structure of Fe-EDDHA (A) and Zn-EDTA (B). Follett et al., Fertilizers and Soil Amendments, Prentice-Hall, Englewood Cliffs, N.J., 1981.

73

Iron and Natural Chelates

- Elemental Sulfur
- Acid producing fertilizers
- Manure
- Soil applied Fe
 - Reduced S
 - Acids through the water
 - Humic or other organic acids
 - Chelates (EDDHA is best but expensive)
 - EDDHSA appears to be as good
- Foliar Sprays

STUKENHOLTZ LABORATORY NG

77

Correcting Fe Deficiencies

- Sequestrene 138
 - 6.0% Fe as Iron Chelate EDDHA
 - Foliar or soil application
 - Application rate 1 to 5 lbs/Ac when soil applied
 - Very effective
 - Very expensive

- Tiger Potato Mix
 - 82% ES, 1.5% Zn, 2.0 % Fe, 0.03% Cu
 - All micronutrients are Oxide forms (less soluble)
 - Oxidation of S should make them available

STUKENHOLTZ LABORATORY

79

 Fe^{2+}

 Fe^{3+}

Available Ferrus Sulfate Iron II Sulfate FeSO₄•xH₂O typ Blue-Green Unavailable Ferric Sulfate Iron III Sulfate $Fe_2(SO_4)_3$ typ Yellow

- SulFeGro G, PHT
 - 8.0% Fe as Ferrous Sulfate
 - -8.0% Zn as ZnSO₄
 - -5.0% S as SO₄-S
 - pH 2.0
 - Application rate 50 to 100 lbs/Ac
 - Will stain concrete, pivots, clothes

STUKENHOLTZ LABORATORY

Correcting Fe Deficiencies

- SulFeGro liquid, PHT
 - 5.0% Fe as Ferrous Sulfate
 - -2.0% Zn as ZnSO₄
 - -3.0% S as SO₄-S
 - pH 2.0
 - Application rate 10 to 75 gallons/Ac
 - Will stain concrete, pivots, clothes
 - Foliar application may burn leaves

- Red Vigor, PHT
 - 2.0% Fe as EDDHSA Chelate
 - 1.4% S $\,$ as $\,SO_4\text{-}S$
 - pH 8.0
 - Application rate 1pt to 5 qts/Ac
 - In-furrow, drip, or water applied
 - Not a foliar

STUKENHOLTZ LABORATORY

Correcting Fe Deficiencies

- Ironclad IDC microSync, Verdesian
- 2.5% Fe
 - 1.55% Fe as EDDHA Chelate
 - -0.95% Fe as Ferrous Sulfate and Iron Citrate
 - -1.0% Zn 0.5% EDTA Chelate
 - -4.0% S as SO₄-S
 - -2.0% N as NH₄-N
 - Application rate 5 to 15 lbs/Ac
 - In-furrow or banded is preferred

Manganese

- Main component of first enzyme in photosynthesis (liberates O₂ from water)
- Activates enzymes
 - respiration
 - nitrogen metabolism
- Immobile in the plant

STUKENHOLTZ LABORATORY NG

Manganese Deficiency Symptoms

- Interveinal chlorosis and/or necrosis (yellow or brown between leaf veins)
- Upward cupping of leaves
- Slow growth
- White or yellow Specks
 - Grey speck of oats
 - Marsh spot of peas
 - Speckled yellows of sugar beets

Manganese Deficiency in Potatoes

87

Interveinal Necrosis symptom of Manganese Deficiency in Potatoes

Interveinal Chlorosis Symptom of Iron Deficiency in Beans

Interveinal Necrosis Symptom of Manganese Deficiency in Beans

Interveinal Chlorosis and Necrosis symptoms of Manganese Deficiency in Beans

91

Manganese Deficiency is More Common if:

- pH >7.0
- Soil is calcareous (has excess lime)
- Low O.M or Very High O.M.
- Dry Soils (Mn is <u>very</u> available in Saturated soils)
- Excess of Zn, Fe, & Cu
- Low salts, low K

Manganese Activity vs. pH

1 unit pH increase = 100 x decrease in Mn²⁺ Concentration

FIGURE 9.3 The solution Fe species in equilibrium with soil Fe (a) and the influence of pH on solution Fe^{3+} concentration relative to other cations (b). (a) Lindsay, Chemical Equilibria in Soils, John Wiley & Sons, 1979; (b) Lindsay, Chemistry in Soil Environment, p. 189. Madison, Wisc.: ASA.

93

Correcting Mn Deficiencies

- Elemental Sulfur
- Acid producing fertilizers
- Manure
- Soil applied Mn
 - MnSO₄ works but little soil buildup of Mn
 - Humic or other organic acids
 - Chelates
 - Complexes
- Foliar Sprays at 0.1 to 0.4 lbs. /Ac

Copper

- Activator of enzymes
- Important in cell division & expansion
- Part of secondary compounds
 - Disease defense
 - Flavor
 - Color
- Moderately mobile in plant

STUKENHOLTZ LABORATORY NG

95

Copper Deficiency Symptoms

- Young leaves yellow and stunted
- Necrotic (dead) tissue along leaf edges
- Limp older leaves and stems
- Increased disease susceptibility
- Poor color, taste, & quality in fruit & tubers

Cu Deficiency

97

Correcting Cu Deficiencies

Some Value

- Acid producing fertilizers

- Manure

Works but Expensive

- Soil applied Copper Sulfate

- Copper Chelate

Foliar Sprays

Most effective and most cost-effective 0.05 to 0.2 lbs. / Ac $\,$

Boron

- Flowing, fruiting, & seed formation
- Protein synthesis
- Cell division & development in roots
- Immobile in the plant

STUKENHOLTZ LABORATORY

99

B Deficiency

B Deficiency

101

Correcting B Deficiencies

- Soil applied works great
 0.5 to 3.0 lbs. / Ac
 Only after soil test
 No chelates or complexes made or needed
- Foliar sprays work great 0.1 to 0.3 lbs. / Ac

