TP-NET: Training Privacy-Preserving Deep Neural Networks under Side-Channel Power Attacks

Summer 2022

Team Members

Hui Hu

Jessa Gegax

Research area: Research area: Machine Learning Machine Learning Machine Learning Data Mining Privacy Privacy Security

Security

increasingly

Introduction

and computer vision^[1]. While it achieves remarkable

performance, privacy in deep learning is becoming

numerous attacks. In particular, recent studies have

shown that existing deep neural networks (DNNs) are

extremely vulnerable to side-channel attacks^[2]. For

example, the internal structure of a DNN is easily

inferred via side-channel power attacks. Further, the

prominent with the emergence

Clay Carper

Research area: Hardware Security

Problem Statement

The number of hidden nodes in a DNN is essential internal Table 1 and Table 2 present the classification accuracy structural information for inferring model parameter set. and privacy-preserving performance of TP-NET. However, this information is easily inferred under sidechannel power attacks. Therefore, in this work, we focus on preventing a side-channel power attacker from inferring the number of hidden nodes (m), as the figure shows.

Methods

Deep learning has been widely used in various fields. We propose a novel solution for training privacy-preserving DNNs under side-channel power attacks, called TP-NET. It such as medical systems, recommendation systems, includes three steps:

- Independent Sub-network Construction, which generates multiple independent sub-networks via randomly selecting nodes in each hidden layer.
- Sub-network Random Training, which randomly trains multiple sub-networks such that power traces keep random in the temporal domain.
- Prediction, which outputs the predictions made by the most accurate sub-network.

Experiment Results

Table 1. Node classification accuracy

# of hidden nodes	Models	DIABETES	COMPAS
8 nodes	Traditional DNN	0.6257	0.7644
	TP-NET	0.6268 10.17%	$0.6938^{\downarrow 9.24\%}$
10 nodes	Traditional DNN	0.6415	0.7852
	TP-NET	0.6461 10.72%	$0.7712^{\downarrow 1.78\%}$
14 nodes	Traditional DNN	0.6233	0.7720
	TP-NET	$0.6172^{\downarrow 0.98\%}$	$0.7616^{\downarrow 1.35\%}$

Table 2. Inference accuracy on the Diabetes dataset by using k-NN

Models	Structures	k=3	k=6
Traditional DNN	(8,8)(14,14)	1.0000	1.0000
TP-NET	Structure 6	0.6193 138.07%	0.6163 138.37%
IF-INDI	Structure 7	0.5970 140.30%	0.6007 139.93%

Figure 1. Power traces of neural networks with 8 nodes and 14 nodes in each hidden layer.

- (a) As Table 1 shows, the classification accuracy of competitive compared with the traditional DNN. Take 14 nodes as an example, TP-NET has slightly lower classification accuracy on two datasets, which only decreases the classification accuracy by 0.98% on Diabetes COMPAS 1.35% dataset on respectively.
- (b) As Table 2 shows, TP-NET decreases inference accuracy on the number of hidden nodes significantly compared with the traditional DNN.

channel power attacks.

University

OF WYOMING

- Hui Hu (hhu1@uwyo.edu)
- Jessa Gegax (jessagegaxrandazzo@gmail.com)
- Clay Carper (ccarper2 @uwyo.edu)

[1] D. Shen, G. Wu, and H.-I. Suk, "Deep learning in medical image analysis," Annual review of biomedical engineering, vol. 19, pp. 221–248, 2017. [2] S. Wolf, H. Hu, R. Cooley, and M. Borowczak, "Stealing machine learning parameters via side channel power attacks," in 2021 IEEE

