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1. Introduction 

 When dealing with chemical processes, control is needed for safety, and quality. Simple 

chemical processes are well understood, and can be well controlled. However, as chemical 

systems become more complex controlling them also becomes complex. Since the 1980s, model 

predictive control has been the standard for controlling complex chemical processes (Kern 

2017a). However, model predictive control has several limitations (Kern 2016). 

 First, model predictive control is expensive, and few cheaper alternatives have been 

introduced (Kern 2016). Model predictive control uses highly empirical models (Kern 2016). 

Therefore, it needs to be retuned every time the process conditions change, making model 

predictive control both time consuming and difficult to operate. Finally, due to the nature of 

model predictive control, it is also computationally demanding (Kern 2016).  

Allan Kern recently patented a new process control system, called rate predictive control 

(RPC), that addresses the limitations of model predictive process control (Kern 2017b). Instead 

of using highly empirical models to predict the process behavior, RPC adjusts the controller 

output based on the rate of change of the controlled variable (Kern 2017b).  

 RPC is a novel control strategy that may replace model predictive control. Nevertheless, 

RPC merits further analysis to answer several key questions. 

1. What is the underlying control theory of RPC? 

2. What are the stability limits of RPC? 

3. How large is the practical operational window for key RPC parameters? 

 The goal of this paper is to examine the theoretical performance of RPC, and answer the 

three key questions. To examine the theoretical performance of RPC, it was simulated in Excel, 
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MATLAB, and Simulink. Experiments were run in these simulation environments under 

different conditions. The results from Simulink and Excel were compared, and the underlying 

control theory of RPC was determined. The stability of RPC was determined in MATLAB under 

the different conditions. Finally, the results from MATLAB and Excel were compared to 

determine the practical operational window for key RPC parameters. 
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2. Background 

 Model predictive control (MPC) has been used since the 1980s (Kern 2017a). The theory 

behind MPC is well documented, and is still taught in control classes. According to Riggs (2016), 

MPC uses available process measurements, and process models to determine values for the desired 

manipulated variables. MPC can also provide feedforward compensation for disturbance variables 

(Riggs 2016). Unlike its predecessors, MPC can also control for a large set of constraints by using 

a set of tuning parameters (Riggs 2016). 

 A basic literature search on MPC indicates that MPC is widely used throughout the process 

control industry. While it may have its limitations, MPC is still considered to be the best solution 

for controlling complex processes (Henson 1998, Kumar 2012). However, Kern (2016) discusses 

the shortcomings of MPC in industrial practice. For example, process disturbances often alter the 

models that are the basis for MPC (Kern 2016). This can require costly, and time-consuming 

retuning. Additionally, MPC focuses on error minimization instead of practical operating 

precautions, so precautions may not be built into MPC. In industrial practice, however, practical 

operating precautions take precedence over model error minimization (Kern 2016). Finally, the 

computations used in MPC often require large matrices. According to Kern (2016), large-matrix 

control can make the controller larger and difficult to operate, and may provide worse performance 

than small-matrix control.  

 Due to the limitations of MPC discussed in Kern (2016), a new method of process control 

has been developed. Rate predictive control (RPC), and XMC were developed by Kern to address 

the problems experienced operationally with MPC. These control methods do not require models 

because they are based on the rate of change of the controlled variable (Kern 2016). The stability 

of RPC and XMC is independent of the magnitude of the gain because they have built in functions 
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to accommodate changes in the gain (Kern 2017b). Furthermore, to achieve and maintain stability, 

RPC and XMC will pause until stability is re-achieved (Kern 2017b). RPC and XMC are also both 

equipped to accommodate deadtime. They do this by not updating the manipulated variables until 

the effects of a change are evident (Kern 2017b).  

 RPC, and control theory have some key features. The controlled variable is the variable 

that has a desired value within a process. For RPC, the controlled variable is called the indirect 

controlled variable (ICV), (Kern 2017a).  The manipulated variable is the variable that can be 

changed to alter the controlled variable.   For RPC, the manipulated variable is called the direct 

controlled variable (DCV), (Kern 2017a). Process gain is a constant that is determined by the 

process, and is denoted as K1. The move is the rate of change of the controlled variable set by the 

user, and is denoted as K2. The RPC Band is a user defined constant within RPC, and is denoted 

as the inverse of K3. The process response time is determined by the process, and is denoted as 

τ1. Kern (2017a) denotes process response time as Filter1. The time delay, or deadtime, is the 

time required by the system to respond to changes. In this paper, time delay is denoted as td. The 

predicted response time is the predicted value of τ1, and it is set by the user. The predicted 

response time is denoted as θ in this paper, and RPC Time by Kern (2017a).   
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3. Theoretical Development of RPC 

3.1 RPC Transfer Functions 

 Figure 1 shows the control loop used to describe RPC. Figure 1 includes the transfer 

functions, constants, and controlled variable. 

 

Figure 1: RPC Control Loop 

In Figure 1, Y is the controlled variable (CV), Ysp is the set point for Y, Gc is the control transfer 

function, Gp is the process transfer function, GRPC is the rate predictive transfer function, and Gtds 

is the time delay transfer function. Standard feedback uses the error between Yactual and Ysp as the 

basis for control action (Equation 1). RPC, however, predicts the next value of Y, Ypredicted, and 

uses the error between Ypredicted and Ysp as the basis for control action (Equation 2). 

E = Ysp – Yactual          (1) 

Epredicted = Ysp – Ypredicted        (2) 

Where E is the error, and Yactual is the actual value of the controlled variable. Epredicted is the 

predicted error, and Ypredicted is the predicted value of the controlled variable which can be found 

from Equation 3. 

Ypredicted = GRPCYactual         (3) 
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As indicated in Equation 3, GRPC is the rate predictive transfer function in RPC, and is what makes 

RPC unique. GRPC is defined in Equation 4. 

 GRPC = θs + 1          (4) 

RPC uses pure integral control, as indicated in Equation 5 

 𝐺𝑐 =  
1

𝑠
           (5) 

3.2 Other Transfer Functions Used for Testing 

 The other transfer functions, Gtds and Gp, were specified as indicated in Equations 6 and 7 

to allow for testing.  

 𝐺𝑡𝑑𝑠 = 𝑒−𝑡𝑑𝑠          (6) 

 𝐺𝑝 =
1

𝜏1𝑠+1
          (7) 

Where Equations 6 and 7 combined are a classic first order plus time delay (FOPTD) transfer 

function that often represents unknown processes (Seborg 2017). The time constants, td and τ1, are 

process-specific, and may not be precisely known. 

An overall transfer function can now be defined for RPC (Equation 8). 

𝑌

𝑌𝑠𝑝
=

𝐾3𝐾2𝐺𝑐𝐾1𝐺𝑝

1+𝐾3𝐾2𝐺𝑐𝐾1𝐺𝑝𝐺RPC
       (8) 

The open loop transfer function (GOL) can be obtained, and is shown in Equation 9. 

GOL = K3K2GcK1GpGRPC         (9) 



9 
 

By inputting Equations 5, 6, and 7 into Equation 9 and simplifying, Equation 10 can be obtained. 

𝐺𝑂𝐿 = 𝐾3𝐾2𝐾1𝑒−𝑡𝑑𝑠 𝜃𝑠+1

𝑠(𝜏1𝑠+1)
      (10)  

3.3 Transfer Function Verification 

 The control loop, and transfer functions were verified by running them in Simulink, and 

comparing them to an RPC simulator in Excel that was provided by Kern (2017a). Figure 2 shows 

the comparison between the controlled variables (CV) provided by Mr. Kern’s simulator, and 

Simulink with no time delay, τ1 equal to 10 minutes, θ equal to 10 minutes, and an inverse K3 equal 

to 10 (Kern 2017a). Ysp is a change of 30, i.e., a step change of 30. These conditions were chosen 

based on values provided in the Excel spreadsheet (Kern 2017a). Figure 3 shows the comparison 

between CV values from Mr. Kern’s simulator, and Simulink with a time delay of 5 minutes, τ1 

equal to 10 minutes, θ equal to 15 minutes, and an inverse K3 equal to 15. The values for Figure 3 

were chosen based on information in the Excel spreadsheet for a time delay of 5 minutes (Kern 

2017a). 
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Figure 2: Comparison of RPC Simulator and Simulink for a First Order Process with no 

Time Delay, τ1 Equal to 10 Minutes, θ Equal to 10 Minutes, and Inverse K3 Equal to 10  
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Figure 3: Comparison of RPC Simulator and Simulink for a First Order Process with a Time 

Delay of 5 Minutes, τ1 Equal to 10 Minutes, θ Equal to 15 Minutes, and Inverse K3 Equal to 

15  

The CV output from Excel increases, and then levels out as it approaches the target value. The CV 

output from the Simulink, also increases, and then levels out as it approaches the target value. The 

CV output from Simulink is less than the CV output from the Excel from time 0 minutes to about 

60 minutes for Figure 2, and 5 minutes to about 80 minutes for Figure 3. Then the CV output from 

Simulink merges with the Excel CV output. To model RPC in Simulink, RPC Band was included 

for the entire time. In contrast, RPC Band is not included until about time 60 minutes for Figure 

2, and time 80 minutes for Figure 3. This difference in the modeling explains the difference in the 

CV outputs before the specified times. 
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4. Stability Analysis 

 Stability is an important consideration for examining a control loop. The stability of RPC 

was tested in MATLAB for a first order system without time delay. Figure 4 shows the Bode 

diagram for RPC applied to a first order process with no time delay when θ and τ1 are equal. The 

equation for GOL simplifies to give Equation 11. 

𝐺𝑂𝐿 =
𝐾3𝐾2𝐾1

𝑠
           (11) 

 

 

 

 

 

 

 

 

 

 

Figure 4: Bode Diagram for RPC with a First Order Function without Time Delay when θ 

Equals τ1 

Phase under 

these conditions 

-135 degree line 
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As indicated in Figure 4, RPC is always stable when Gp is a first order function with no time delay 

when θ is equal to τ1 because the phase is always -90o, and never goes below -180o. It is important 

to note that this case is only true when Gp is a first order function. If Gp is second order or higher, 

RPC may not be stable under these conditions. 

 The stability of RPC was tested in MATLAB for a first order function without time delay 

when θ and τ1 are not equal. When θ and τ1 are not equal, GOL simplifies to Equation 12. 

𝐺𝑂𝐿 = 𝐾3𝐾2𝐾1
𝜃𝑠+1

𝑠(𝜏1𝑠+1)
        (12) 

Figure 5 shows the Bode diagram of RPC for Equation 12 when τ1 equals 10 minutes, and  

 θ equals 5 minutes. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Bode Diagram of RPC for a First Order Process without Time Delay when τ1 

Equals 10 Minutes, and θ Equals 5 Minutes 

Phase under 

these conditions 

-135 degree line 
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As indicated in Figure 5, RPC is always stable when Gp is a first order function without time delay 

when τ1 equals 10 minutes, and θ equals 5 minutes because the phase never goes below -180o. 

Figure 6 shows a Bode diagram of RPC for Equation 12 when τ1 equals 5 minutes, and 

θ equals 10 minutes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Bode Diagram of RPC for a First Order Process without Time Delay when τ1 

Equals 5 Minutes, and θ Equals 10 Minutes.  

As indicated in Figure 6, RPC is always stable when Gp is a first order function without time delay 

when τ1 equals 5 minutes, and θ equals 10 minutes because the phase never drops below -180o. 

Control theory states that open loop transfer functions that are second order overall without a time 

Phase under 

these conditions 

-90 degree line 
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delay should always be stable. For a first order process without time delay, RPC produces a second 

order open loop transfer function, and should always be stable. This is confirmed in Figures 4, 5, 

and 6, which show the effect of changing θ relative to τ1. 

 Instability is introduced into RPC for a first order process when a time delay is added to 

the system. Figure 7 shows the Bode diagram for RPC applied to a first order process with a time 

delay of 5 minutes when θ equals τ1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Bode Diagram of RPC for a First Order Process with a Time Delay of 5 Minutes, 

and when θ Equals τ1 

Phase under 

these conditions 

-180 degree line 

Point of Instability 
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In Figure 7, the system is stable until the phase is less than or equal to -180o. For the specific 

conditions in Figure 7, RPC becomes unstable when K1K2K3 is greater than or equal to 3. Figure 

8 shows the CV response for RPC applied to a first order process with a time delay of 5 minutes, 

θ equal to τ1, and K1K2K3 equal to 0.0667, which is below the limit of 3. The CV in Figure 8 

reaches the target without increasing oscillation, so it is stable. Figure 9 shows the CV for RPC 

applied to a first order process with a time delay of 5 minutes, θ equal to τ1, and K1K2K3 equal to 

10, which is above the limit of 3. The CV in Figure 9 reaches the target, but begins to oscillate. 

The oscillations in Figure 9 are increasing, but they are increasing slowly, so the increase in 

oscillation cannot be seen in Figure 9. 

Figure 8: CV with Respect to Time when RPC is Stable for a First Order Process with a 5 

Minute Time Delay when θ Equals τ1, and K1K2K3 is 0.0667 
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Figure 9: CV with Respect to Time when RPC is Unstable for a First Order Process with a 

5 Minute Time Delay when θ Equals τ1, and K1K2K3 is 10 

The stability range for K1K2K3 can be determined as a function of time delay (td). Figure 

10 shows the maximum K1K2K3 value allowable for stability of RPC applied to a first order process 

with respect to td when θ and τ1 are equal. A best-fit curve was fit to the plot in Figure 10. The 

equation of the best-fit curve is given in Equation 13.  

y = 14.471x-0.998  R2 = 0.9987      (13) 

Where y is K1K2K3, and x is td. 
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Figure 10: Maximum Allowable K1K2K3 for Stability in RPC for a First Order Process with 

Respect to td when θ and τ1 are Equal 

A similar stability analysis can be done for θ < τ1. Figure 11 shows the plot of the maximum 

K1K2K3 value allowable for stability of RPC applied to a first order process when τ1 equals 10 

minutes, and θ equals 5 minutes. The best-fit curve is provided in Equation 14. 

y = 25.79x-1.16    R2 = 0.9975      (14) 
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Where y is K1K2K3, and y is td. 

Figure 11: Maximum Allowable K1K2K3 for Stability in RPC for a First Order Process with 

Respect to td when τ1 Equals 10 minutes, and θ Equals 5 Minutes 

A similar stability analysis can also be done for θ > τ1. Figure 12 shows the maximum 

K1K2K3 values allowable for stability of RPC applied to a first order process when τ1 equals 5 

minutes, and θ equals 10 minutes. The best-fit curve is shown in Equation 15. 

y = 8.4108x-0.854  R2 = 0.9942      (15) 

Where y is K1K2K3, and x is td. 
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Figure 12: Maximum Allowable K1K2K3 for Stability in RPC for a First Order Process with 

Respect to td when τ1 Equals 5 Minutes, and θ Equals 10 Minutes 

 Table 1 summarizes the maximum allowable K1K2K3 for stability of RPC under the 

different conditions tested.  

Table 1: Maximum Allowable K1K2K3 for Stability of RPC for a First Order Process with 

Respect to td for all Tested Conditions 
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As seen in Table 1, when td is 0.25 minutes, the maximum allowable value of K1K2K3 for stability 

changes between the conditions. When τ1 equals 10 minutes, and θ equals 5 minutes, the maximum 

allowable value of K1K2K3 for stability at td of 0.25 minutes is about twice as large as when θ = 

τ1. In contrast, when τ1 equals 5 minutes, and θ equals 10 minutes, the maximum allowable value 

of K1K2K3 for stability at td of 0.25 minutes is about two times smaller than when θ = τ1 

Furthermore, when td increases to 40 minutes, the maximum allowable K1K2K3 for stability under 

all of the conditions tested converges to 0.4. It is important to note that K2 and K3 are both user 

defined functions, whereas, K1 is a process defined function. 
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5. Operational Issues 

 While stability in process control systems is important, a system can be stable, but still be 

undesirable from an operational stand point. For example, a system may be stable when it 

oscillates, but oscillation is operationally undesirable. Kern (2017a) provides operational 

guidelines for RPC that are intended to keep RPC within operational limits. Kern’s guidelines are 

shown in Equations 16, and 17.  

𝜃 ≥ 𝑡𝑑 + 𝜏1           (16) 

1

𝐾3
≥ 𝐾1𝐾2𝜃          (17) 

Because there is likely to be a time delay while operating RPC, the operational response of RPC 

was only tested with the presence of a deadtime. Also, for testing purposes, K1 and K2 were 

assumed to be equal to 1. 

 In Figure 13, the manipulated variable (MV) and the controlled variable (CV) are plotted 

with respect to time for a time delay of 5 minutes, a τ1 of 10 minutes, a θ set to 15 minutes, and an 

inverse K3 set to 15 (which follows the guidelines shown above). Remember that for stability in 

this case, the K3 should be no greater than 3. 
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Figure 13: CV and MV with Respect to Time for a Time Delay of 5 minutes, a τ1 of 10 

Minutes, a θ of 15 Minutes, and an Inverse K3 of 15 

The MV changes smoothly toward a new operating condition as does the CV, which also does not 

overshoot the new target, or oscillate. For this case, Kern’s guidelines are operationally sound. 

 Figure 14 shows a plot of the CV and MV with respect to time under the same conditions 

as Figure 13, except the inverse of K3 is 10, which is less than the inverse K3 recommended by the 

guideline, but is still greater than the stability limit. 
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Figure 14: CV and MV with Respect to Time for a Time Delay of 5 minutes, a τ1 of 10 

Minutes, a θ of 15 Minutes, and an Inverse K3 of 10 

Figure 14 shows that even when the inverse of K3 is under the recommended value, CV still reaches 

the target, and does not oscillate or overshoot. MV is also smooth. Therefore, for a typical 

operational time delay of 5 minutes, the guideline is conservative. In Figure 13, CV reaches 78.5 

(95% of the target) in 78.5 minutes. In Figure 14, CV reaches 78.5 in 71.2 minutes. Therefore, 

under these conditions, CV reaches the target faster when the inverse of K3 equals 10. 

 Figure 15 is a plot of the CV and MV with respect to time under the same conditions as 

Figures 13 and 14, except the inverse of K3 is set to 1, which is less than the guideline, but still 

within the stability limit. 
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Figure 15: CV and MV with Respect to Time for a Time Delay of 5 minutes, a τ1 of 10 

Minutes, a θ of 15 Minutes, and an Inverse K3 of 1 

The CV, in Figure 15, has oscillation and overshoots the target, both of which are operationally 

undesirable. The MV oscillates sharply in Figure 15, which is also operationally undesirable. 

However, RPC is stable under these conditions because CV does not have increasing oscillations. 

In Figure 15, CV reaches 78.5 in 86.6 minutes, so under these conditions the CV reaches the target 

slower than in both of the previous conditions.  

 Changes in θ can also cause operational issues. Figure 16 shows a plot of the CV and MV 

output of RPC for a first order system with a 5 minute time delay, τ1 equal to 10 minutes, θ equal 

to 10 minutes (which is less than the value recommended by the guideline), and the inverse of K3 

equal to 15. 
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Figure 16: CV and MV with Respect to Time for a Time Delay of 5 minutes, τ1 of 10 Minutes, 

a θ of 10 Minutes, and an Inverse K3 of 15 

The CV in Figure 16 is still operationally desirable because there is no overshoot or oscillation. 

The MV in Figure 16 is also operationally desirable because it is smooth. In Figure 16, CV reaches 

78.5 in 59.0 minutes, compared to Figure 13 where CV reaches 78.5 in 78.5 minutes. Therefore, 

under these conditions, CV reaches the target faster when θ equals 10 than when θ equals 15 

minutes.  

Figure 17 Shows RPC for a first order system with the same conditions as Figure 13 and 

16, except θ is equal to 1 minute. 
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Figure 17: CV and MV with Respect to Time for a Time Delay of 5 minutes, τ1 of 10 Minutes, 

a θ of 1 Minute, and an Inverse of K3 of 15 

In Figure 17, the CV overshoots the target, which is operationally undesirable. The CV in Figure 

17 reaches 78.5 in 44.4 minutes.  Therefore, with a θ of 1 minute, CV reaches the target faster than 

it does when θ is within the guidelines for these conditions. 
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6. Summary, Conclusions, and Recommendations 

6.1 Summary 

 The overall control loop, and transfer functions for RPC were determined by simulating 

RPC in Simulink. Once the overall control loop and transfer functions for RPC were determined, 

they were verified by plotting the control variable output in Excel and Simulink. The plots were 

compared. Once the overall control loop and transfer functions were verified, the stability of RPC 

was analyzed in MATLAB. The maximum values of K1K2K3 for stability were determined with 

respect to time delay under different operating conditions. The operational issues of RPC were 

addressed by running simulations in Excel. Operational guidelines provided by Mr. Kern were 

tested for operational stability.  

6.2 Conclusions 

 The overall control loop and transfer functions simulated in Simulink seem to match the 

Excel results closely. For a first order process without time delay, RPC is inherently stable. For a 

first order process with time delay, RPC is stable within a certain range of constants. The range of 

constants for which RPC is stable depends on the amount of time delay (a process-specified 

variable), the process response time (τ1) (a process-specified variable), and the RPC time (θ) (a 

user-specified variable). Even if RPC is stable, it may not be operationally ideal. The guidelines 

for K3 and θ are appropriate within operational limits, if K2 is assumed to be 1. The guidelines are 

conservative, but provide a good basis for setting the constant values. 

6.3 Recommendations 

 In the future, RPC should be tested for higher order processes. Testing RPC for first order 

processes is a good starting point, but the behavior of RPC may change for higher order processes. 

The theory of RPC should be tested using a second order process and possibly a third order process. 
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A more in depth comparison of RPC and MPC should also be conducted in the future. Now that 

some of theory behind RPC has been determined, real industrial process data could be used in RPC 

and MPC, and the theoretical performance of both could be compared. RPC could also be 

implemented into an existing system that has previously used MPC. The results between the two 

could then be compared.  
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