
EE4390 Microprocessors

Lessons 2, 3
68HC12 Hardware Overview,
Subsystems, and memory System

Overview

- 68HC12 hardware overview
- Subsystems
- Memory System

68HC12 Hardware Overview

"Copyright of Motorola, Used by Permission"

- Timing System
- Memory System
- Interrupt and Reset System
- Serial Communication System
- Port System
- Data Conversion System

- Low power consumption CMOS technology,
 "A4" draws 25 mA @ 2 MHz
- 16-bit data path (we will use in 8-bit mode)
- A4 memory:
 - 1024-byte RAM
 - 4 K-byte EEPROM
- 8-channel, 16-bit timer, configure each channel separately as input or output
- 16-bit pulse accumulator

- Real-time interrupt capability accomplish operations on recurring basis - reminder
- Serial communications:
 - Serial Communication Interface (SCI)
 - asynchronous, 2 channels
 - Serial Peripheral Interface (SPI)
 - synchronous
- 8-channel, 8-bit analog-to-digital converter

- Modes of Operation
 - Normal
 - Special
- Configure using BKGD, MODB, and MODA hardware pins
- Normal modes:
 - Normal Single-Chip Mode
 - Normal Expanded Wide Mode 16-bit data bus
 - Normal Expanded Narrow Mode 8-bit data bus

- "A4" available in 122-pin TQFP Fig 5.6, pg. 176
 - voltage supply or reference pins
 - port pins
 - miscellaneous pins external signals

68HC12 Subsystems Register Block

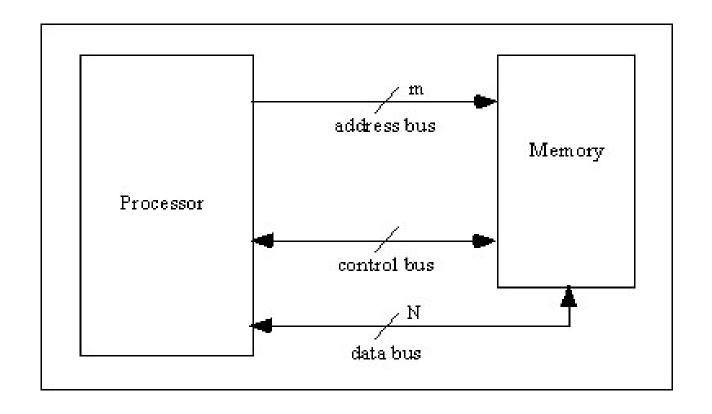
- Register Block
 - 512-byte memory map collection of registers
 - Registers used to configure 68HC12 for specific tasks
 - turn subsystems "on" and "off", configure operation
 - default register settings

```
EX] ATDCTL2 = $0062 ;register offset from base
ATD_INI = $80 ;register mask or value
```

LDAA #ATD_INI
STAA ATDCTL2

68HC12 Subsystems Port System

- Port System
 - used to exchange data and control signals with outside environment
 - Port is either an input register, output register, or configurable I/O register
 - Multiple ports
 - A H, J general purpose I/O ports in single chip mode, have other functions in expanded mode
 - S: serial communication, T: timer system, AD: analog-to-digital


68HC12 Subsystems Port System - (cont)

- Port related registers:
 - Data Direction Register (DDRx): configures Port as input/output (1: output, 0: input)
 - Pull Up Control Register (PUCR): provides built-in pull-up resistor for interface applications
 - Reduced Drive of I/O Lines Register (RDRIV): reduces current drive capability of pin
 - Port E Assignment Register (PEAR):
 - provides alternate bus functions in expanded mode
 - signals used in memory expansion applications

68HC12 Subsystems The Timing System - Standard Timer Module (TIM)

- TIM contains 16-bit programmable counter
- Provides following precision timer functions:
 - Input capture: measure the characteristics of incoming signals such as frequency, period, duty cycle, pulse length
 - Output compare: generate precision output signals such as periodic digital waveforms, pulses, etc.
 - Pulse accumulator: count external events
 - Pulse Width Modulated (PWM) signal generation
 - PWM not available in "A4" variant

68HC12 Subsystems The Memory System

68HC12 Subsystems The Memory System (cont)

- Data bus width = memory width = M
- memory locations = $2^{addr lines} = 2^n$
- Memory expressed as length x width
 - $-2^n \times M$ bits
- 68HC12
 - 16-bit address bus
 - 1st address: %0000_0000_0000 = \$0000
 - last address: %1111_1111_1111 = \$FFFF
 - 2^{16} locations = 65, 536 locations ~ 64K
 - 16-bit data bus (we will use 8-bit configuration)

68HC12 Subsystems The Memory System (cont)

- Memory Technologies:
 - RAM: Random Access Memory
 - volatile: no power, no memory
 - read/write
 - faster access time than ROM
 - temporary data storage during program execution
 - program storage during code development
 - ROM: Read Only Memory
 - nonvolatile
 - read
 - stores instructions and constants
 - byte-erasable EEPROMs, flash EEPROMs
 - program storage in final code version

68HC12 Subsystems The Memory System (cont)

• Memory Map tracks memory usage in uP

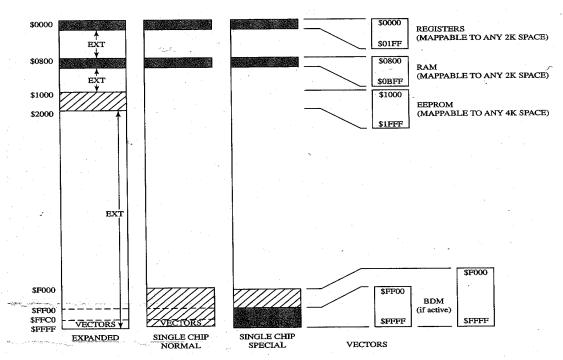
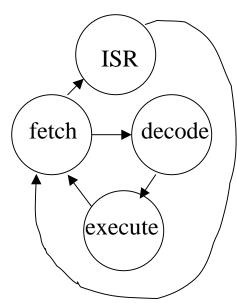



Figure 5.8 A4 memory map. (Figure used with permission of Motorola, Incorporated.)

"Copyright of Motorola, Used by Permission"

68HC12 Subsystems Interrupts

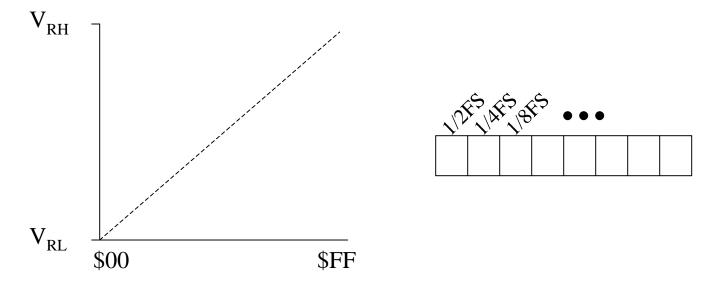
- Break in normal program execution
- Usually higher priority event
- In response to interrupt, 68HC12:
 - finishes current instruction
 - stores key register values
 - performs an Interrupt Service Routine (ISR) specific for that interrupt

68HC12 Subsystems Interrupts (cont)

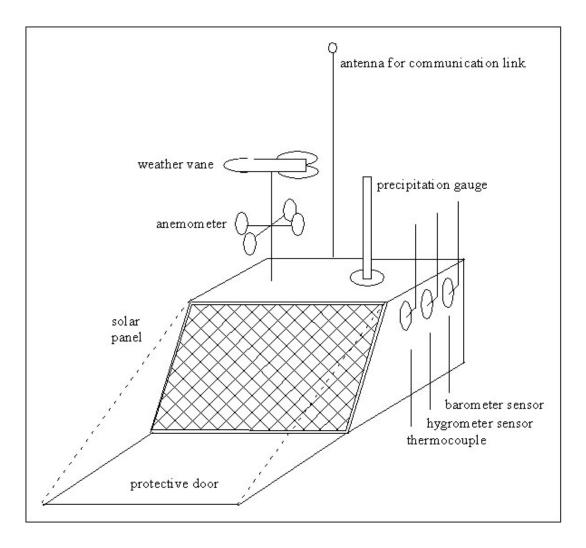
Vector Address	Interrupt Source	CCR	Local Enable	HPRIO Value to
		Mask		Elevate
\$FFFE, \$FFFF	Reset	none	none	-
\$FFFC, \$FFFD	COP Clock Monitor Fail Reset	none	CME, FCME	_
\$FFFA, \$FFFB	COP Failure Reset	none	cop rate selected	_
\$FFF8, \$FFF9	Unimplemented Instruction Trap	none	none	-
\$FFF6, \$FFF7	SWI	none	none	-
\$FFF4, \$FFF5	XIRQ	x bit	none	_
\$FFF2, \$FFF3	IRQ or Key Wake Up D	1 bit	IRQEN, KWIED(7:0)	\$F2
\$FFF0, \$FFF1	Real Time Interrupt	1 bit	RTIE	\$F0
\$FFEE, \$FFEF	Timer Channel 0	1 bit	TC0	\$EE
\$FFEC, \$FFED	Timer Channel 1	1 bit	TC1	\$EC
\$FFEA, \$FFEB	Timer Channel 2	1 bit	TC2	\$EA
\$FFE8, \$FFE9	Timer Channel 3	1 bit	TC3	\$E8
\$FFF6, \$FFE7	Timer Channel 4	1 bit	TC4	\$E6
\$FFF4, \$FFE5	Timer Channel 5	1 bit	TC5	\$E4
\$FFF2, \$FFE3	Timer Channel 6	1 bit	TC6	\$E2
\$FFE0, \$FFE1	Timer Channel 7	1 bit	TC7	\$E0
\$FFDE, \$FFDF	Timer Overflow	1 bit	TOI	\$DE
\$FFDC, \$FFDD	Pulse Accumulator Overflow	1 bit	PAOVI	\$DC
\$FFDA, \$FFDB	Pulse Accumulator Input Edge	1 bit	PAII	\$DA
\$FFD8, \$FFD9	SPI Serial Transfer Complete	1 bit	SPI0E	\$D8
\$FFD6, \$FFD7	SCI 0	1 bit	TIE0,TCIE0,	\$D6
4			RIEO,ILIEO	
\$FFD4, \$FFD5	SCI 1	1 bit	TIE1,TCIE1,	\$D4
PETERO PETERO2	ATD	1 1-14	RIE1,ILIE1	#D0
\$FFD2, \$FFD3		1 bit	ADIE	\$D2
\$FFD0, \$FFD1	Key Wakeup J (stop wakeup)	1 bit	KWIEJ(7:0)	\$D0
\$FFCE, \$FFCF	Key Wakeup H (stop wakeup)	1 bit	- KWIEH(7:0)	\$CE
\$FF80-\$FFCD	Reserved	1 bit		\$B0-\$CC

Figure 5.9 Interrupt vector map. (Figure used with permission of Motorola, Incorporated.)

"Copyright of Motorola, Used by Permission" Revised: Aug 1, 2003


68HC12 Subsystems Serial Communications - Multiple Serial Interface

- Serial Communication Interface (SCI)
 - asynchronous
 - two channels
 - single line
 - uses start and stop bit to
 frame each ASCII character


- Serial Peripheral Interface (SPI)
 - synchronous
 - one channel
 - shares clock between
 Master and Slave
 designated devices
 - requires additional clock line
 - much faster data transmission than SCI

68HC12 Subsystems Analog-to-Digital Converter

- Analog world -- digital processor
- Converts analog sample to unsigned, weighted binary value
- 8-channel, 8-bit successive approximation converter

EX] Remote Weather Station

EX] Remote Weather Station (cont)

- Anemometer wind velocity, pulse every time it completes revolution
- Barometer barometric pressure, 0 V for 64 cm of Hg, 5 V for 81 cm of Hg
- Hygrometer relative humidity, 0 V for 0%, 5 V for 100% relative humidity
- Rain gauge 20 mV/cm precipitation
- thermocouple temperature, 0 V for 50 degrees C, 5 V for +120 degrees C
- weather vane wind direction 0 V North, 5V back to North