
1Revised: Dec 15, 2003

EE4800-03
Embedded Systems Design

Lessons 7-10
- Exceptions -

Resets and Interrupts

2Revised: Dec 15, 2003

- Exceptions -
Resets and Interrupts

• Polling vs. Interrupts
• Exceptions: Resets and Interrupts
• 68HC12 Exceptions

– Resets
– Interrupts: Maskable and Non-maskable

• 68HC12 Interrupt Response
• Exception Vector
• Exception Priority
• Programming an Interrupt Service Routine

3Revised: Dec 15, 2003

- Exceptions -
Resets and Interrupts

• Polling versus interrupts
– polling: constantly monitoring for flag to set

• program is tied up waiting for flag
• inefficient use of processor

– interrupt: processor tells program when event
has occurred

• program can be executing other tasks
• efficient use of processor

– EX] sequentially ask question vs you ask me

4Revised: Dec 15, 2003

- Exceptions -
Resets and Interrupts

• Resets: returns 68HC12 to known, well-defined state after
detected fault
– power-on reset
– Computer Operating Properly (COP) reset
– Clock Monitor reset
– External reset

• Interrupts - planned, but unscheduled high priority event
– non-maskable: may not be turned off by user
– maskable: turned on and off by user with “I” bit in CCR

5Revised: Dec 15, 2003

- Exceptions -
Resets and Interrupts

• “I” bit controlled with CLI and SEI command
– CLI: Clear Interrupt Mask - turns interrupt system on
– SEI: Set Interrupt Mask - turns interrupt system off

• Need to turn on specific interrupt locally

6Revised: Dec 15, 2003

- Exceptions -
Resets and Interrupts (cont)

7Revised: Dec 15, 2003

68HC12 Interrupt Response

fetch decode

execute

interrupt
service
routine

8Revised: Dec 15, 2003

68HC12 Interrupt Response
• Interrupt Vector

– location of ISR
– located in upper 128 bytes

of memory
– user must tie Vector to ISR

• Interrupt Priority
– determines order of

execution when multiple
interrupts occur

• Interrupt Service Routine
(ISR) - user written
response routine to
interrupt event

9Revised: Dec 15, 2003

68HC12 Interrupt Response
- Interrupt Priority -

"Copyright of Motorola, Used by Permission"

Highest
Priority

Lowest
Priority

Non-maskable

Maskable

10Revised: Dec 15, 2003

Programming an
Interrupt Service Routine

• Determine how interrupt is enabled
– global: CLI
– local enable bit

• Initialize Vector Table
– directive approach
– EVB SetUserVector

• Initialize Stack
• Enable interrupt
• Write the specific ISR

11Revised: Dec 15, 2003

Programming an
Interrupt Service Routine - an example

Initialize the microprocessor for the interrupt.
• Initialize the stack - this is done through compiler settings
• Initialize any other necessary systems on the HC12.
• Initialize the interrupt vector table. You will need to use a special header file

and code.
– Header file is on your computer and is called abbie.h (change name).

• Code to set up your function to be an interrupt service routine will be similar
to the following:

This part declares your function as an interrupt service routine.
#pragma interrupt_handler toggle_isr

12Revised: Dec 15, 2003

Programming an
Interrupt Service Routine - an example

• This part fills the appropriate vector with the address of your
interrupt service routine.

#pragma abs_address: 0x0B2A
void (*Timer_Channel_2_interrupt_vector[])()={toggle_isr};
#pragma end_abs_address

• Make sure the interrupt you will be using is cleared to start.
• Initialize local interrupts.
• Initialize the interrupt system using the CLI command (With this header file

use CLI();). Do this step last so that you aren’t inadvertently setting off
interrupts before you finish initializing the system.

• Write the interrupt service routine to handle the interrupt.

13Revised: Dec 15, 2003

Programming an
ISR - an example

Table 1. RAM Interrupt Vectors
Interrupt Name RAM Vector Location
BDLC (Key Wakeup J) $0B10, $0B11
ATD $0B12, $0B13
SCI $0B16, $0B17
SPI $0B18, $0B19
Pulse Accumulator Input Edge $0B1A, $0B1B
Pulse Accumulator Overflow $0B1C, $0B1D
Timer Overflow $0B1E, $0B1F
Timer Channel 7 $0B20, $0B21
Timer Channel 6 $0B22, $0B23
Timer Channel 5 $0B24, $0B25
Timer Channel 4 $0B26, $0B27
Timer Channel 3 $0B28, $0B29
Timer Channel 2 $0B2A, $0B2B
Timer Channel 1 $0B2C, $0B2D
Timer Channel 0 $0B2E, $0B2F
Real Time Interrupt $0B30, $0B31
IRQ $0B32, $0B33
XIRQ $0B34, $0B35
SWI $0B36, $0B37
Unimplemented Instruction Trap $0B38, $0B39
COP Failure $0B3A, $0B3B
COP Clock Monitor Fail Reset $0B3C, $0B3D
Reset $0BEF, $0BFF

14Revised: Dec 15, 2003

Programming an
Interrupt Service Routine - an example

• Example] In this task you will need to
simultaneously generate two square waves with
different frequencies. For one wave use the month
and day of your birthday and for the second use
the month and day of your Lab TA’s birthday.
Verify that the waves are being generated
simultaneously and that they have different
frequencies with the oscilloscope.

15Revised: Dec 15, 2003

Programming an
Interrupt Service Routine - an example

#include <abbie.h>

void toggle1_isr(void); //function prototype
void toggle2_isr(void);
#pragma interrupt_handler toggle1_isr //define as interrupt

#pragma interrupt_handler toggle2_isr

#pragma abs_address: 0x0B28
void (*Timer_Channel_3_interrupt_vector[])()={toggle2_isr};

void (*Timer_Channel_2_interrupt_vector[])()={toggle1_isr};
#pragma end_abs_address

16Revised: Dec 15, 2003

Programming an
Interrupt Service Routine - an example

void initialize(void); // Define function initialize

void main(void){

initialize(); // Initialize the timer system
TMSK1 = 0x0C;

TFLG1 = 0xFF;
CLI(); // Initialize interrupts

while(1) // Continuous loop
{ // Wait for interrupts

;
}

}

17Revised: Dec 15, 2003

Programming an
Interrupt Service Routine - an example

/* Function: initialize: enables the timer and sets up the M-
Clk */

void initialize(){
CLKCTL = 0x02; // Set M-clock to divide by 4 (2 MHz)

// CPU master clock divider ($0047)
TMSK2 = 0x00; // Disable TOI, Prescale = 0;

TIOS = 0x0C; // Make OS2 output compare
TSCR = 0x80; // Enable the timer
TCTL2 =0x50;

}

18Revised: Dec 15, 2003

Programming an
Interrupt Service Routine - an example

void toggle1_isr(void){

TFLG1 = 0x04;
TC2 += 9091;

}

void toggle2_isr(void)

{
TFLG1 = 0x08;

TC3 += 4854;
}

19Revised: Dec 15, 2003

Real Time Interrupts
• Reminds processor to perform required

actions on a regular basis.
• Two key registers:

– RTI Control Register (RTICTL): used to enable
RTI and set interrupt rate

• RTIE: (1) to enable
• RTR[2:0] to set interrupt rate

– RTI Flag Register (RTIFLG): bit 7 RTIF
• Reset by writing “1” to RTIF

20Revised: Dec 15, 2003

Real Time
Interrupts

21Revised: Dec 15, 2003

Real Time Interrupts

22Revised: Dec 15, 2003

Real Time Interrupts
/*--*/
/*MAIN PROGRAM: This program keeps track of clock time using the Real Time */
/*Interrupt. The RTI generates an interrupt every 8.192 ms. The RTI_isr */
/*keeps track of elapsed time. */
/*--*/

/*include files*/
#include<912b32.h>

/*function prototypes*/
void RTI_isr(void); /*Real Time Interrupt - ISR*/

/* interrupt pragma */
#pragma interrupt_handler RTI_isr

/*initialize vector table*/
#pragma abs_address: 0xF7F0
void (*RTI_interrupt_vector[])()={RTI_isr};
#pragma end_abs_address

23Revised: Dec 15, 2003

Real Time Interrupts
/*global variables*/
unsigned int ms_ctr, sec_ctr, mins_ctr, hrs_ctr, days_ctr;

void main(void){
ms_ctr = 0; /*initialize timer variables*/
sec_ctr = 0;
mins_ctr = 0;
hrs_ctr = 0;
days_ctr = 0;

RTICTL = 0x84; /*Enable RTI int, 8.196ms RTI*/
CLI(); /*Initialize interrupts*/

while(1)
{
; /*wait for interrupt*/
}

}

/*--*/
/*Function: RTI_isr: RTI interrupt occurs every 8.196 ms */
/*--*/

24Revised: Dec 15, 2003

Real Time Interrupts
/*--*/
/*Function: RTI_isr: RTI interrupt occurs every 8.196 ms */
/*--*/

void RTI_isr(void){
RTIFLG = 0x80; /*reset RTI Interrupt Flag*/

/*update milliseconds*/
ms_ctr = ms_ctr+1; /*increment ms counter */

/*update seconds*/
if(ms_ctr == 122) /*counter equates to 1000 ms at 122*/

{
ms_ctr = 0; /*reset millisecond counter*/
sec_ctr = sec_ctr +1; /*increment seconds counter*/
}

25Revised: Dec 15, 2003

Real Time Interrupts
/*update minutes*/
if(sec_ctr == 60)

{
sec_ctr = 0; /*reset seconds counter*/
mins_ctr = mins_ctr + 1; /*increment minutes counter*/
}

/*update hours*/
if(mins_ctr == 60)

{
mins_ctr = 0; /*reset minutes counter*/
hrs_ctr = hrs_ctr + 1; /*increment hours counter*/

/*update days*/
if(hrs_ctr == 24)

{
hrs_ctr = 0; /*reset hours counter*/
days_ctr = days_ctr +1; /*increment days counter*/
}

}
/*--*/

26Revised: Dec 15, 2003

Multiple Interrupts

• Allows multiple events to occur “simultaneously”
• Interrupt Priority

– HC12 shuts off interrupt system during ISR
– May want to manually re-enable to allow

system to respond to higher priority events
• Must carefully study interaction of interrupts
• Very difficult to troubleshoot malfunctioning

system

