EE4800-03 Embedded Systems Design

Lessons 13-14 Logic Analyzers

Overview

- Sampling and Digitizing a Signal
- Logic Analyzer vs. Oscilloscope
- Logic Analyzer Operation

Sampling and Digitizing a Signal

- Signal acquisition:
 - Sampling input signal
 - Digitizing it to convert to digital data
 - Assembling it into a waveform record
- Logic analyzer converts incoming data into ones and zeros
 - Uses comparator with user-selectable threshold
 - Samples data at regular time intervals
 - Reference: Figure 2-1, Tektronix extract

Logic Analyzer vs. Oscilloscope

- Oscilloscope samples incoming signal at regular time intervals.
 - Stores sample amplitude into 8-bit digital value.
 - Preserves amplitude information
 - Signal is analog in nature
- LA monitors multiple channels simultaneously
 - Signal is digital in nature
 - Provides timing relationship information
- Both are powerful analysis, troubleshooting tools

Logic Analyzer Operation

Logic Analyzer Operation

- Clocks control when data is sampled
- Types of clocking
 - External (synchronous) listing data
 - clock source external to LA
 - useful for obtaing state aspects of data
 - Internal (asynchronous) waveform data
 - data may be lost between clocks
 - asychronous provides all data
 - useful for obtaining timing aspects of data

Logic Analyzer Operation

- Acquiring data
 - Logic analyzer samples data from probes
 - Sample taken when clock occurs
- Triggering
 - Trigger program looks at sampled data for specific events and then takes specified action
 - Also provides storage qualification conditions.
 - If met, allows data to be stored in memory

Waveform Data Concepts

- Use LA to observe timing relationship between signals
- All waveforms are time-aligned horizontally and displayed in same time per division
- Can display waveforms or magnitude mode.
 Provides hexadecimal value of multi-channel bus

Waveform Data Concepts

- Sampling resolution
 - Waveform accuracy depends on sample clock rate used to record incoming signals (remember Nyquist Criteria !?)
 - If sampled too slow, aliasing will occur (Ref: 2-13)
- LA has fixed memory
 - Trade-off between resolution of recorded signal and its duration
 - A faster sample clock will record a smaller portion of the signal