EE4800-03 Embedded Systems Design

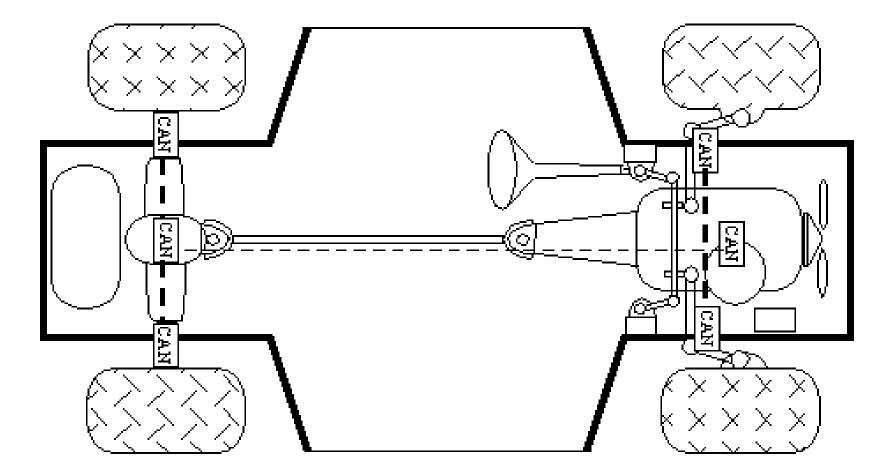
Lessons 23-26 Distributed Processing Systems msCAN

Overview

- Networks
- Controller Area Network (CAN) Protocol
- msCAN12 Controller Unit
 - Operational Modes
 - Transmit Module
 - Receive Module
 - Interrupt Module
- Networking with CAN Controller

Networks

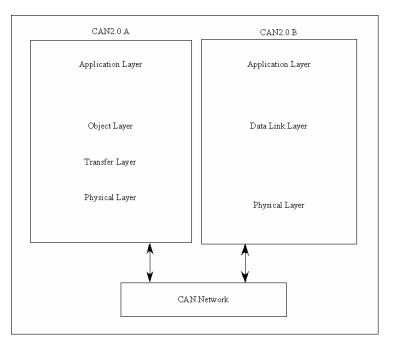
- What is a network?
 - interconnection of multiple, independent, distributed processors
- Why network processors?
 - Share resources, data
 - Allows fast exchange of related data
 - Facilitate communications between related processors


Networks

- Wide Area Network (WAN) encompasses large area. e.g. Internet
- Local Area Network (LAN) exists within an institution, company, or organization
- Small Area Network (SAN) network within small office or home
- Controller Area Network (CAN) network of multiple microcontrollers

Controller Area Network

- Originated in automotive industry 1980's
- Multiple microcontrollers networked to enhance automobile performance
- Today found in:
 - anti-lock brake system
 - Four-wheel drive controller
 - Panel display controller
 - Audio systems
 - Home theaters
 - Military systems

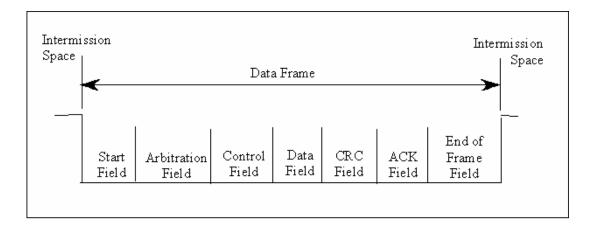

Controller Area Network

Protocols

- All networks must have standardized rules protocols
- Govern communications among members of network
 - common data length
 - timing of bits transmitted and received
 - receipt verification
 - methods to accommodate multiple members transmitting simultaneously

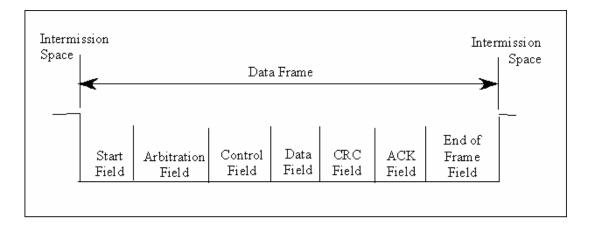
CAN Protocol - Version 2.0 A(standard)/B(Extended)

- A: Object, Transfer, and Physical Layers
 - Object Layer: handles messages selects transmit/receive messages
 - Transfer Layer: assures messages adheres to protocol
 - Physical Layer: sends and receives messages
- B: Data Link Layer and Physical Layers

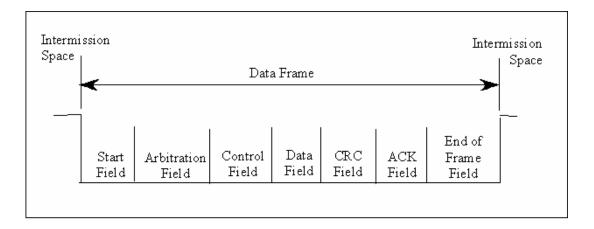

CAN Protocol - Version 2.0 A(standard)/B(Extended)

- Unique feature of CAN protocol is the lack of originating and destination addresses for messages
- Identifier embedded in message
- Node can be added to network without altering existing network hardware or software
- Multiple nodes can act upon the same message, allowing multi-casting capabilities
- Any member of the network can transmit and request messages over the network

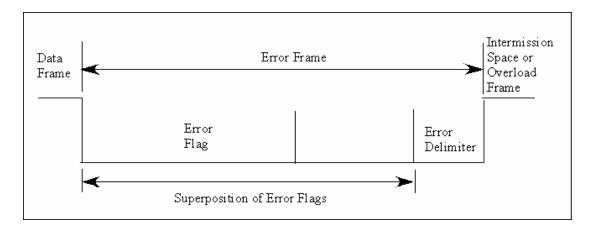
CAN Protocol - Version 2.0 A(standard)/B(Extended)


- Four different message (frames) exist on a CAN network:
 - data frame
 - remote frame
 - error frame
 - overload frame

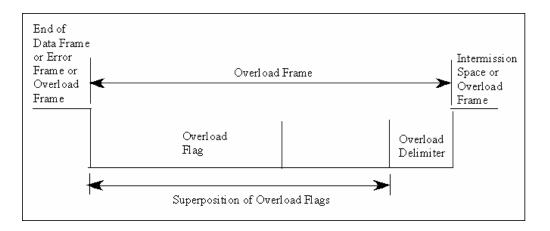
CAN Protocol - Version 2.0 CAN Data Frame


- Contains seven subfields:
 - Start: single dominant (0) bit used to synchronize
 - Arbitration: contains identifier number of message
 - Used by receiving nodes to determine to accept or reject a particular data frame

CAN Protocol - Version 2.0 CAN Data Frame


- Contains seven subfields (continued):
 - Control: four bits that specify data length in bytes (1-8)
 - Data: actual message
 - CRC: Cyclic Redundancy Check error detection
 - ACK: Acknowledge

CAN Protocol - Version 2.0 CAN Remote Frame


- Remote frame used by receiving node to request a retransmission of a data frame
- Identical to data frame except it contains no data field

CAN Protocol - Version 2.0 CAN Error Frame

- Used to indicate error has occurred on CAN bus
- Frame contains error flag field and delimiter field

CAN Protocol - Version 2.0 CAN Overload Frame

- System indicates overload when:
 - Receiving node can not process valid frames in allocated time and requires time delay

CAN Protocol - Version 2.0 Bit Timing

Nominal Bit Time					
SYNC_SEG	PROP_SEG	PHASE_SEG1	PHASE_SEG2		
)	l		
		Sample	e Point		

- Each bit time period divided into four different regions:
 - synchronization: edge used to synchronize nodes on bus
 - propagation time: accommodates delays within bus
 - phase buffer segment 1
 - phase buffer segment 2

msCAN12 Controller Unit Operational Modes

- 68HC12 operational modes:
 - Run, Wait, Stop
- msCAN12 modes:

– Normal, Soft Reset, Sleep, and Power Down

• Twelve different combinations

msCAN12 Controller Unit Transmit Unit

- Transmit unit responsible for message transmission
- Contains three separate 13-byte buffers
 - first four bytes: message ID
 - next eight: message
 - last: message length

Transmit Unit

Address	Register Name	
0150	Identifier Register 0	
0151	Identifier Register 1	
0152	Identifier Register 2	
0153	Identifier Register 3	
0154	Data Segment Register 0	
0155	Data Segment Register 1	
0156	Data Segment Register 2	
0157	Data Segment Register 3	
0158	Data Segment Register 4	
0159	Data Segment Register 5	
015A	Data Segment Register 6	
015B	Data Segment Register 7	
015C	Data Length Register	

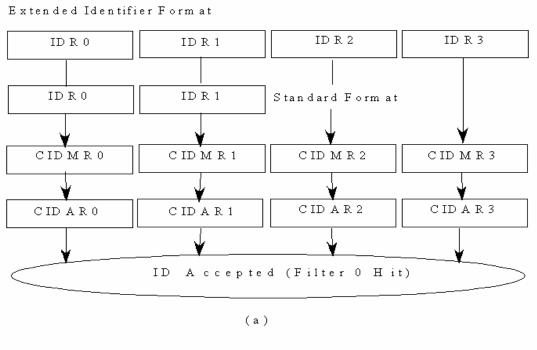
M68HC(9)12BC32 Transmit Buffer 0

Address	Register Name
0160	Identifier Register 0
0161	Identifier Register 1
0162	Identifier Register 2
0163	Identifier Register 3
0164	Data Segment Register 0
0165	Data Segment Register 1
0166	Data Segment Register 2
0167	Data Segment Register 3
0168	Data Segment Register 4
0169	Data Segment Register 5
016A	Data Segment Register 6
016B	Data Segment Register 7
016C	Data Length Register

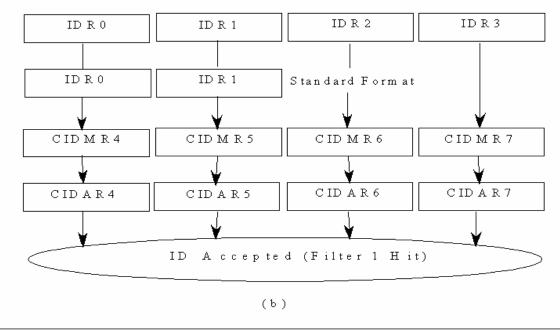
M68HC(9)12BC32 Transmit Buffer 1

Address	Register Name
0170	Identifier Register 0
0171	Identifier Register 1
0172	Identifier Register 2
0173	Identifier Register 3
0174	Data Segment Register 0
0175	Data Segment Register 1
0176	Data Segment Register 2
0177	Data Segment Register 3
0178	Data Segment Register 4
0179	Data Segment Register 5
017A	Data Segment Register 6
017B	Data Segment Register 7
017C	Data Length Register

M68HC(9)12BC32 Transmit Buffer 2

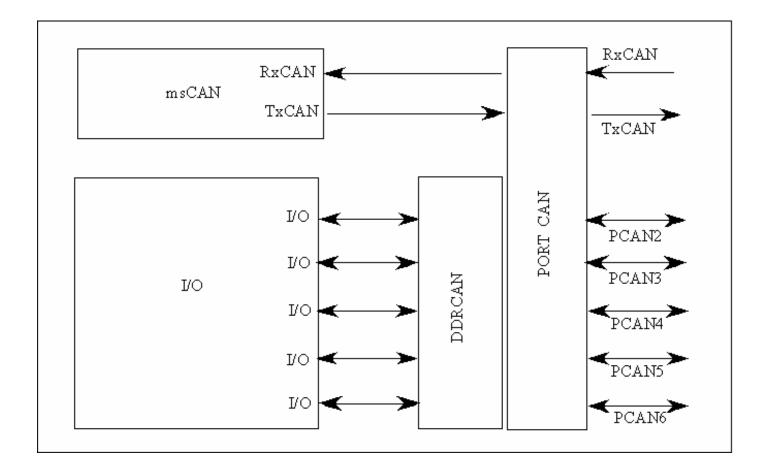

Transmit Unit

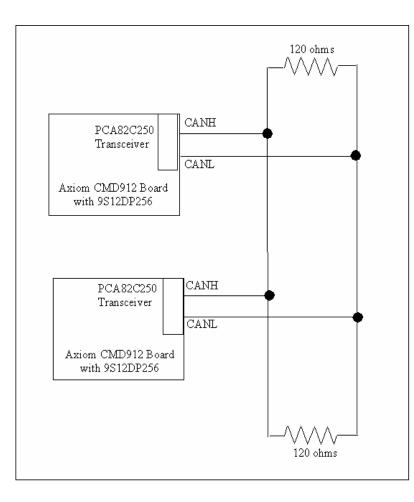
Register:IDR0 - Identifier Register 0 Address: \$01x	0			
7 6 5 4 3 2 1 0				
ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3				
Reset: Undefined				
Register:IDR1 - Identifier Register 1 Address: \$01x	1			
7 6 5 4 3 2 1 0	_			
ID2 ID1 ID0 RTR IDE				
Reset: Undefined				
Register:IDR2 - Identifier Register 2 Not Used				
Register:IDR3 - Identifier Register 3 Not Used				
x is 5,6, and 7 for transmit buffer 0, 1, and 2, respectively.				
(a) standard form at				
Register:IDR0 - Identifier Register 0 Address: \$01x0	<u> </u>			
	_			
ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21				
Reset: Undefined				
Register:IDR1 - Identifier Register 1 Address: \$01x1	_			
	_			
ID20 ID19 ID18 SRR IDE ID17 ID16 ID15				
Reset: Undefined				
Register:IDR2 - I dentifier Register 2 Address: \$01x2	_			
ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7				
Reset: Undefined				
Register:IDR3 - Identifier Register 3 Address: \$01x3				
7 6 5 4 3 2 1 0				
ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR				
Reset: Undefined				
x is 5,6, and 7 for transmit buffer 0, 1, and 2, respectively.				
(b) extended format				


msCAN12 Controller Unit Receive Unit

- Consists of two 13-byte buffers
- Eight Identifier Acceptance Control Registers
- Eight Maskable Identifier Acceptance Filters

Receive Unit


Extended Identifier Form at


msCAN12 Controller Unit Interrupts

- Four different types of interrupts:
 - Wakeup
 - Error
 - Receiver Buffer Full
 - Transmitter Buffer Empty

Networking with CAN Controller

Networking with CAN Controller

