
1Revised: Dec 15, 2003

EE4800-03
Embedded Systems Design

Lessons 19 - 22
Real Time Operating Systems

Overview

• RTOS Concepts
• Data structures
• Dynamic memory allocation
• Task and Task Control Blocks
• RTOS tracking mechanisms
• RTOS scheduling algorithms
• RTOS issues

RTOS Concepts
• A parable - waitron
• What is RTOS?

– Multiple events handled by a single processor
– Events may occur simultaneously
– Processor must handle multiple, often

competing events
– Wide range of RTOS systems

• Simple polling through multiple interrupt driven
systems

RTOS Concepts

• Each system activity designated as Task
• RTOS is a multitasking system where

multiple tasks run concurrently
– system shifts from task to task
– must remember key registers of each task

• called its context

RTOS Concepts

• RTOS subdivided into categories based on
the criticality of meeting time constraints:
– Hard Real Time System: failure to meet time

constraints leads to system failure
– Firm Real Time System: low occurrence of

missing a deadline can be tolerated
– Soft Real Time System: performance is

degraded by failure to meet time constraints

RTOS Concepts
• RTOS responsible for all activities related to a

task:
– scheduling and dispatching
– intertask communication
– memory system management
– input/output system management
– timing
– error management
– message management

Dynamic Memory Allocation

• RTOS uses abstract data types such as
record, linked list, and queue

• These data types normally use RAM
dynamic memory allocation techniques

• Data structures are created (allocated) on
the fly during program execution and
destroyed when no longer needed
– Requires large RAM memory

Dynamic Memory Allocation
• Memory allocation command malloc() used in

conjunction with size of ()

ptr = (variable_type *) malloc(sizeof (variable_type));

• Memory returned to system when no longer needed
using free() command

• Heap is portion of memory used for dynamic
memory allocation

• Must allocate separate RAM spaces for the Heap as
well as the Stack

Data Structures - Record
• Record/Structure

– Custom design a data type
– Related information but of different data types

struct car
{
int year; /*year of manufacture */
char make[10]; /*BWM, Hummer, Saturn */
char model[12]; /*coupe, convertible, SUV, pickup */
char VIN[10]; /*combination of numbers, characters */
float mileage; /*odometer reading: 0 to 500,000+ */
struct car *next; /*pointer to next car in list */
};

/*typedef provides compiler an alternate */
typedef struct car ELEMENT; /*for a variable type */
typedef ELEMENT *car_temp_ptr; /*defines pointer to car */

Data Structures - Record

• To create (allocate) a record during program
execution:

car_temp_ptr new_car-entry;
new_car_entry = (car_temp_ptr) malloc(sizeof(ELEMENT));

Data Structures - Linked List

• Linked list consists of a node with two parts:
– data portion: information about node
– link field: pointer (address) to the next node in

list
• Beginning of list called head
• End of list called tail

– contains null character in link field

Data Structures - Linked List

Data Structures - Linked List

Data Structures - Queue

• Specially configured linked list
• First-in-first-out (FIFO) buffer
• Elements added to rear
• Elements extracted from front
• Queue length variable dependent upon system activity

Data Structures - Circular Queue

Data Structures - The Stack
• Last-in-first-out (LIFO)

data structure
• RTOS requires multiple

stacks - one for each task
• Stack operations

– initialize
– push
– pull
– stack_empty
– stack_full
– print_stack

Data Structures - The Stack

Task and Task Control Blocks
• In RTOS program consists of independent,

asynchronous, and interacting tasks
• All tasks are competing for precious

processing time
• Task: independent, asynchronous activities

– small independent program that completes a
specific activity

– Must have capability to store task context

Controlling a Task

• Dormant - task has no need for computer time
• Ready - task is ready to go active, waiting processor time
• Active - task is executing associated activities
• Waiting - task put on temporary hold to allow lower priority task

chance to execute
• Suspended - task is waiting for resource
• Resceduled - task is complete, need not be repeated right away

Task Control Block (TCB)

• Task uses TCB to
remember its context

• RTOS updates TCB
when task is switched

Multitasking System Components -
RTOS Tracking Mechanisms

• Task Control Block (TCB)
– track individual task status

• Device Control Block (DCB)
– tracks status of system associated devices

• Dispatcher/Scheduler
– primary function is to determine which task

executes next

RTOS Scheduling Algorithms
Polled Loop System

• Sequentially determines is specific task
requires processor time

• When task associated actions are complete,
operating system continues polling for tasks
requiring operating time

• Simple, easy to write and debug
• Can not handle burst of events, multiple

tasks occurring simultaneously

RTOS Scheduling Algorithms
Polled Loop System

• System sequentially polls
remote and front panel
for switch activation

• Completes selected task

RTOS Scheduling Algorithms
Polled Loop System w/interrupts

• Polling system good
fit; however, several
time sensitive critical
tasks exists

• Example: transistor
amplifier overheat
– employ interrupts

RTOS Scheduling Algorithms
Round-robin System

• Sequences from task to task
• Tasks may run to completion

or time-slicing techniques
may be used
– Time-slicing: each task

has fixed amount of
processor time allocated

• Used for equal priority tasks
• Example: missile patch

RTOS Scheduling Algorithms
Hybrid Systems

• Round-robin scheduling equipped with
interrupts
– Background: round-robin scheduler
– Foreground: higher priority interrupts

• Example: missile patch with flooded launch
tube, fire, etc.

RTOS Scheduling Algorithms
Interrupt Driven System

• Main program consists of system
initialization activities

• System then placed in continuous loop to
wait for interrupt driven events

• System prioritizes multiple interrupts and
handles highest priority tasks first

• Example: Wall-following Robot

RTOS Scheduling Algorithms
Cooperative Multitasking

• Highest priority ready task executes for some
amount of time

• Task then relinquishes control back to operating
system at convenient break point
– TCB updated when control relinguished

• Task re-enters ready state
• System then determines next task for execution
• Implemented with series of linked lists

RTOS Scheduling Algorithms
Cooperative Multitasking

RTOS Scheduling Algorithms
Pre-emptive Priority Multitasking

• Operating system determines when a task
should relinquish control
– Examines linked lists of ready tasks and

chooses task with highest priority to place in
active state

RTOS Issues
• Concurrency: prevent two tasks from using the

same critical resource simultaneously
• Reentrancy: a function is said to be reentrant if it

always works correctly and preserves data even if
interrupted and restarted

• Communication: intertask communication
– employ global variables or mailbox techniques

• Safety, verification, fail-safe operation

