EE4800-03 Embedded Systems Design

Lessons 28-30 Design Case Studies

Systems Design Approach

- First reaction with new systems design PANIC!!!
- No! Apply systematic design approach
 - Requirements
 - 68HC12 systems employed
 - Background theory
 - Hardware construction
 - Structure Chart and UML Activity Diagrams
 - Code
 - Testing

Design Case Study I -Wall-following Robot System

- Autonomous self-contained
- Navigate through unknown maze
- Detect maze walls with IR emitter-detector pairs
- Avoid "land mines" (magnets) in maze floor

Wall-following Robot System

Required Robot Functions

- ATD conversion for IR sensors
- Turn decision algorithm
- Turn control function
- Hall Effect sensor processing
- Land mine avoidance algortihm
- LCD display

Background Theory

Hardware Interface

Software Interface

Design Case Study II -Laser Light Show

- Seven pre-coded patterns
- traced by laser
- LED illuminates on control panel to indicate selected pattern
- Control system traces selected pattern

68HC12 Systems Employed

- Debounded eight switch bank
- Eight position LED display
- Two-channel DAC
- Laser source
- Shutter and shutter controller
- Two galvanometer steered mirrors

Background Theory

- DAC
- Lasers
- Laser Safety
- Laser Control HW
 - mirrors
 - shutters
 - galvanometers

X-Y Scanning System

Hardware Interface

Testing

- Use bottom-up implementation approach
- Test each subsystem separately and exhaustively
- Combine subsystems one at a time until system fully functional
- Test! Test! Test!