
1Revised: Dec 15, 2003

EE4800-03
Embedded Systems Design

Lesson 2
Structured Design, Documentation,

and Laboratory Notebooks

2Revised: Dec 15, 2003

Overview - Structured Design

• If this worth my time - a parable
• The “divide-and-conquer” technique
• Requirements
• Partitioning - “The Black Box”
• Structure Chart
• Pseudo (Fake) Code
• Implementation Techniques
• Testing Techniques
• Documentation
• Unified Modeling Language (UML)

3Revised: Dec 15, 2003

If this worth my time - a parable
• Long, long ago in a graduate program far,

far away…
– needed to learn C
– couldn’t pass entrance quiz
– took prereq course is Pascal
– course was supposed to be Pascal & data

structures
• discussed structured design techniques!?

– my view changed!

4Revised: Dec 15, 2003

The “divide-and-conquer” technique

• Paper writing/Book writing
– Solid outline allows “big picture” view
– Write project a paragraph at a time

• Use same technique in SW/HW design
– divide project into understandable, doable

pieces
– A.K.A.: top-down-design, bottom-up-

implementation...

5Revised: Dec 15, 2003

Requirements

• Overall goal of structured design is to
provide tools to transform system
requirements into a plan into implement a
system

• Your responsibility to ensure you
understand requirements
– iterative process with customer

6Revised: Dec 15, 2003

Partitioning - “The Black Box”

• Break a large, complex system into a
hierarchical description of “black boxes”
– “black box”: small definable pieces

• know inputs, outputs, general details of function

– define relationship between “black boxes”
• use a graphical tools relationship
• Structure Chart provides big picture

7Revised: Dec 15, 2003

Structure Chart

8Revised: Dec 15, 2003

Pseudo (Fake) Code

• Once hierarchy is defined begin working
out details of black box.

• Develop functional relationship between the
boxes’ inputs and outputs

• Use pseudocode to defer details
– not trying to avoid details
– defer until higher level details worked out

9Revised: Dec 15, 2003

Implementation Techniques
• Incremental Approach - get a little bit working at a time
• Top-down: implement top module (e.g. menu

software)
– lower level code simulated with stubs (empty modules)

• Bottom-up: implement module at lowest level.
– Higher level code simulated with drivers

• Hybrid: use of mixture of both techniques and meet in the
middle

10Revised: Dec 15, 2003

Testing Techniques

• Compile time errors
• Run Time errors
• Everything is O.K. except project

completed to incorrect requirements!!!
• Test Plan

11Revised: Dec 15, 2003

Documentation
• External documentation - support information

– Structure Chart
• Internal documentation

– Comments
– Self-documenting code - wise choice of

variable, function names
– Program Formatting - “pretty printing” - use

blank spaces to help illustrate the control
structure of the program

12Revised: Dec 15, 2003

Unified Modeling Language (UML)

• Standardized set of graphical tools to model
a complex system prior to implementation
– fundamental property -- communication!

• Used to describe object-oriented design
• Activity Diagram -- UML-compliant flow

chart

13Revised: Dec 15, 2003

Unified Modeling Language (UML)

14Revised: Dec 15, 2003

Laboratory Notebooks
• Legal document - may be used in court to

establish ownership of an idea
• Mechanics

– Use ink
– Number each page consecutively
– Sign and date each page
– Glue additional figures into notebook - sign and date
– “Z” out unused space
– Do not remove incorrect material - “Z” it out

