
Revised: Aug 1, 2003 1

EE4390 Microprocessors

Lessons 23, 24
- Exceptions -

Resets and Interrupts

Revised: Aug 1, 2003 2

- Exceptions -
Resets and Interrupts

• Polling vs. Interrupts
• Exceptions: Resets and Interrupts
• 68HC12 Exceptions

– Resets
– Interrupts: Maskable and Non-maskable

• 68HC12 Interrupt Response
• Exception Vector
• Exception Priority
• Programming an Interrupt Service Routine

Revised: Aug 1, 2003 3

- Exceptions -
Resets and Interrupts

• Polling versus interrupts
– polling: constantly monitoring for flag to set

• program is tied up waiting for flag
• inefficient use of processor

– interrupt: processor tells program when event
has occurred

• program can be executing other tasks
• efficient use of processor

– EX] sequentially ask question vs you ask me

Revised: Aug 1, 2003 4

- Exceptions -
Resets and Interrupts

• Resets: returns 68HC12 to known, well-defined state after
detected fault
– power-on reset
– Computer Operating Properly (COP) reset
– Clock Monitor reset
– External reset

• Interrupts - planned, but unscheduled high priority event
– non-maskable: may not be turned off by user
– maskable: turned on and off by user with “I” bit in CCR

Revised: Aug 1, 2003 5

- Exceptions -
Resets and Interrupts

• “I” bit controlled with CLI and SEI command
– CLI: Clear Interrupt Mask - turns interrupt system on
– SEI: Set Interrupt Mask - turns interrupt system off

• Need to turn on specific interrupt locally

Revised: Aug 1, 2003 6

- Exceptions -
Resets and Interrupts (cont)

Revised: Aug 1, 2003 7

68HC12 Interrupt Response

fetch decode

execute

interrupt
service
routine

Revised: Aug 1, 2003 8

68HC12 Interrupt Response
• Interrupt Vector

– location of ISR
– located in upper 128 bytes
 of memory
– user must tie Vector to ISR

• Interrupt Priority
– determines order of
 execution when multiple
 interrupts occur

• Interrupt Service Routine
 (ISR) - user written
 response routine to
 interrupt event

Revised: Aug 1, 2003 9

68HC12 Interrupt Response
- Interrupt Priority -

"Copyright of Motorola, Used by Permission"

Revised: Aug 1, 2003 10

Programming an
Interrupt Service Routine

• Determine how interrupt is enabled
– global: CLI
– local enable bit

• Initialize Vector Table
– directive approach
– EVB SetUserVector

• Initialize Stack
• Enable interrupt
• Write the specific ISR

Revised: Aug 1, 2003 11

Programming an
Interrupt Service Routine - an example

Initialize the microprocessor for the interrupt.
• Initialize the stack - this is done through compiler settings
• Initialize any other necessary systems on the HC12.
• Initialize the interrupt vector table. You will need to use a special header file

and code.
– Header file is on your computer and is called abbie.h (change name).

• Code to set up your function to be an interrupt service routine will be similar
to the following:

This part declares your function as an interrupt service routine.
#pragma interrupt_handler toggle_isr

Revised: Aug 1, 2003 12

Programming an
Interrupt Service Routine - an example

• This part fills the appropriate vector with the address of your
interrupt service routine.

 #pragma abs_address: 0x0B2A
void (*Timer_Channel_2_interrupt_vector[])()={toggle_isr};
#pragma end_abs_address

• Make sure the interrupt you will be using is cleared to start.
• Initialize local interrupts.
• Initialize the interrupt system using the CLI command (With this header file

use CLI();). Do this step last so that you aren’t inadvertently setting off
interrupts before you finish initializing the system.

• Write the interrupt service routine to handle the interrupt.

Revised: Aug 1, 2003 13

Programming an
ISR - an example

Table 1. RAM Interrupt Vectors
Interrupt Name RAM Vector Location
BDLC (Key Wakeup J) $0B10, $0B11
ATD $0B12, $0B13
SCI $0B16, $0B17
SPI $0B18, $0B19
Pulse Accumulator Input Edge $0B1A, $0B1B
Pulse Accumulator Overflow $0B1C, $0B1D
Timer Overflow $0B1E, $0B1F
Timer Channel 7 $0B20, $0B21
Timer Channel 6 $0B22, $0B23
Timer Channel 5 $0B24, $0B25
Timer Channel 4 $0B26, $0B27
Timer Channel 3 $0B28, $0B29
Timer Channel 2 $0B2A, $0B2B
Timer Channel 1 $0B2C, $0B2D
Timer Channel 0 $0B2E, $0B2F
Real Time Interrupt $0B30, $0B31
IRQ $0B32, $0B33
XIRQ $0B34, $0B35
SWI $0B36, $0B37
Unimplemented Instruction Trap $0B38, $0B39
COP Failure $0B3A, $0B3B
COP Clock Monitor Fail Reset $0B3C, $0B3D
Reset $0BEF, $0BFF

Revised: Aug 1, 2003 14

Programming an
Interrupt Service Routine - an example

• Example] In this task you will need to
simultaneously generate two square waves with
different frequencies. For one wave use the month
and day of your birthday and for the second use
the month and day of your Lab TA’s birthday.
Verify that the waves are being generated
simultaneously and that they have different
frequencies with the oscilloscope.

Revised: Aug 1, 2003 15

Programming an
Interrupt Service Routine - an example

#include <abbie.h>

void toggle1_isr(void); //function prototype

void toggle2_isr(void);

#pragma interrupt_handler toggle1_isr //define as interrupt

#pragma interrupt_handler toggle2_isr

#pragma abs_address: 0x0B28

void (*Timer_Channel_3_interrupt_vector[])()={toggle2_isr};

void (*Timer_Channel_2_interrupt_vector[])()={toggle1_isr};

#pragma end_abs_address

Revised: Aug 1, 2003 16

Programming an
Interrupt Service Routine - an example

void initialize(void); // Define function initialize

void main(void){

initialize(); // Initialize the timer system

TMSK1 = 0x0C;

TFLG1 = 0xFF;

CLI(); // Initialize interrupts

while(1) // Continuous loop

{ // Wait for interrupts

;

}

}

Revised: Aug 1, 2003 17

Programming an
Interrupt Service Routine - an example

/* Function: initialize: enables the timer and sets up the M-
Clk */

void initialize(){

CLKCTL = 0x02; // Set M-clock to divide by 4 (2 MHz)

// CPU master clock divider ($0047)

TMSK2 = 0x00; // Disable TOI, Prescale = 0;

TIOS = 0x0C; // Make OS2 output compare

TSCR = 0x80; // Enable the timer

TCTL2 =0x50;

}

Revised: Aug 1, 2003 18

Programming an
Interrupt Service Routine - an example

void toggle1_isr(void){

TFLG1 = 0x04;

TC2 += 9091;

}

void toggle2_isr(void)

{

TFLG1 = 0x08;

TC3 += 4854;

}

