EE4800-03 Embedded Systems Design

Lessons 16-18
Real World Design Issues

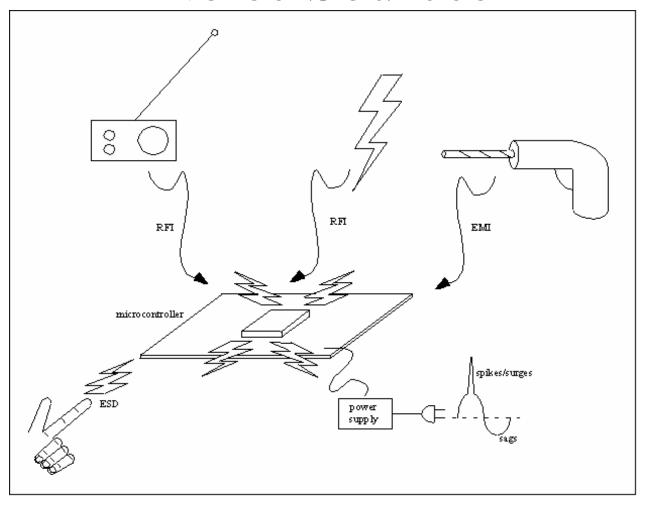
Welcome to the Real World!

- what keeps paper designs from working -
- CMOS Characteristics
- Noise
- Defensive Programming Techniques
- Power conditioning and management

Revised: Dec 15, 2003

CMOS Characteristics

- Handling guidelines:
 - Use grounded wrist strap when handling
 CMOS devices
 - Keep CMOS devices in original container until use
 - Use grounded test bench
 - Use grounded soldering tip
 - Do not remove/replace CMOS device in circuit when power is applied

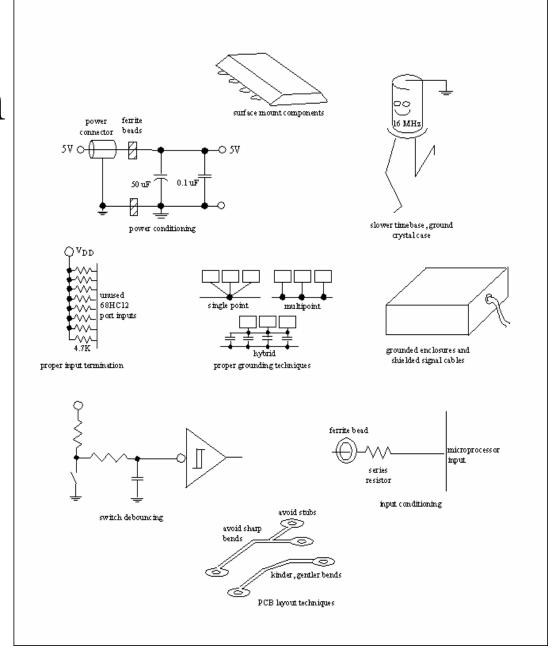

CMOS Characteristics

- Design guidelines
 - Properly terminate unused inputs
 - Resistor (4.7K) to power or ground
 - Use series resistors when connecting PCBs
 - Use CMOS devices within specified parameter envelope

Noise Sources

- Electrostatic discharge (ESD) static electricity
- Radio frequency interference (RFI) undesired RF energy
- Electromagnetic interference (EMI) varying magnetic fields emanating from electromechanical devices (motors)
- Sag decrease in input AC
- Surge sudden increase in input AC

Noise Sources


Reducing noise susceptibility

- Printed circuit boards should have well filtered power supply inputs
 - Provide ferrite-bead feed-throughs
 - 50 uF capacitor between power and ground -- mount close to beads
 - low frequency noise
 - 0.1 to 0.01 uF capacitor to bypass mid to upper frequency noise
- Provide bypass capacitors on every IC
 - 0.01 uF capacitor between IC supply and ground pin

- Provide ferrite-bead feed-throughs at signal inputs and output
- Provide separate power feed to each IC row
- Provide short ground return paths with large ground planes
- properly terminate unused IC inputs
- every other conductor in ribbon cable should be grounded
- Enclose system processor in a wellgrounded metal box

Revised: Dec 15, 2003

Noise Minimization Techniques

Terminating Unused Inputs

- Input impedance is very high on unused input pins
- If not connected, the input can oscillate or float to midsupply level
- Oscillation can couple noise to power supply
- Terminate unused input pins by pulling up (or down) via a resistor -- 4.7 Kohm

Noise Testing Techniques

- Low-cost prototype testing techniques for noise emission and susceptibility
 - Tune TV to Channel 2 with no cable connection
 - Picture is AM and affected by RFI
 - Use high-power videotape bulk eraser
 - Move your hand in close proximity to circuit under operation -- circuit should remain stable

Defensive Programming Techniques

- Effective software techniques to minimize noise effects
 - Detects faulty algorithm execution
 - Provides some level of fault recovery

Defensive Programming Techniques

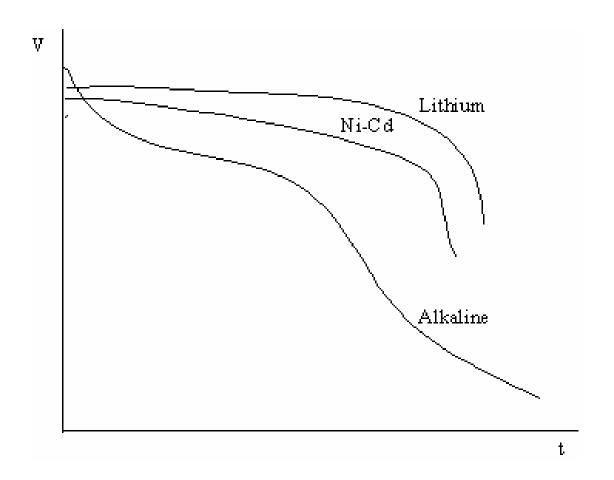
- Refresh port pins: periodically update DDRx registers and port output values
- Polling: Poll input pin for some time (50 ms) to insure valid input rather than spurious signal
- Token Passing: Insures correct execution of algorithm.
 - Designate token collection memory location
 - As algorithm executed, place tokens at site in numerical order
 - As new portion is entered, insure previous numerically ordered tokens are in place

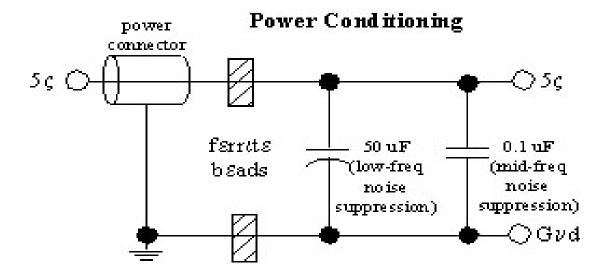
Defensive Programming Techniques

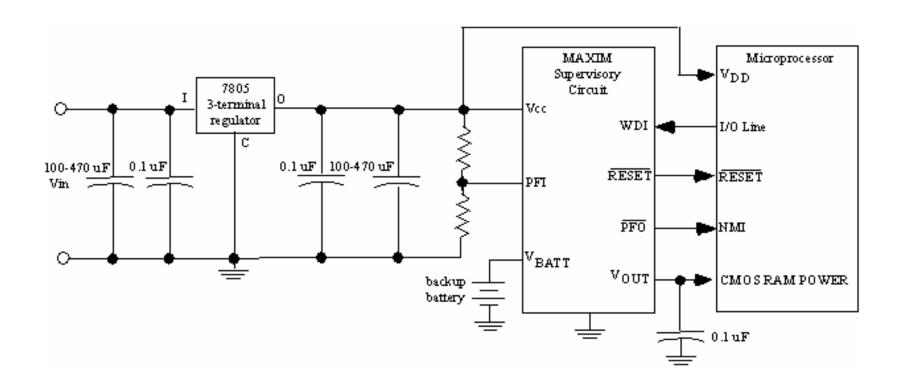
- Unused memory: place "SWI", Software Interrupt instructions, in unused memory space
- COP watchdog timer COPRST:
 - Strategically place:

```
COPRST = 0x55:
```

COPRST = 0xAA;


command pairs throughout algorithm


- This resets COP timer
- If command sequence not sent properly, software is "stuck" and reset will be generated


- Design parameters required for embedded control system:
 - supply voltages
 - current drain
 - operational life expectancy for battery supply
 - temperature of operating environment

	Processor Operating Frequency			
Maximum Total Supply Current	2 MHz	4 MHz	8 MHz	
Run:				
- Single-chip Mode	15 mA	25 mA	45 mA	
- Expanded Mode	25 mA	45 mA	70 mA	
Wait: (All peripheral functions shut down)				
- Single-chip Mode	1.5 mA	3 mA	5 mA	
- Expanded Mode	4 mA	7 mA	10 mA	
Stop:				
- Single-chip Mode, no clocks				
- 40 to +85	10 uA	10 u A	10 uA	
+85 to +105	25 u A	25 uA	25 uA	
+105 to +125	50 uA	50 uA	50 uA	

	All	caline	Nickel-Cadmium		Lithium	
Туре	Non-rechargeable		Rechargeable		Non-rechargeable	
Size	Voltage	Capacity	Voltage	Capacity	Voltage	Capacity
D	1.5 V	15,000 mA-hr	1.2 V	1,200 mA-hr	3.6 V	16,500 mA-hr
C	1.5 V	7,000 mA-hr	1.2 V	1,200 mA-hr	3.6 V	7,200 mA-hr
AA	1.5 V	2,250 mA-hr	1.2 V	500 mA-hr	3.6 V	2,100 mA-hr
AAA	1.5 V	1,000 mA-hr	1.2 V	180 mA-hr		
И	1.5 V	650 mA-hr	1.2 V	150 mA-hr		
9V transistor	9.0 V	550 mA-hr				
6V lantern	6.0 V	11,000 m A-hr				

