EE4800-03
Embedded Systems Design

Lessons 19 - 22
Real Time Operating Systems

Revised: Dec 15, 2003

Overview

RTOS Concepts

Data structures

Dynamic memory allocation
Task and Task Control Blocks

R’
R’

"OS tracking mechanisms

'OS scheduling algorithms

R"

T'OS 1ssues

RTOS Concepts

* A parable - waitron
* What 1s RTOS?

— Multiple events handled by a single processor
— Events may occur simultaneously

— Processor must handle multiple, often
competing events

— Wide range of RTOS systems

« Simple polling through multiple interrupt driven
systems

RTOS Concepts

« Each system activity designated as Task

 RTOS 1s a multitasking system where
multiple tasks run concurrently

— system shifts from task to task

— must remember key registers of each task

e called 1ts context

RTOS Concepts

« RTOS subdivided into categories based on
the criticality of meeting time constraints:

— Hard Real Time System: failure to meet time
constraints leads to system failure

— Firm Real Time System: low occurrence of
missing a deadline can be tolerated

— Soft Real Time System: performance 1s
degraded by failure to meet time constraints

RTOS Concepts

 RTOS responsible for all activities related to a
task:

— scheduling and dispatching

— 1ntertask communication

— memory system management

— 1nput/output system management
— timing

— error management

— message management

Dynamic Memory Allocation

 RTOS uses abstract data types such as
record, linked list, and queue

» These data types normally use RAM
dynamic memory allocation techniques

» Data structures are created (allocated) on
the fly during program execution and
destroyed when no longer needed

— Requires large RAM memory

Dynamic Memory Allocation

 Memory allocation command malloc() used in
conjunction with size of ()

ptr = (variable type *) malloc(sizeof (variable type));

* Memory returned to system when no longer needed
using free() command

e Heap 1s portion of memory used for dynamic
memory allocation

« Must allocate separate RAM spaces for the Heap as
well as the Stack

Data Structures - Record

* Record/Structure
— Custom design a data type
— Related information but of different data types

struct car

{

int year; /*year of manufacture */

char make[10]; /*BWM, Hummer, Saturn */ il

char model[12]; /*coupe, convertible, SUV, pickup */ ke 11

char VIN[10]; /*combination of numbers, characters — */ mode1[12]

float mileage; /*odometer reading: 0 to 500,000+ */ VIH[L0]

struct car *next; /*pointer to next car in list */ Ty

}) lirks (podtter’ to rest ca
/*typedef provides compiler an alternate */

typedef struct car ELEMENT; /*for a variable type */
typedef ELEMENT *car temp ptr; /*defines pointer to car */

Data Structures - Record

* To create (allocate) a record during program
execution:

car temp ptr new_car-entry;

new car entry = (car_temp ptr) malloc(sizeof(ELEMENT));

Data Structures - Linked List

* Linked list consists of a node with two parts:
— data portion: information about node
— link field: pointer (address) to the next node in
list
* Beginning of list called head
* End of list called tail

— contains null character in link field

Data Structures - Linked List

1) dfarration, | e link

tail

head
0 | e o 5y | ™ > > see

PI&&CESSDI SACCess O
rode niode

head
D | e ot 5y | ™ » *{

newiem | 4

e decessor rcess @
Tunde node

Fead
D |t €] | o @ oo woe

Livk Lit Operations

mitialize _link list thcert_linke d_list delete_liked_list search_lirked list et linked list

Data Structures - Linked List

1981

Cathato

127367

37456

cars for sale 5

—r- lind: (po@der) to ke Kt car %

1974 19a7
Ford Sabmn
Mastang IT SL1 sedan
JL2655T 234 THET
122 456 140 512
link fpointer to next car | M T Lird (o frder) to e Bt caT

Data Structures - Queue

Specially configured linked list

First-in-first-out (FIFO) buffer

Elements added to rear

Elements extracted from front

Queue length variable dependent upon system activity

Tear erd fooxd exvd
ooy | O »-- > see | U

Data Structures - Circular Queue

first re cord Tt e cord
TeatT erd frovt exd
@T i - - S topy |
i
ﬁmre:
L3 l'\e
*.-u_d:l':"
*

Nt

Data Structures - The Stack

Last-in-first-out (LIFO)

data structure

RTOS requires multiple | ——— ”
stacks - one for each task

Stack operations pushes

~ initialize Y

— push I :

— pull frniﬂ::ack

— stack empty ccac Foraier — -

— stack full

— print_stack

Data Structures - The Stack

p1 [| O [] e [] e [] E1 []
B | m | | m m m ||
1 [7] [7] [7] 71
B | 6] | o | o | o |
B o1 | 51| | 51| | 5]
SN | M| M| | spedl| |
SN ey || Bl | s | | B3] | 1 |
o | A 2 |13 | 2 |13 |
m | | e | | i |12 | m |12 | m |12 |

sep || o 11] o 11 | o 1] o 11
p1 [] o1 [] e [] e []
B | il Sl Sl
rl 7] o o
B | 6] | o | o |
B | | ol s s
Wl | @] @]

spawpl || ey || e[| e[|
|1z | seee | | @ | @ |
n |1z | m |1z | seaent| | m| |
o | 1| o |11 o1 (11| sewor |

Task and Task Control Blocks

* In RTOS program consists of independent,
asynchronous, and interacting tasks

» All tasks are competing for precious
processing time
» Task: independent, asynchronous activities

— small independent program that completes a
specific activity

— Must have capability to store task context

Controlling a Task

wrak tine expred (2)

task canwcel (3

desiredresmmce available (1)

Dormant - task has no need for computer time
Ready - task 1s ready to go active, waiting processor time
Active - task 1s executing associated activities

Waiting - task put on temporary hold to allow lower priority task
chance to execute

Suspended - task is waiting for resource
Resceduled - task is complete, need not be repeated right away

Task Control Block (TCB)

 Task uses TCB to

. oo remember 1ts context
tack_nam « RTOS updates TCB
T when task 1s switched
tack pricriye

tack stack pomvter

tack program conmider

Multitasking System Components -
RTOS Tracking Mechanisms

» Task Control Block (TCB)

— track individual task status

* Device Control Block (DCB)

— tracks status of system associated devices

* Dispatcher/Scheduler

— primary function 1s to determine which task
executes next

RTOS Scheduling Algorithms
Polled Loop System

Sequentially determines 1s specific task
requires processor time

When task associated actions are complete,
operating system continues polling for tasks
requiring operating time

Simple, easy to write and debug

Can not handle burst of events, multiple
tasks occurring simultaneously

-@

RTOS Scheduling Algorithm (.)
Polled Loop System
=

o O e
SN — @

apefl

é iIIii[

il amplifiet
= pow er?
(powet off)
elslelelale)
OOO
(&
OO

e System sequentially polls

tead chagsis switches
(PORTE)

R

remote and front panel

o Yb————

process new audio
it selection

for switch activation (ety)

« Completes selected task

frocess new ando
iyt selection

RTOS Scheduling Algorithms
Polled Loop System w/interrupts

* Polling system good
fit; however, several
time sensitive critical
tasks exists

« Example: transistor
amplifier overheat

— employ interrupts

&8HC12

IRQ

mmmmmmm

SSSSS

s
=
=

RTOS Scheduling Algorithms
Round-robin System

Sequences from task to task

Tasks may run to completion
or time-slicing techniques
may be used
— Time-slicing: each task
has fixed amount of
processor time allocated
Used for equal priority tasks

Example: missile patch

RTOS Scheduling Algorithms
Hybrid Systems

* Round-robin scheduling equipped with
interrupts
— Background: round-robin scheduler
— Foreground: higher priority interrupts

« Example: missile patch with flooded launch
tube, fire, etc.

RTOS Scheduling Algorithms
Interrupt Driven System

Main program consists of system
initialization activities

System then placed in continuous loop to
wait for interrupt driven events

System prioritizes multiple interrupts and
handles highest priority tasks first

Example: Wall-following Robot

RTOS Scheduling Algorithms
Cooperative Multitasking

Highest priority ready task executes for some
amount of time

Task then relinquishes control back to operating
system at convenient break point

— TCB updated when control relinguished
Task re-enters ready state
System then determines next task for execution

Implemented with series of linked lists

RTOS Scheduling Algorithms
Cooperative Multitasking

ot | - -* > o0y
t:;kmu:; - & ot T T
t:;kﬁ - » " oe®
‘kamﬁj [» h-] YT]
ded
el S5 o » h] J_P »]]
Chredule
L | * o ;_P.]]
tack harre :| :| tack narve :| :|
task_state — task_state —
task_pricrity :| :|_ task_pricrity :| :|_

——1
——1

tack _stack poivter tack stack podnter

tack pIOgram colmier tack_prograth coimider

RTOS Scheduling Algorithms
Pre-emptive Priority Multitasking

* Operating system determines when a task
should relinquish control
— Examines linked lists of ready tasks and

chooses task with highest priority to place in
active state

RTOS Issues

Concurrency: prevent two tasks from using the
same critical resource simultaneously

Reentrancy: a function is said to be reentrant if 1t
always works correctly and preserves data even 1f
interrupted and restarted

Communication: intertask communication
— employ global variables or mailbox techniques

Safety, verification, fail-safe operation

