EE4800/EE5880 Real Time Embedded Systems Lessons 15 - 17

Memory Expansion

Overview

- Basic memory concepts
- Memory expansion
 - Linear and Paging techniques
- Guidelines
- Detailed memory expansion design techniques
 - Layout
 - Control signals
 - Timing issues

Basic Memory Concepts capacity and control signals

Basic Memory Concepts control signals

- /WE: write enable when activated values on data lines are written to specified address
- /OE: output enable data at specified location placed on data pins of memory chip, data lines connected to data bus using tristate outputs
- /CS: chip select used to select a specific chip in memory array

Basic Memory Concepts memory buses

• address bus

 $2^{addr lines} = addr locations$

- data bus
- control bus

Basic Memory Concepts RAM vs ROM

- RAM
 - read/write
 - volatile
 - faster access time
 - variants
 - SRAM
 - DRAM
 - applications
 - variables
 - dynamic memory allocation
 - heaps, stacks Revised: Sep 1, 2004

- ROM
 - read only
 - non-volatile
 - slower
 - variants
 - ROM, PROM, EPROM, EEPROM (byte-addressable, FLASH)
 - applications
 - programs
 - constants, codes, etc.

Basic Memory Concepts memory map

Revised: Sep 1, 2004

Memory Expansion

- Linear vs Paging
- Guidelines:
 - Unique address for each location
 - Data bus connected properly to all memory chips
 - Control lines routed to individual memory chips
 - Control signal timing are compatible between
 68HC12 and external memory chips
 - External memory chips electrically compatible with 68HC12

Memory Expansion Overview

- Memory layout design
 Based on Dr. Jerry Cupal's techniques
- Control signals
 - 68HC12
 - external memory components
- Timing compatibility

Memory Expansion layout design

- From system requirements determine amount of external devices needed
- Draw the desired memory table and design the address decoding and control logic
- Draw the schematic of the circuit
- Verify the design

Memory Expansion expanding memory length

Memory Expansion expanding memory width

Memory Expansion expanding memory length and width

Revised: Sep 1, 2004

Memory Expansion memory table

Device	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A9	A ₈	A ₇	A ₆	A5	A ₄	A ₃	A ₂	A_1	A ₀	Useable Locations
RAM0	0	0	1	0	1 0	0	٠	٠	•	٠	۲			٠	٠	٠	\$2000 - \$23FF
RAM1	0	0	1	0	0	1	٠	•		٠	٠	•	۲	٠	٠	•	\$2400 - \$27FF
RAM2	0	0	1	0	1	0	٠	•		٠	٠		•	٠	٠	٠	\$2800 - \$2BFF
RAM3	0	0	1	0	1	1	٠		۲	٠	٠		٠	٠	٠	٠	\$2C00 - \$2FFF
RAM4	0	0	1	1	0	0	٠		۲	٠	٠		٠	٠	٠	•	\$3000 - \$33FF
RAM5	0	0	1	1	0	1	٠	٠	۲	۲	۲	•	٠	۲	٠	۲	\$3400 - \$37FF
RAM6	0	0	1	1	1	0	٠	•	•	٠	٠	• ¦	٠	٠	•	٠	\$3800 - \$3BFF
RAM7	0	0	1	1	1	1	۲			۲	۲		۲	۲	٠		\$3C00 - \$3FFF

Memory Expansion control signals

- 68HC12 control signals
 - ECLK: basic bus clock
 - R/W: indicates data direction
- Memory chips control signals
 - /WE: write enable
 - /OE: output enable
 - /CS: chip select

Memory Expansion timing analysis overview

- Must analyze timing compatibility between processor and memory
- Must analyze:
 - -RAM
 - read cycle
 - write cycle
 - ROM
 - read cycle

Memory Expansion timing analysis - RAM read cycle

- A valid address is placed on address lines ADDR[15:0]
- Control signals are issued by 68HC12 ECLK and R/W
- Provides control inputs to memory components
 /CS and /OE
- Data are read from the external memory by 68HC12

Memory Expansion

timing analysis - nonmultiplexd expansion bus timing

Num	(1)	Delaw	Combal	5 MHz		Unit
	Characteristic	Delay	Symbol	Min	Max	Cunt
1/2	Frequency of operation (E-clock frequency)	-	f ₀	dc	8.0	MHz
1	Cycle time $t_{cyc} = 1/f_0$		t _{cyc}	125	-	ns
2	Pulse width, E low $PW_{EL} = t_{cyc}/2 + delay$	-2	PWEL	60	-	ns
3	Pulse width, E high ⁽³⁾ $PW_{EH} = t_{cyc}/2 + delay$	-2	PWEH	60	-	ns
5	Address delay time $t_{AD} = t_{cyc}/4 + delay$	29	t _{AD}	_	60	ns
6	Address hold time	-	t _{AH}	20	-	ns
7	Address valid time to E rise $t_{AV} = PW_{EL} - t_{AD}$		t _{AV}	0	_	ns
11	Read data setup time		t _{DSR}	30	-	ns
12	Read data hold time	-	t _{DHR}	0	-	ns
13	Write data delay time $t_{DDW} = t_{cyc}/4 + delay$	25	t _{DDW}	-	46	ns
14	Write data hold time	-	t _{DHW}	20	_	ns
15	Write data setup time ⁽³⁾ $t_{DSW} = PW_{EH} - t_{DDW}$	-	t _{DSW}	30	d	ns
16	Read/write delay time $t_{RWD} = t_{cyc}/4 + delay$	18	t _{RWD}	_	49	ns
17	Read/write valid time to E rise $t_{RWV} = PW_{EL} - t_{RWD}$	-	t _{RWV}	20	_	ns
18	Read/write hold time	-	t _{RWH}	20	-	ns
19	Low strobe delay time $t_{LSD} = t_{cyc}/4 + delay$	18	t _{LSD}	-	49	ns
20	Low strobe valid time to E rise $t_{LSV} = PW_{EL} - t_{LSD}$		t _{LSV}	11	_	ns
21	Low strobe hold time	-	t _{LSH}	20	14	ns
22	Address access time ⁽³⁾ $t_{ACCA} = t_{cyc} - t_{AD} - t_{DSR}$	_	t _{ACCA}	1	35	ns
23	Access time from E rise ⁽³⁾ $t_{ACCE} = PW_{EH} - t_{DSR}$	_	tACCE	-	30	ns
26	Chip-select delay time $t_{CSD} = t_{cyc}/4 + delay$	29	t _{CSD}	_	60	ns
27	Chip-select access time ⁽³⁾ $t_{ACCS} = t_{cyc} - t_{CSD} - t_{DSR}$	1	t _{ACCS}	_	South	ns
28	Chip-select hold time	-	t _{CSH}			ns
29	Chip-select negated time $t_{CSN} = t_{cyc}/4 + delay$	5	t _{CSN}	len (pagie 1	ns

1. $V_{DD} = 5.0 \text{ Vdc} \pm 10\%$, $V_{SS} = 0 \text{ Vdc}$, $T_A = T_L$ to T_H , unless otherwise noted.

2. All timings are calculated for normal port drives.

3. This characteristic is affected by clock stretch.

Add N \times t_{cvc} where N = 0, 1, 2, or 3, depending on the number of clock stretches.

Figure 8.15 Nonmultiplexed expansion bus timing definitions. (Figure used with permission of Motorola, Incorporated.)

Memory Expansion timing analysis - nonmultiplexd expansion bus timing

Note: Measurement points shown are 20% and 70% of VDD.

Figure 8.16 Nonmultiplexed expansion bus timing diagram. (Figure used with permission of Motorola, Incorporated.)

Revised: Sep 1, 2004

Memory Expansion timing analysis - simplified timing diagram

Memory Expansion timing analysis - timing signals

- Chip select access time (t_{cs})
- Address access time (t_{ADDR})
- Output enable access time (t_{OE})

Memory Expansion four key questions

- Q1: How soon can valid data be provided by the SRAM memory chip after a chip select signal is provided by the 68HC12 under worst-case conditions?
- Q2: How soon can valid data be provided by the memory chip after a valid address is provided under worst-case conditions?
- Q3: How soon can valid data be provided to the 68HC12 once the memory chip has received a valid output enable signal?
- Q4: Final analysis choose worst case situation