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Description and Evaluation of Frameworks for the Development of 
Wildlife Habitat–Relationships Models1

Jeffrey L. Beck2,3, Department of Zoology and Physiology, University of Wyoming, Laramie, 
WY 82071, USA 

Lowell H. Suring4, USDA Forest Service, Terrestrial Wildlife Ecology Unit, Boise, ID 83702, 
USA 

ABSTRACT:  Wildlife habitat–relationships models were first developed in the mid-1970s to 
provide practitioners with tools to evaluate habitat quality.  The purpose of our review was to 
identify and describe the structure, uses, output, and operation of major habitat–relationships 
modeling frameworks.  We defined frameworks as conceptual modeling structures such as 
modeling shells and general modeling approaches within which models are constructed that are 
similar in purpose and function.  These frameworks provide the foundation for building models 
for a wide array of animals in almost any environmental setting.  We also provide a descriptive 
analysis of frameworks to assist practitioners in selecting approaches that fit specific operational 
objectives. We identified 40 frameworks (13 through the 1980s, 12 in the 1990s, and, 15 since 
2000) and grouped them according to 10 nominal- and 5 ordinal-scale criteria.  The proportion of 
frameworks that are not components of larger landscape modeling systems and that use input 
data readily available in natural resource agency inventories declined from 1980 through 2006.  
The proportion of frameworks that examine habitat relationships at multiple scales, link scales 
when multi-scaled, and that are spatially explicit increased from the 1980s through 2006.  The 
proportion of frameworks that have received scientific credibility through publication or 
application of results, or other mechanisms has remained above 0.83, but the proportion of 
frameworks where output from at least 1 model developed within a framework has been 
validated with field data never exceeded 0.58.  We used agglomerative hierarchical cluster 
methods to identify groupings of habitat–relationships modeling frameworks based on 
dissimilarity distance between each framework according to criteria ratings.  CompPATS and 
HABSCAPES did not meet our cluster grouping criteria, but the remaining 38 frameworks were 
apportioned among 7 clusters, each containing an average of 5.4 (range = 2–10) frameworks.  
Each cluster was characterized by specific strengths and limitations that practitioners should 
assess prior to selecting a framework that best meets their modeling objectives.  Cluster 1 
included HSI and 9 other frameworks that were based on species-habitat matrices or newly 
emerging analysis techniques.  Cluster 2 was characterized by frameworks that were components 
of larger landscape modeling systems.  Cluster 3 approached habitat modeling through modeling 
shells, GIS-based modeling systems, or a diversity of other techniques to model habitat 
relationships.  Frameworks in Cluster 4 use simple approaches to evaluate habitat quality, often 
developed for use within a GIS.  Both frameworks in Cluster 5 link multiple-scales to evaluate 
habitat quality.  Frameworks in Cluster 6 predict changes in habitats.  Frameworks in Cluster 7 
provide predictive tools that are useful in assessing impacts of land management activities on 
species and habitats.  Our evaluation provides conceptual information for practitioners evaluating 
how well wildlife habitat–relationships frameworks may achieve modeling objectives.  To assist 
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developers of future wildlife habitat–relationships modeling frameworks, we provide insights to 
the development of rigorous, yet practical frameworks that follow current trends in wildlife–
habitat relationships modeling and suggestions to overcome limitations in existing frameworks. 

KEY WORDS:  habitat modeling, habitat-population linkage, habitat suitability modeling, 
spatial relationships, wildlife-habitat relationships modeling 

______________________________________________________________________________ 

INTRODUCTION 

Habitats are areas of land that provide resources such as food, cover, and water and 
environmental conditions such as precipitation and soil types that affect occupancy of individuals 
or populations of species, allowing those species to survive and reproduce (Morrison et al. 2006).  
Changing requirements in the 1970s to evaluate and report the effects of land management 
activities on wildlife habitats and associated populations led to a need for new analysis 
techniques.  Wildlife habitat–relationships models were first developed in the mid-1970s 
(Salwasser et al. 1980) to provide practitioners with tools to evaluate habitat quality for selected 
species.  The underlying goal of many habitat–relationships modeling frameworks is to evaluate 
habitat quality for wildlife populations, which was described by Hall et al. (1997:178) as “the 
ability of the environment to provide, conditions appropriate for individual and population 
persistence.” 

Habitat capability models have been described as providing an estimate of the area within 
which resources for a modeled species can be found, or ranking an area based on the capability 
of that area to support a species based on a few important environmental variables (Morrison et 
al. 2006:337).  Habitat effectiveness models rank resources in an area to the degree that 
maximum use or carrying capacity can be met (Morrison et al. 2006:337), with effectiveness 
often tempered to reflect the constraints of human activities on the area actually usable by 
animals (Lyon and Christensen 1992, Merrill et al. 1999).  Throughout this manuscript we 
generally refer to habitat–relationships modeling frameworks, while recognizing that frameworks 
have been developed under a variety of structures including species-habitat matrices, habitat 
suitability, habitat capability, and habitat effectiveness (Morrison et al. 2006).  We define 
frameworks as conceptual modeling structures including modeling shells (e.g., expert systems) 
and general modeling approaches (e.g., artificial neural networks, Bayesian belief networks, 
spatial optimization) within which models are constructed that are similar in purpose and 
function. 

Two general approaches have developed to assess habitat quality for wildlife populations.  
Under species-habitat matrix frameworks, the starting point is a classification of vegetation 
within which, each classification unit is assigned a value describing its value as habitat for one or 
more wildlife species (Morrison et al. 2006).  Frameworks that use guilds often are structured as 
a species-habitat matrix, because guilds represent aggregates of species needs typically including 
generalizations of habitat needs.  Work by Thomas (1979) in the Blue Mountains of northeastern 
Oregon and southeastern Washington, Hoover and Willis (1984) in Colorado forests, and 
DeGraaf et al. (1992) in New England forests are classic examples of species-habitat matrix 
modeling frameworks.  The second approach to modeling wildlife habitat quality includes 
frameworks that begin with the habitat requirements of a species and then quantifies these 
requirements through specific vegetation and other variables to evaluate how an area provides 
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the various required requirements.  The Habitat Evaluation Procedures (HEP) developed by the 
U.S. Fish and Wildlife Service (1981) established the underpinnings for this approach from 
which many other modeling frameworks have been developed. 

Habitat assessments with HEP are based on habitat units, which are products of habitat 
quality determined by a habitat suitability index (HSI) model and the total area of cover types 
used by a modeled species (U.S. Fish and Wildlife Service 1981).  The basis of an HSI is to 
quantify an organism’s life history requirements (e.g., food and cover) using measurable 
components of habitat (e.g., vegetation structure, composition, and spatial arrangement).  The 
model structure assumes a direct linear relationship between the value of the HSI and carrying 
capacity (U.S. Fish and Wildlife Service 1981).  For a given evaluation, individual habitat 
suitability indices for life history requirements are scored by comparison to optimum conditions; 
individual indices are then typically computed as geometric means to devise HSI models (U.S. 
Fish and Wildlife Service 1981). 

Habitat–relationships modeling frameworks have increased in number and complexity 
since the mid-1970s.  Consequently, selecting a modeling framework to match the objectives of a 
wildlife conservation program that appropriately consider data availability and the analytical 
abilities of practitioners can be difficult.  The purpose of our review was to describe the 
structure, uses, output, and operation of wildlife habitat–relationships modeling frameworks to 
provide practitioners with a basis for selecting frameworks for use.  Our specific objectives were 
to: (1) identify wildlife habitat–relationships modeling frameworks that are currently available 
for use and (2) provide a descriptive analysis of frameworks to assist practitioners in selecting 
approaches to modeling wildlife–habitat relationships that best fit their objectives. 

METHODS 

Identifying and Rating Habitat–Relationships Modeling Frameworks 
To focus our search for modeling frameworks we bounded our definition of wildlife habitat–
relationships modeling frameworks with 4 criteria that were based on the modeling objectives of 
each framework.  We:  (1) considered frameworks that were designed to evaluate habitat for 
terrestrial wildlife species; (2) considered frameworks that have the potential for multi-species 
applications, thus avoiding approaches designed solely for 1 species (e.g., Gutiérrez et al. 1992); 
(3) avoided statistical modeling techniques (e.g., logistic regression, discriminant function 
analysis, resource selection functions) designed to quantify selection of habitat by a species, 
although we considered modeling frameworks that incorporate statistical or other analytical 
concepts to describe habitat relationships (e.g., artificial neural networks, Bayesian belief 
networks, expert systems, fuzzy logic, spatial optimization); and (4) only considered frameworks 
that were operational, avoiding those that are currently being conceptualized or were otherwise 
incomplete. 

In many cases, the recently developed wildlife–habitat relationships frameworks we 
identified were improvements of earlier, more general frameworks.  For instance, several newer 
frameworks including ArcHSI (Juntti and Rumble 2006), HABIT@ (McGarigal and Compton 
2003), HCI (McComb et al. 2002), HQI (Rickel 1997), Landscape HSI (Larson et al. 2003, 2004; 
Dijak et al. 2007, Rittenhouse et al. 2007), and LMS (Marzluff et al. 2002) retain elements of the 
original 1981 HSI framework, but provide more sophistication through incorporation of 
advancements such as GIS and spatially explicit analyses.  Consequently, we retained newer 
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frameworks that were built on the platforms of older frameworks as independent observations 
because their advancements allow them to function in different ways than the previously 
described frameworks.  In other cases, frameworks in our analyses were stand-alone, not based 
on previously described frameworks.  To be consistent, however, in each case we adhered to the 
4 criteria to identify frameworks according to their modeling objectives. 

After identifying the major habitat–relationships modeling frameworks that fit the above 
4 criteria we rated each according to 10 nominal- and 5 ordinal-scale criteria to quantify our 
evaluation (Table 1).  Nominal criteria included: 1) whether the breadth of application of the 
framework could consider a wide range of species in a wide range of environments or was 
limited to certain taxa or a single environment; 2) whether the frameworks linked habitat 
conditions with population demographics or surrogates; 3) whether the frameworks were 
included in comprehensive landscape modeling systems; 4) availability of input data; 5) whether 
at least 1 individual species model based on a particular framework had been validated with field 
data; 6) capability of frameworks to examine habitat relationships at single or multiple scales; 7) 
whether multi-scaled frameworks required linkage information among scales to function; 8) 
whether the frameworks had attained scientific credibility through publication or application of 
results suggesting acceptance by an array of professionals; 9) the spatial application of the 
framework (i.e., does the framework use geographic data [spatial framework]; does the 
framework examine spatial relationships in habitat data at specific locations or coordinates 
[spatially explicit]; or, does the framework not rely on geographic or spatial data [aspatial]); and 
10) whether vegetation and its attributes were applied in the framework as the basis for a species-
habitat matrix or as variables to assess habitat relationships for wildlife species (Table 1).  
Ordinal criteria included: 1) whether documentation was adequate to clearly understand and 
apply the modeling frameworks; 2) ease of application; 3) whether output was well defined and 
measurable; 4) whether frameworks were well-suited for the scales they were developed to 
examine; and 5) transparency of the frameworks’ structure (Table 1).  We conducted two 
independent reviews of each framework and then reached consensus on criteria ratings that 
differed. 

 
Table 1. Nominal- and ordinal-scale criteria used to rate wildlife habitat–relationships modeling 
frameworks. 

Criteria Definition Rating scale 
Nominal criteria   
  Breadth of application Can the framework be used to define habitat 

relationships for a wide range of species in a 
wide range of environments? 

0 = only suited for a single species or 
environment 

1 = suited for a wide range of species in 
a wide range of environments 

  Habitat–population linkage Does the modeling framework incorporate 
vital rates (e.g., production, survival), other 
demographic parameters (e.g., density, 
population size); surrogates (e.g., quality of 
home ranges, habitat conditions in critical 
reproductive habitats, presence/absence) of 
population demographic parameters; or does 
the modeling framework model habitat 
conditions without specific consideration of 
wildlife population parameters? 

0 = does not rely on population 
demographics or surrogates of 
modeled species 

1 = relies on surrogates for population 
demographic parameters or framework 
can utilize population demographics if 
desired, but is not dependent on them 

2 = specifically relies on population 
demographics of modeled species 
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Table 1. Nominal- and ordinal-scale criteria used to rate wildlife habitat–relationships modeling 
frameworks. 

Criteria Definition Rating scale 
  Independence Is the framework part of a larger landscape 

modeling system? 
0 = a component of a larger landscape 

modeling system 
1 = stands alone and is not part of a 

larger landscape modeling system 

  Input requirements Is the required input data (e.g., GIS coverages, 
stand and wildlife inventory data) readily 
available in agency inventories? 

0 = not readily available 
1 = readily available 

  Model validation Has output from at least 1 model developed 
within a framework been validated with field 
data? 

0 = no validation known or validation 
impossible 

1 = model validated 

  Scale application Is the framework limited to 1 scale or can it 
explicitly examine differences in habitat 
conditions at a range of spatial scales? 

1 = limited to 1 scale 
2 = capable of examining habitat 

conditions at more than 1 scale (e.g., 
forest and region) 

  Scale linkage If the framework is multi-scaled, are the scales 
linked? 

0 = scales are not linked 
1 = scales are linked 

  Scientific credibility Has the framework gained credibility through 
publication of results, application of results, or 
other mechanisms to suggest acceptance by an 
array of professionals? 

0 = limited credibility 
1 = at least 1 publication of results using 

this framework, or other application of 
the modeling framework 

  Spatial application Does the framework: not rely on geographic 
data (aspatial); examine geographic data 
(spatial framework); or examine spatial 
relationships in habitat data at specific 
locations or coordinates as part of its structure 
(spatially explicit)? 

1 = aspatial 
2 = spatial 
3 = spatially explicit   

  Vegetation application How does the framework apply vegetation and 
its attributes in modeling? 

0 = applied as the basis for a wildlife 
species-habitat matrix 

1 = applied as habitat variables to assess 
wildlife–habitat relationships 

Ordinal criteria   
  Documentation Is there sufficient documentation (e.g., a 

user’s manual or website) to clearly 
understand the modeling framework?  

0 = limited 
1 = marginal 
2 = sufficient 

  Ease of application Is the model difficult to parameterize, run, and 
understand the output? 

1= difficult 
2 = moderate 
3 = easy 

  Output definition Is the output well defined and will it translate 
to something that can be measured? 

1 = difficult 
2 = moderate  
3 = easy 

  Scale definition Is the framework well suited for the scales it is 
defined to examine? 

0 = not well-suited 
1 = moderately well-suited 
2 = very well-suited 

  Transparency Is the structure of the framework clear (i.e., is 
the flow of the framework apparent)? 

1 = difficult 
2 = moderate 
3 = easy 
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Description of Habitat–Relationships Modeling Frameworks 

To depict trends in development of wildlife habitat–relationships modeling frameworks we 
plotted nominal criteria as proportions across the 3 decades encompassing our review (1980s, 
1990s, and 2000s), with the final decade covering 2000–2006.  Because California wildlife 
habitat relationships (Salwasser et al. 1980), pattern recognition (Williams et al. 1977), and 
wildlife habitat quality (Roller 1978) modeling frameworks were developed in the mid- to late 
1970s, we included these frameworks with those described in the 1980s.  We developed 
narratives for each framework summarizing the origins of the framework, capabilities of the 
framework including data inputs and outputs, and related information (e.g., availability of 
software). 

We conducted cluster analyses to better understand relationships among frameworks and 
to identify frameworks with similar characteristics.  We used agglomerative hierarchical cluster 
methods to identify groupings of habitat–relationships modeling frameworks based on 
dissimilarity distance between each framework (PROC CLUSTER; SAS Institute 2003).  Our 
input data for cluster analyses were the criteria ratings for each framework.  Because our ratings 
consisted of nominal and ordinal data, we computed Gower’s similarity coefficients (Gower 
1971) between each pair of frameworks.  We then computed Gower’s dissimilarity coefficient (1 
– Gower’s similarity coefficient) in PROC DISTANCE (SAS Institute 2003) to base clustering 
on heterogeneity within the data ratings between frameworks.  We used the average linkage 
cluster method, which is an unweighted pair-group method that uses arithmetic averages of 
dissimilarity coefficients to compute distance between clusters (PROC CLUSTER; SAS Institute 
2003).  We used an R2-type measure of total within-cluster heterogeneity to evaluate the 
proportion of variance accounted for by joining each cluster.  When each framework is in a 
cluster by itself, R2 = 1 because there is no within-cluster variability; as frameworks are grouped 
into clusters, within-cluster variability increases from 0 and R2 decreases from 1.  We plotted R2 
values for each cluster in a hierarchical tree diagram (PROC TREE; SAS Institute 2003) and 
used a cutoff value of R2 = 0.60 to define cluster groupings.  We computed Gower’s dissimilarity 
coefficients within each identified cluster group to evaluate within-cluster variability and report 
the mean and range in these coefficients for each cluster (PROC MEANS; SAS Institute 2003).  
Because Gower’s dissimilarity coefficients range from 0 to 1, higher values indicate greater 
within-cluster heterogeneity.  Lastly, we described attributes of each cluster group to better 
understand common patterns. 

RESULTS 

Identifying and Rating Habitat–Relationships Modeling Frameworks 
Based on our review of known frameworks and interpretation of documentation available to us 
we identified n = 40 modeling frameworks (Table 2).  We located 13 frameworks developed 
through the 1980s, 12 frameworks developed in the 1990s, and 15 developed since 2000.  Ten 
(0.25) frameworks exist within a larger landscape assessment system (ALCES, BOREAL, 
CompPATS, EMDS, HCI, LEAM, LEEMATH, LMS, SESI, and SIMFOR).  Although HCI was 
developed as a component of the Coastal Landscape Analysis and Modeling System (CLAMS; 
Spies et al. 2002), it can model wildlife–habitat relationships outside of this system (B. C. 
McComb, University of Massachusetts, personal communication, 2006).  Eight (0.20)  
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Table 2.  Summary of 40 habitat–relationships modeling frameworks. 

Framework  Description  Primary references 
A Landscape Cumulative Effects 

Simulator (ALCES) 
 ALCES quantifies economic contributions of land use practices, 

identifies associated environmental and industrial issues, and 
assists in development of mitigation strategies.  The availability 
and quality of habitat for specific wildlife species is determined 
by tracking the area and area weighted value of different 
vegetation and landscape types. 

 Schneider et al. 2003, 
ALCES 2005 

Animal, Landscape and Man 
Simulation System (ALMaSS) 

 ALMaSS predicts the effect of changing landscape structure or 
management on key wildlife species.  It incorporates detailed 
species-specific life history information and is agent-based, 
allowing each individual to interact with other individuals and 
the environment. 

 Topping et al. 2003 

Artificial Neural Network (ANN)  Neural network models are inspired by natural physiology and 
mimic the neurons and synaptic connections of the brain.  Once 
trained for a given task, a network can be applied by providing 
suitable data on the network inputs.  Published applications used 
habitat variables to model nesting habitat for red-winged 
blackbirds, marsh wrens, and northern bobwhite quail. 

 Özesmi and Özesmi 
1999, Lusk et al. 2002, 

Özesmi et al. 2006 

Arc-Habcap  Arc-Habcap is a deterministic GIS-based wildlife habitat model 
that originated from a spreadsheet-based habitat capability 
(Habcap) model.  The model in Benkobi et al. (2004) predicts 
effectiveness of forage, cover, and cover-forage proximity, as 
well as effects of roads, on elk distributions.  The Arc-Habcap 
framework can be used to model habitat for any terrestrial 
vertebrate based on association with vegetation structural stages. 

 Benkobi et al. 2004 

Arc Habitat Suitability Index (ArcHSI)  ArcHSI is a GIS-based model that estimates the ability of an area 
to meet the food and cover requirements of an animal species.  
The components and parameters of the model occur in tables and 
can be easily edited or otherwise modified.  ArcHSI runs on 
personal computers with the full installation of ArcGIS. 

 Juntti and Rumble 2006 

Bayesian Belief Networks (BBN)  BBNs depict probabilistic relations among variables and use 
Bayesian statistics to calculate probabilities of outcomes, such as 
population presence, given conditions of input variables (e.g., 
condition of habitat). 

 Marcot et al. 2001, 
Raphael et al. 2001, 

Marcot 2006 
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Table 2.  Summary of 40 habitat–relationships modeling frameworks. 

Framework  Description  Primary references 
Biodiversity Expert System Tool 

(BEST) 
 BEST uses data from the U.S. Geological Survey's Gap Analysis 

Program (GAP) and other data in a GIS environment.  This tool 
provides predictions of conflict between proposed land uses and 
biotic elements and is intended for use at the start of a 
development review process. 

 Crist et al. 2000 

BIRDHAB  BIRDHAB is a wildlife habitat relationships model developed 
for national forests in the Southern Region to assist in assessment 
of proposed management actions.  It is written as an ArcInfo GIS 
program that accesses stand inventory data and a species-habitat 
matrix to describe the relative quality of habitat for 271 species 
of birds. 

 U.S. Forest Service 1994, 
Kilgo et al. 2002 

BOREAL  BOREAL is a tactical planning decision support system that 
predicts the effects of alternative forest management strategies 
on forest product yields, revenues, and habitat area and 
distribution.  This framework uses readily available inventory 
data and provides tabular, graphical, and map output. 

 Puttock et al. 1998 

Computerized Project Analysis and 
Tracking System (CompPATS) 

 CompPATS evaluates the effects of forest management on 
wildlife habitat, sedimentation, visual quality, timber yield, and 
net revenue.  Wildlife values describe habitat capacity, not an 
estimate of animal abundance. 

 Ouachita National Forest 
1988, Keller et al. 1994 

California Wildlife Habitat 
Relationships (CWHR) 

 CWHR is maintained by the California Department of Fish and 
Game.  Habitat suitability indices may be calculated for land use 
planning assessments using GIS and fuzzy logic. 

 Salwasser et al. 1980, 
Raphael and Marcot 

1986, Block et al. 1994, 
California Department of 

Fish and Game 2005 

Effective Area Model (EAM)  EAM is an empirically based spatial model that incorporates 
patch size and shape, composition of matrix habitats, and 
species-specific edge responses to predict the organization of 
animal assemblages occupying heterogeneous landscapes.  
Specifically, it predicts the effects of matrix habitats on species 
abundances in habitat patches. 

 Sisk et al. 1997, Brand et 
al. 2006 
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Table 2.  Summary of 40 habitat–relationships modeling frameworks. 

Framework  Description  Primary references 
Ecosystem Management Decision 

Support (EMDS) 
 EMDS v. 2.0 is an application framework for knowledge-based 

decision support of ecological assessments that is designed for 
use at any geographic scale.  The system integrates GIS and 
knowledge-based reasoning technologies in the Microsoft 
Windows® environment. 

 Reynolds (1999a, b); 
Reynolds (2001), Stoms 

et al. (2002) 

Expert Systems  Expert systems are a formalized method of organizing and 
applying information and opinion which utilize quantitative 
information when available, but usually rely primarily on expert 
opinion.  Results may be expressed in terms of conditional states 
or probabilities. 

 Marcot 1986 

FORHAB  FORHAB is a deciduous forest stand simulation model that may 
be used to predict changes in available breeding habitat for birds. 

 Smith et al. 1981 

HABIT@  Habitat@ evaluates habitat at multiple, interconnected scales 
through indices that represent the quality of selected variables 
with numerous options for summarizing, combining, and/or 
comparing model variables (e.g., arithmetic mean, product, 
geometric mean, minimum). 

 McGarigal and Compton 
2003 

HABSCAPES  HABSCAPES uses spatial databases to map the predicted 
occurrence of all terrestrial vertebrate and aquatic amphibian 
species relative to landscape pattern over large geographic areas.  
Spatial databases describing the landscape are linked to 
databases containing wildlife habitat relationships and life 
history characteristics using custom FORTRAN programs and 
PARADOX scripts. 

 Huff et al. 2001; Mellen 
et al. 1995, 2001 

HABSIM  HABSIM tracks vegetation seral stages, quantifies the change in 
vegetation structure and composition for each seral stage over 
time, and relates this information to potential carrying capacity 
for the species of interest. 

 Raedeke and Lehmkuhl 
1986 

Habitat-Based Species Viability 
(HBSV) Model 

 With HBSV, areas of high quality habitat for a species are 
assumed to support individuals in smaller home ranges, with 
higher rates of survival, and with higher reproductive success.  
The number of individual home ranges of different quality 
habitat for an individual species are mapped and quantified to 
assess the potential viability of the species. 

 Roloff and Haufler 1997, 
2002 
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Table 2.  Summary of 40 habitat–relationships modeling frameworks. 

Framework  Description  Primary references 

Habitat Capability Index (HCI)  HCI estimates the capability of a landscape patch and its 
surrounding neighborhood to provide conditions important to a 
species survival and reproduction. These values are based on 
vegetation and physical conditions over a range of scales on the 
landscape. 

 McComb et al. 2002, 
Spies et al. 2002 

Habitat Effectiveness Index (HEI)  HEI originated through the development of models to evaluate 
cumulative effects and is computed as the difference between 
analogues of death and birth rates, which yields a measure of 
habitat suitability.  An index of human activity may be used as an 
analogue of death rates.  An index of habitat quality, potentially 
described by vegetation, food availability, and abiotic factors is 
often used as an analogue of birth rate. 

 Thomas et al. 1988, 
Merrill et al. 1999 

Habitat Quality (HQ)  The HQ framework measures habitat interspersion (Is) and 
juxtaposition (Jx) through GIS processes and incorporates it with 
limiting factors (RDF) that are essential for the species of 
interest.  The form of the relationship is HQ = (0.2*Is/8) + 
(0.6*Jx/12) + (0.2*RDF) resulting in values from 0.0 to 1.0. 

 Roy et al. 1995 

Habitat Quality (HQI) and Habitat 
Quality Plus (HQI+) 

 This is a GIS (ArcView) PC application that was developed to 
provide information for development of forest plans (HQI for 
single species analyses; HQI+ for multiple species analyses).  An 
index value from 0.0 to 1.0 is assigned to habitat patches based 
on cover type, canopy, tree size, and season. 

 Rickel 1997 

Habitat Suitability Index (HSI)  HSI indices are a composite (often a geometric mean) of 
individual suitability index (SI) scores reflective of habitat 
variables that represent cover types, life requisites, and life stages 
for habitats of individual species, each scaled 0 (unsuitable 
habitat) to 1 (optimum habitat). SI scores range from 0 to 1 and 
are computed as a ratio of a value of interest (i.e., estimate or 
measure of habitat conditions) divided by a standard of 
comparison (i.e., optimum habitat condition).  HSI models 
assume a linear relationship between the index value and 
carrying capacity for the species of interest. 

 U.S. Fish and Wildlife 
Service 1981 
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Table 2.  Summary of 40 habitat–relationships modeling frameworks. 

Framework  Description  Primary references 
Landscape HSI  Landscape HSI applies a 0–1 habitat suitability index to large 

landscapes through the use of GIS-based modeling of raster data 
(e.g., tree species and age) across entire landscapes.  Landscape 
HSI has also incorporated other programming to facilitate 
evaluation of spatially explicit landscape attributes (e.g., 
LANDIS) and wildlife population fitness parameters (e.g., 
RAMAS). 

 Larson et al. 2003, 2004; 
Shifley et al. 2006, Dijak 
et al. 2007, Rittenhouse et 

al. 2007  

Land Use Evolution and Impact 
Assessment Model (LEAM) 

 The LEAM model determines the location of habitat patches 
likely to sustain populations of species of interest, estimates 
population size, and assesses the degree of connectivity and 
potential gene flow between patches.  When applied to a 
changing landscape, the results of the model indicate changes in 
species-specific patch connectivity and determine the impact of 
land-use change on population isolation and habitat 
fragmentation. 

 Aurambout et al. 2005 

Landscape Evaluation Effects of 
Management Effects on Timber and 
Habitat (LEEMATH) 

 LEEMATH is a spatially and temporally explicit tool that 
integrates habitat attributes, habitat suitability, stand growth, 
spatial habitat attributes, and landscape characteristics.  Model 
input is a management regime defined by a timber harvest 
schedule, a silvicultural treatment plan, the spatial distribution of 
stands, and the target wildlife species.  Outputs include timber 
growth and harvest (e.g., total basal area), habitat attributes (e.g., 
mean habitat patch size) and habitat suitability (e.g., total habitat 
area). 

 Li et al. 2000 

Landscape Management System (LMS)  LMS is a computerized system that integrates landscape-level spatial 
information, stand-level inventory data, and distance-independent 
individual tree growth models to project changes through time in tree 
growth and snag decay across forested landscapes.  Management 
scenarios are evaluated in terms of wildlife habitat and timber revenue. 

 Marzluff et al. 2002 

Program to Assist in Tracking Critical 
Habitat (PATCH) 

 PATCH is a spatially explicit, individual-based, life history simulator 
designed to project populations of territorial terrestrial vertebrate species 
through time.  Inputs include habitat maps, specifications for habitat use 
(territory size and habitat affinity), vital rates (survival and 
reproduction), and descriptions of species' movement behavior.  Outputs 
include spatial estimates of habitat occupancy rate and source-sink 
characteristics. 

 Schumaker 1998, 
Schumaker et al. 2004 
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Table 2.  Summary of 40 habitat–relationships modeling frameworks. 

Framework  Description  Primary references 
Pattern Recognition (PATREC)  PATREC is a modeling framework that relies on Bayesian 

statistical inference which requires that habitat conditions be 
expressed as conditional probabilities (i.e., 1 or more of the 
habitat conditions under consideration is much more probable 
[occurs more frequently] than the others).  Expected densities of 
animals can be computed based on knowledge of densities and 
habitat conditions. 

 Williams et al. 1977, 
Grubb 1988 

Point Specific Estimator (PSE)  PSE estimates quality of habitat from single variable data bases 
(e.g., vegetation maps) in terms of interspersion, juxtaposition, 
and spatial diversity.  Input requirements include cover type and 
values of cover types to wildlife species.  Outputs for raster-
based maps are possible through application of the spatial 
diversity index values to each grid cell. 

 Mead et al. 1981, Lyon et 
al. 1987 

RAMAS Landscape  RAMAS Landscape integrates the LANDIS landscape model 
with the RAMAS GIS habitat-based metapopulation model to 
provide predictions about the viability, recovery, and growth of 
species based on predicted changes in landscapes. 

 Akçakaya et al. 2004, 
2005 

Spatially Explicit Species Index (SESI)  SESI models are similar to HSI models in that population 
response is predicted by a set of habitat relationships and in that 
habitat quality is quantified by an index value.  However, SESI 
models can focus either on one part of a life cycle, such as 
breeding or foraging, or whole life cycles.  They incorporate 
temporal changes in the environment, can be used to model the 
responses of any species in the system, and provide a landscape 
index map rather than just a single index or set of indices. 

 Curnutt 2000 

SIMFOR  SIMFOR evaluates the response of forest vegetation to 
management or natural disturbances, and calculates potential 
landscape and wildlife habitat conditions.  By matching wildlife 
species requirements with projected habitat attributes, SIMFOR 
estimates species-specific habitat suitability.  Simple landscape 
metrics based on seral stage, patch size and edge characteristics 
are also calculated. 

 Wells et al. 1999, Wells 
and May 2002, Seely et 

al. 2004 

 12



Beck and Suring 

Table 2.  Summary of 40 habitat–relationships modeling frameworks. 

Framework  Description  Primary references 
Spatially-Neutral Bayesian Model 
(SNBM) 

 The simplest potential distribution of a wildlife species is a 
random distribution where all sites have equal probabilities.  A 
more ecologically appropriate potential spatial distribution 
accounts for environmental variation.  This expected distribution 
is called a spatially-neutral model, because it is generated 
without hypothesizing spatial factors that regulate the 
distribution of resources or organisms. 

 Milne et al. 1989 

Spatial Optimization  Spatial optimization is not a habitat modeling framework, per se, 
but provides a framework within which the results of habitat 
modeling may be applied to obtain habitat configurations to best 
meet specific management objectives.  Optimization of 
landscapes aims to identify landscape and land use patterns, 
which support certain ecosystem functions in an optimal way.  
The chosen performance criteria are based upon the ecosystem 
functions considered for optimization. 

 Hof and Bevers 1998 

Species-area Relationship (SPPAREA)  Species-area curves are computed as S = cAz, where S = number 
of species, c = a constant that varies with taxon and geographic 
region, A = area, and z = a constant measuring the slope of the 
line relating S and A.  Species-habitat area relationships were 
first explored on islands, but have been extended to a wide 
variety of habitats. 

 Schroeder 1996 

Species-Habitat Matrices (SHM)  Species-habitat matrices are databases used to predict the 
presence or relative abundance of species within geographic 
areas or within sera1 stages of vegetation types.  More detailed 
predictions include ratings for life requisites of species such as 
reproduction, feeding, and cover.  Most species-habitat matrices 
rely on previously published information and expert opinion as 
the basis for their entries. 

 Thomas 1979, Hoover 
and Willis 1984, DeGraaf 

et al. 1992, Scott et al. 
1993, Karl et al. 2000 

Species Sorting Algorithm (SSA)  SSA derives data from a spatial landscape analysis and from 
published species life-histories to evaluate the full suite of 
species that could occur on a landscape.  The SSA identifies and 
concentrates attention on species that have, due to ecological 
factors such as habitat specificity or negative response to 
management activities, the potential to be affected by proposed 
land management.  

 Reed et al. 2001; Higdon 
et al. 2005, 2006 
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Table 2.  Summary of 40 habitat–relationships modeling frameworks. 

Framework  Description  Primary references 

Wildlife Habitat Quality (WHQ)  WHQ generates numerical ratings of habitat quality based on an 
analysis of digital habitat maps and associated information.  
Information on vegetation and terrain (as they affect availability 
of food and cover), habitat interspersion, and habitat 
juxtaposition are integrated to provide a score from 0 to 100 to 
quantify habitat quality. 

 Roller 1978 
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frameworks (Arc-Habcap, BEST, BIRDHAB, CompPATS, CWHR, HABSCAPES, PATCH, 
and SHM) apply vegetation and its attributes as the basis for evaluating wildlife–habitat 
relationships within species-habitat matrices. 

Since development of wildlife–habitat relationship models began, most frameworks have 
defined habitat relationships for a wide range of species in a wide range of environments (Fig. 
1A).  During the 1990s, more (0.33) frameworks applied vegetation attributes within the context 
of species-habitat matrices than other decades (Fig. 1B).  The proportion of frameworks that are 
not components of larger landscape modeling systems (Fig. 1C) and that use input data that are 
typically readily available in natural resource agency inventories declined from 1980 through 
2006 (Fig. 1D).  The proportion of frameworks that examine habitat relationships at multiple 
scales (Fig. 2A), link scales when multi-scaled (Fig. 2B), and that are spatially-explicit (Fig. 2C) 
increased from the 1980s through 2006.  The proportion of frameworks that use population 
demographics or surrogates generally increased from the 1980s through 2006 (Fig. 2D).  Over 
time, the proportion of frameworks where at least one species model based on that framework 
has been validated through comparing predictions to observed data, reserving data to use in 
validation, or other techniques has never exceeded 0.58 (Fig. 3A), but the proportion of 
frameworks that have received scientific credibility through peer-reviewed publication or 
application of results, or other mechanisms has consistently remained >0.83 (Fig. 3B).

 
Figure 1.  Proportion of wildlife habitat–
relationships modeling frameworks 
developed by decade (A) suited for a wide 
range of species in a wide range of 
environments, (B) where vegetation was 
applied as habitat variables to assess 
wildlife–habitat relationships, (C) that are 
stand alone frameworks, not a component of 
a landscape modeling system, and (D) with 
input requirements that are readily available 
in agency inventories. 

 
 

Figure 2.  Proportion of wildlife habitat–
relationships modeling frameworks 
developed by decade, which  (A) examine 
habitat relationships at multiple scales, (B) 
provide linkage between scales if multi-
scaled, (C) are spatially explicit and (D) use 
population demographics or surrogates of 
population demographics to model habitat 
relationships. 
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Figure. 3.  Proportion of wildlife habitat–relationships modeling frameworks developed by 
decade (A) where at least 1 model developed within that framework has been validated with field 
data, (B) that have attained scientific credibility through publication of results, application of 
results, or other mechanisms to suggest acceptance by an array of professionals. 

Description of Habitat–Relationships Modeling Frameworks 
Only 2 (0.05) frameworks (ALMaSS and LEEMATH) were limited to a single environment 
(Table 3).  Of the total, 3 (0.08) frameworks were aspatial (Expert Systems, HABSIM, 
CompPATS; Table 3).  Four (0.10; ANN, CompPATS, SPPAREA, and WHQ) of the reviewed 
frameworks considered habitat relationships at a single spatial scale (Table 3).  Five of the 36 
(0.14) multi-scale frameworks (BBN, HABIT@, HCI, EMDS, and PATCH) provided linkage 
between scales (Table 3).  Nineteen (0.48) frameworks incorporated population demographics or 
surrogates into modeling.  Twenty-seven (0.68) frameworks have the ability to incorporate 
spatially explicit characteristics (Table 3). 

Total heterogeneity between CompPATS, HABSCAPES and other frameworks was R2 
≥0.60, indicating these 2 frameworks were different from other frameworks based on our criteria 
so they were not included in any clusters (Fig. 4).  Heterogeneity was lowest between 
frameworks for the cluster formed by HEI and HBSV (R2 = 1.000) and highest (R2 = 0.000) 
between CompPATS, HABSCAPES, and all clusters (Fig. 4).  Thirty-eight frameworks were 
apportioned within 7 clusters, each cluster containing an average of 5.4 (range = 2–10) 
frameworks.  Mean dissimilarity between all modeling frameworks was 0.352 (range: 0.034–
0.753), indicating average heterogeneity was low-to-moderate, yet the range in heterogeneity 
between frameworks was broad. 

Cluster 1.—Cluster 1 consisted of HSI and 9 other frameworks (R2 = 0.739) that rely on 
emerging analysis techniques (ANN, CWHR, HEI, HBSV, PATCH, and PATREC) and/or 
evaluate wildlife–habitat relationships within the context of species-habitat matrices (Arc-
Habcap, BIRDHAB, CWHR, PATCH, and SHM; Fig. 4; Table 3).  Mean dissimilarity between 
all frameworks was 0.241 (range: 0.071–0.429), indicating that frameworks within the cluster 
were rather similar in their characteristic abilities (i.e., how they fit our evaluation criteria).  
Input for all frameworks in Cluster 1 was readily available in natural resource agency 
inventories.  Output was easy to define and measure for all frameworks in Cluster 1 (Table 3).  
Species-specific models for each framework in Cluster 1 have been validated, each framework 
was suited for a wide range of species in a wide range of environments, and has attained 
scientific credibility (Table 3).  Among the 3 largest clusters, Cluster 1 was highest (0.70) for 
frameworks that relied on population demographics or surrogates.  All frameworks in Cluster 1 
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Table 3.  Ratings for criteria used to assess wildlife habitat–relationships modeling frameworks. 
 Nominal criteriaa   Ordinal criteriab

  Habitat  Input Model  Scale  Spatial Veg     Scale  
Framework Breadth pop-link Indep req valid Scale link Credible appl appl  Document Ease Output def Trans 

Cluster 1                 
  ANN W S I RA V S NL C S HV  S M E VWS D 
  Arc-Habcap W S I RA V M NL C SE SHM  L M E VWS E 
  BIRDHAB W No I RA V M NL C S SHM  S E E VWS E 
  CWHR W S I RA V M NL C S SHM  S M E VWS M 
  HBSV W S I RA V M NL C SE HV  S M E VWS E 
  HEI W S I RA V M NL C SE HV  S E E VWS E 
  HSI W No I RA V M NL C S HV  S E E MWS E 
  PATCH W S I RA V M L C SE SHM  S M E VWS E 
  PATREC W S I RA V M NL C S HV  S E E VWS E 
  SHM W No I RA V M NL C S SHM  S M E MWS E 
Cluster 2                 
  ALCES W No NI NRA NV M NL C SE HV  S M M VWS D 
  BOREAL W No NI RA NV M NL C S HV  L D M VWS D 
  EMDS W No NI RA NV M L C SE HV  S D E VWS D 
  HCI W No NI RA V M L C SE HV  S M E VWS M 
  LEAM W S NI NRA NV M NL C SE HV  M M M VWS M 
  LEEMATH S No NI NRA V M NL C SE HV  M D E VWS D 
  LMS W No NI RA V M NL C SE HV  S D E VWS M 
  SESI W No NI RA V M NL C SE HV  M D M VWS M 
  SIMFOR W No NI RA V M NL C SE HV  S M E VWS D 
Cluster 3                 
  EAM W P I RA V M NL C SE HV  M M E VWS M 
  Expert Systems W No I RA NV M NL C A HV  S M E VWS M 
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Table 3.  Ratings for criteria used to assess wildlife habitat–relationships modeling frameworks. 
 Nominal criteriaa   Ordinal criteriab

  Habitat  Input Model  Scale  Spatial Veg     Scale  
Framework Breadth pop-link Indep req valid Scale link Credible appl appl  Document Ease Output def Trans 

  HABSIM W P I RA NV M NL C A HV  M M E VWS M 
  HQ W No I RA NV M NL C SE HV  M E E VWS M 
  Landscape HSI W No I RA NV M NL C SE HV  S E E VWS E 
  RAMAS Landscape W P I RA NV M NL C SE HV  S M E VWS D 
  SNBM W S I RA V M NL C SE HV  M D E VWS D 
  Spatial Optimization W S I RA NV M NL C SE HV  S D E VWS D 
  SPPAREA W No I RA NV S NL C SE HV  S E E VWS E 
  WHQ W No I RA NV S NL C SE HV  M M M VWS M 
Cluster 4                 
  ArcHSI W No I RA NV M NL NC SE HV  S E E MWS E 
  HQI W No I RA NV M NL NC S HV  S E M MWS M 
  PSE W No I RA NV M NL C SE HV  S M D MWS D 
Cluster 5                 
  BBN W S I NRA V M L C SE HV  S E E VWS M 
  HABIT@ W S I RA NV M L NC SE HV  S E M VWS M 
Cluster 6                 
  BEST W S I RA NV M NL C S SHM  L M M MWS M 
  FORHAB W S I NRA NV M NL C S HV  M D E MWS D 
Cluster 7                 
  ALMASS S P I NRA NV M NL C SE HV  S D E VWS M 
  SSA W P I NRA NV M NL C SE HV  M M M MWS E 
Non-clustered frameworks               
  HABSCAPES W No I NRA NV M NL NC SE SHM  S D E VWS D 
  COMPATS W No NI RA NV S NL NC A SHM  S E M MWS D 
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aDefinitions for nominal criteria ratings: 
 
Breadth of application (Breadth) = suited for a single species or one environment (S) or for a wide range of species in a wide range of 

environments (W). 
Habitat–population linkage (Habitat pop-link) = does the framework rely on population demographic parameters (P), surrogates of 

population demographic parameters (S), or does not rely on population demographics or surrogates (No) of modeled species. 
Independence (Indep) = framework is independent of (I) or a part of a larger landscape modeling system (NI). 
Input requirements (Input req) = not readily available (NRA) or readily available (RA) in agency inventories. 
Model validation (Model valid) = at least 1 model based on each framework not validated (NV) or validated (V) with field data. 
Scale = is the framework limited to 1 scale (S) or is it capable of examining habitat relationships at more than one scale (M). 
Scale linkage (Scale link) = scales in multi-scaled frameworks are not linked (NL) or linked (L). 
Scientific credibility (Credible) = framework has gained credibility (C) or not (NC) through publication or application of results. 
Spatial application (Spatial appl) = Does the framework: solely examine aspatial (A) data, evaluate geographic data (spatial [S], or 

examine spatial relationships in habitat data at specific locations or coordinates as part of its structure (spatially explicit [SE]). 
Vegetation application (Veg appl) = within the framework, vegetation is applied as the basis for a wildlife species-habitat matrix 

(SHM) or vegetation is applied as habitat variables that are used to assess habitat relationships for wildlife species (HV). 
 

bDefinitions for ordinal criteria ratings: 
 
Documentation (Document) = is documentation limited (L), marginal (M), or sufficient (S) to understand the modeling framework. 
Ease = framework is difficult (D), moderate (M), or easy (E) to parameterize, run, and understand the output. 
Output = difficult [D], moderate [M]), or easy [E] to define and measure. 
Scale definition (Scale def) = is the framework not well-suited (NWS), moderately well-suited (MWS), or very well-suited (VWS) to 

examine the scales it is defined to examine. 
Transparency (Trans) = is the structure of the framework difficult (D), moderate (M), or easy (E) to understand. 
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were moderate or easy to parameterize, run, and understand the output and 0.90 were moderate 
or easily transparent.  With the exception of Arc-Habcap, all frameworks in Cluster 1 had 
sufficient documentation to clearly understand the framework (Table 3). 

Cluster 2.—Cluster 2 included all frameworks (R2 = 0.703), with the exception of 
CompPATS, that were components of larger landscape modeling systems (ALCES, BOREAL, 
EMDS, HCI, LEAM, LEEMATH, LMS, SESI, and SIMFOR; Table 3; Fig. 4).  Mean 
dissimilarity between all 9 frameworks was 0.302 (range: 0.119–0.500), indicating that most 
frameworks within the cluster were similar in their characteristic abilities.  All of the frameworks 
in Cluster 2 have received scientific credibility through publication and all but BOREAL were 
spatially explicit (Table 3).  However, data inputs were not readily available in agency 
inventories for 3 of 9 (0.33) of the frameworks; species-specific models for 4 of 9 (0.44) 
frameworks have not been validated; each framework is moderate or difficult to parameterize, 
run, and understand the output; and transparency in model structure was moderate or difficult for 
every framework (Table 3).  Documentation for 4 (0.44) frameworks was limited or marginal.  
None of the frameworks in Cluster 2 used population demographics, although LEAM used 
surrogates of population demographics (Table 3). 

Cluster 3.—Cluster 3 consisted of 10 frameworks (EAM, expert systems, HABSIM, HQ, 
Landscape HSI, RAMAS Landscape, SNBM, spatial optimization, SPPAREA, and WHQ; Fig. 
4; R2 = 0.887).  Mean dissimilarity between all frameworks within the cluster was 0.239 (range: 
0.071–0.429), indicating that most frameworks within the cluster were similar in their 
characteristic abilities.  Cluster 3 was characterized by frameworks that were generally well 
documented, have attained scientific credibility, used readily accessible input data, had output 
that is well defined and measurable, but tended to be difficult to run, parameterize and 
understand the output (Table 3).  Half (0.50) of these frameworks emphasized population 
demographics or surrogates; the structure of only 2 (0.20) frameworks in Cluster 3 was easily 
transparent; 8 of 10 (0.80) frameworks do not have species-specific models that have been 
validated; 2 (0.20) frameworks (SPPAREA and WHQ) considered habitat relationships at a 
single spatial scale; and all frameworks, except expert systems and HABSIM, were spatially 
explicit.  In addition, all frameworks were very well-suited to examine the scales they were 
designed for (Table 3). 

Cluster 4.—Cluster 4 included 3 frameworks (ArcHSI, HQI, and PSE (Fig. 4), that had 
the lowest within-cluster variability (R2 = 0.887) of all clusters.  Mean dissimilarity between all 
frameworks within Cluster 4 was 0.256 (range: 0.154–0.308), further indicating that frameworks 
within this cluster were similar in their characteristic abilities.  All of the frameworks in Cluster 
4 used readily available input data, had sufficient documentation to understand the framework, 
and were moderately well-suited to examine the multiple scales they were designed to evaluate 
(Table 3).  None of the frameworks in Cluster 4 used population demographics or surrogates or 
have been validated through species-specific models.  These frameworks are mixed (difficult, 
moderate, and easy; Table 3) relative to our assessment of practitioners being able to measure 
model output and understand framework transparency. 

Cluster 5.—Cluster 5 consisted of 2 spatially-explicit frameworks (BBN, HABIT@), 
which were both linked to the multiple scales they were very well-suited to examine (Fig. 4).  
Within-cluster heterogeneity was R2 = 0.791 and within-cluster dissimilarity was 0.364.  Both 
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Figure 4.  Hierarchical tree diagram depicting heterogeneity between clusters of 40 wildlife habitat–relationships modeling 
frameworks evaluated in 2007. 
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frameworks had sufficient documentation; were easy to parameterize, run, and provided 
understandable output; used surrogates of population demographics; and were ranked moderate 
in transparency (Table 3).  BBN, but not HABIT@, attained model validation and scientific 
credibility (Table 3). 

Cluster 6.—Cluster 6 included 2 scientifically credible, spatial frameworks (BEST and 
FORHAB; Fig. 4), that were moderately well suited for the multiple scales they were designed to 
examine (Table 3).  Within-cluster heterogeneity was R2 = 0.778.  Dissimilarity between 
frameworks was 0.429, indicating that the frameworks forming this cluster were relatively more 
dissimilar than frameworks in the other clusters.  Both frameworks incorporated surrogates of 
population demographics; were capable of modeling a wide range of species in a wide range of 
environments; but, did not have examples of validated models developed within the frameworks.  
However, other characteristic abilities based on rating criteria differed.  BEST used readily 
available data from natural resource agency inventories and incorporated vegetation and its 
attributes within a species-habitat matrix. 

Cluster 7.—Cluster 7 included 2 spatially-explicit, credible frameworks (ALMaSS and 
SSA; Fig. 4), which specifically relied on population demographics to evaluate wildlife–habitat 
relationships (Table 3).  Within-cluster heterogeneity was highest in this cluster when compared 
among all 7 clusters (R2 = 0.686) and within-cluster dissimilarity (0.400) was second highest 
among clusters.  Input data for both frameworks were not readily available in natural resource 
agency inventories and neither framework has attained validation through a species-specific 
model.  ALMaSS was suited for a single environment (i.e., temperate Europe); was moderately 
transparent in understanding model structure; very well–suited to examine the scales for which it 
was designed; was difficult to run, parameterize, and understand its output; but, has detailed 
documentation (Table 3).  Although marginally-well documented, the structure of SSA was 
easily transparent, however it was rated moderate for all other ordinal-scale criteria (Table 3). 

DISCUSSION 
Development of model components through the last 3 decades has coincided with technological 
advancements including landscape modeling applications, statistical techniques, and computing 
capabilities (Capen 1981, Scott et al. 2002, Stauffer 2002).  Developments in ecological theory 
have also influenced habitat–relationships modeling.  For instance, some habitat–relationships 
modeling frameworks (e.g., HQ [Roy et al. 1995], PSE [Mead et al. 1981], WHQ [Roller 1978]) 
were designed to evaluate juxtaposition and interspersion of habitats based on the assumption 
that habitat quality is higher near edges or ecotones where wildlife are predicted to be more 
abundant owing to proximity of food and cover (Leopold 1933).  However, edge effects are now 
recognized as symptomatic of habitat fragmentation and smaller patch sizes (Morrison et al. 
2006); this recognition has led to a reinterpretation of edge effects for some species in habitat–
relationships modeling.  Newer frameworks often consider wildlife habitat relationships from a 
landscape viewpoint by including fragmentation or patch size effects on wildlife populations 
(e.g., LEAM [Aurambout et al. 2005]), grouping terrestrial species into guilds based on expected 
responses to different amounts and distributions of habitat across landscapes (HABSCAPES 
[Mellen et al. 2001]), integrating landscape and metapopulation models to predict demographic 
responses based on predicted landscape changes (RAMAS Landscape [Akçakaya et al. 2004, 
2005]); and predicting the effects of matrix habitats, including edge responses of species, on 
species abundances in habitat patches (EAM [Sisk et al. 1997, Brand et al. 2006]). 
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Habitat suitability under HEP was defined as a 0–1 index of habitat quality ranging from 
unsuitable to optimal (U.S. Fish and Wildlife Service 1981).  Many newer modeling frameworks 
(e.g., ArcHSI [Juntti and Rumble 2006], HABIT@ [McGarigal and Compton 2003], HCI 
[McComb et al. 2002], HQ [Roy et al. 1995], HQI [Rickel 1997], and Landscape HSI [Larson et 
al. 2003, 2004; Dijak et al. 2007, Rittenhouse et al. 2007]) follow this convention by defining 
habitat capability or suitability in 0–1 index form.  This approach provides an easily interpretable 
basis to compare current habitat conditions or suitability of sites to optimal habitat conditions at 
sites for a given species. 

HEP suggested that population variables should not usually be included in a habitat 
model because they are costly to obtain, difficult to predict, and often not indicative of habitat 
suitability (U.S. Fish and Wildlife Service 1981).  Even though including population variables in 
habitat–relationships modeling may have been avoided in the past, we considered this criterion in 
our evaluations of modeling frameworks because the value of habitats to wildlife populations is 
better understood when population parameters can be linked with habitat conditions.  Van Horne 
(1983) reported that population density by itself may be a misleading indicator of habitat quality, 
and that habitat quality may be more appropriately evaluated when survival and fecundity are 
considered along with animal densities.  The results of habitat–relationships modeling are 
increasingly reported within a population context, including available breeding bird habitat 
(Smith et al. 1981), habitat effectiveness (Merrill et al. 1999), potential population density 
(Mattson and Merrill 2004), presence or relative abundance (Scott et al. 1993), and viable home 
ranges (Roloff and Haufler 1997). 

Since their inception, wildlife habitat–relationships modeling frameworks have 
incorporated additional characteristic abilities such as application at multiple scales, linking 
scales when multi-scaled, and incorporation of population demographics or surrogates.  Our 
evaluation provides practitioners with information that will be useful in selecting frameworks to 
meet specific needs.  Below, we examine scenarios in which frameworks in each cluster have 
potential application.  We also provide a key to assist practitioners in selecting the most 
appropriate framework for potential applications (Table 4). 
 

Table 4.  Key to assist practitioners in selecting the most appropriate framework for potential 
applications from among 40 identified wildlife habitat–relationships modeling frameworks. 
1.  Large landscape modeling system is not desired ………………………...……………. 2 
1.  Large landscape modeling system is desired 
 A.      Framework with scientific credibility is desired ………………..…………. Cluster 2 
 B.      Framework with scientific credibility is not important …………………. COMPATS 
2.  Input data must be readily available from agency databases ……………….................. 3 
2.  Not critical that input data be readily available from agency databases ..………..……. 5 
3. A.      Framework where output from 1 model has been validated is desired …..... Cluster 1 
 B.      Framework where output from 1 model has not been validated is acceptable .....…. 4 
4.  Frameworks are very well-suited for the scales they are designed for ………... Cluster 3 
4.  Frameworks are moderately well-suited for the scales they are designed for … Cluster 4 
5.  The use of population demographics or surrogates is not an objective …. HABSCAPES 
5.  Framework which uses population demographics or surrogates is desired …………… 6 
6. A.      The spatial application of the framework simply uses geographical data …. Cluster 6 
 B      Spatially explicit applications by the framework are desired …………………........ 7 
7. A.      Framework that uses surrogates of population demographics is desired ….. Cluster 5 
 B.      Frameworks that uses population demographics is desired ……………….. Cluster 7 
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Potential Applications 

Cluster 1.—Frameworks forming Cluster 1 provide many characteristics that practitioners may 
find desirable including data inputs that are readily available, field validation, scientific 
credibility, transparency, and the added benefit of using population demographics or surrogates 
to model habitat relationships.  Although Cluster 1 included frameworks that evaluate wildlife 
habitat quality within the simplistic context of species-habitat matrices, as compared to 
frameworks that rely on more complex emerging analysis techniques, the characteristic abilities 
of frameworks using these approaches was similar.  A practical application of species-habitat 
matrix frameworks is their use when conducting environmental impact assessments, where the 
quality of habitat for various species within impacted or non-impacted habitats or habitat 
structural stages is of more importance than predicting occurrence or abundance (Kilgo et al. 
2002).  Although they provide interpretable output, frameworks that use emerging analysis 
techniques may require technical support to parameterize and interpret model output.  For 
instance, to model habitat relationships, ANN uses artificial neural networks (Özesmi and 
Özesmi 1999, Lusk et al. 2002, Özesmi et al. 2006); PATREC uses Bayesian probabilities 
(Williams et al. 1977, Grubb 1988); CWHR provides an option to apply fuzzy logic to calculate 
habitat suitability indices (California Department of Fish and Game 2005); and HBSV is a 
habitat-based approach to population viability modeling (Roloff and Haufler 1997, 2002).  The 
original HSI framework provides advantages in ease of interpretability and has many completed 
models that have been validated.  In addition, techniques are available to evaluate the reliability 
in HSI model inputs, providing a means to infer differences between HSI scores (Bender et al. 
1996, Burgman et al. 2001).  Those wishing to select a framework that uses surrogates or 
population demographics to link with habitat conditions should also consider Cluster 1.  In 
comparison, frameworks in Cluster 4 do not incorporate a habitat-population linkage, and fewer 
frameworks in Clusters 2 and 3 provide these options as compared to Cluster 1. 

Cluster 2.—Each of the modeling frameworks comprising Cluster 2 is scientifically 
credible components of larger landscape modeling systems.  Thus, practitioners may want to 
consider selecting these frameworks only if they are going to be involved in a comprehensive 
assessment of a large landscape and therefore are willing to devote the effort necessary to 
parameterize and run the more comprehensive landscape model.  It may be advisable for 
practitioners to establish a dialogue with the developers of these systems prior to initiating 
modeling—without establishing such dialogue, it would be difficult for practitioners to 
independently implement these frameworks.  LEEMATH was developed to evaluate alternative 
management strategies for multiple species in industrial forest landscapes in the southeastern 
United States (Li et al. 2000); however, all other frameworks in Cluster 2 are suitable for a wide 
range of species in a wide range of landscapes.  Major weaknesses of Cluster 2 are that only 
LEAM uses surrogates of population demographics, and without consultation with framework 
developers, transparency of the structure of frameworks is moderate at best.  An advantage of 
several frameworks in Cluster 2 is that websites have been provided that detail their application 
(i.e., ALCES, EMDS, HCI [via CLAMS; Spies et al. 2002], LEAM, LMS, SESI, SIMFOR).  
Limitations associated with availability of input data, documentation, model parameterization, 
and transparency for frameworks in this cluster are largely related to the fact that these 
frameworks are components of larger landscape modeling systems.  However, the value of 
understanding the influences of landscape processes and management activities such as logging 
on wildlife habitat quality makes consideration of these frameworks advantageous over those in 
other clusters. 
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Cluster 3.—Each framework in Cluster 3 was scientifically credible and used readily 
available input data, but only EAM and SNBM had models that have been field verified.  
Frameworks forming Cluster 3 approach habitat modeling under the context of a modeling shell 
(expert systems and spatial optimization), a GIS-based modeling system (Landscape HSI, 
RAMAS Landscape), or a modeling framework that uses a diversity of techniques to model 
habitat relationships.  For instance, EAM utilizes a variety of spatially explicit analyses to predict 
the effects of matrix habitats on species abundances in habitat patches (Sisk et al. 1997, Brand et 
al. 2006) and SNBM generates expected distributions for wildlife species without hypothesizing 
spatial factors that regulate the distribution of resources or organisms (Milne et al. 1989).  Spatial 
optimization allows one to apply the results of habitat modeling to optimize habitat 
configurations.  However, implementation of habitat modeling with spatial optimization requires 
strong quantitative skills.  RAMAS Landscape (Akçakaya et al. 2004, 2005) provides 
practitioners with a useful website and integrates a landscape model (LANDIS; He et al. 1999) 
with a metapopulation model (RAMAS GIS; Akçakaya 1998).  Expert systems offer modelers 
the ability to structure models with expert opinion and quantitative data, often within the 
structure of a modeling shell (e.g., Sodja et al. 2002).  A major advantage of frameworks in 
Cluster 3 compared to other clusters is the flexibility in modeling through modeling shells, GIS-
based modeling systems, and other innovative techniques.  A disadvantage of several 
frameworks in the cluster (i.e., EAM, HABSIM, HQ, SNBM, and WHQ) is marginal 
documentation. 

Cluster 4.—Major strengths of frameworks in Cluster 4 are input data that are readily 
available in agency databases, abilities to evaluate spatial or spatially explicit data, and sufficient 
documentation to clearly understand each modeling framework.  A major advantage of 
frameworks in Cluster 4 is their simple approach to evaluate habitat quality.  ArcHSI and HQI 
are more sophisticated versions of the original HSI framework, are easy to parameterize and 
understand model output, and were developed for use within a GIS—ArcHSI was designed to 
work directly with ArcGIS (Juntti and Rumble 2006) and HQI with ArcView (Rickel 1997; 
Environmental Systems Research Institute, Inc., Redlands, California, USA).  PSE uses simple 
landscape metrics to evaluate habitat quality with single variable data bases (Mead et al. 1981, 
Lyon et al. 1987).  Although frameworks in Cluster 4 use simple approaches to model habitat 
quality, they are limited by their inability to link habitats with populations, and only PSE has 
achieved scientific credibility. 

Cluster 5.—Cluster 5 is the only cluster where all frameworks link multiple scales.  In 
addition, unlike the linked multi-scale frameworks in Cluster 3, HABIT@ and BBN use 
surrogates of population demographics in assessing wildlife habitat quality.  BBN provides 
practitioners with endless opportunities to evaluate habitat quality through depicting probabilistic 
relations among variables (Marcot et al. 2001, Raphael et al. 2001, Marcot 2006).  HABIT@ 
represents one of the most innovative frameworks because it evaluates linked, spatially explicit 
habitat attributes at local, home range, and population scales (McGarigal and Compton 2003). 

Cluster 6.—Cluster 6 is characterized by spatial frameworks that predict changes in 
habitats.  FORHAB predicts changes in bird breeding habitats (Smith et al. 1981), while BEST is 
based on a species-habitat matrix that provides predictions of where land uses may conflict with 
the conservation of biotic elements of the landscape (Crist et al. 2000).  In addition to predictive 
abilities, other strengths of frameworks in Cluster 6 include scientific credibility and linkage 
between habitats and populations.  Limitations of frameworks in Cluster 6 include limited or 
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marginal documentation, no model validation, and models where functional transparency is 
marginal or difficult to understand. 

Cluster 7.—Frameworks in Cluster 7 provide predictive tools that are useful in assessing 
impacts of land management activities on species and habitats.  These predictive frameworks are 
stronger than those in Cluster 6 because they are spatially explicit and directly use population 
demographics to evaluate habitat quality.  ALMaSS answers policy questions regarding effects 
of changing landscape or management scenario on selected wildlife species, however, it was 
specifically developed to model wildlife habitats in temperate Europe (Topping et al. 2003) and 
may have limited application elsewhere.  SSA focuses on species that have the potential to be 
adversely affected by proposed land management due to specific habitat requirements or 
characteristic responses to management activities (Reed et al. 2001; Higdon et al. 2005, 2006).  
Weaknesses of frameworks in Cluster 7 include input data are not readily available in agency 
databases, models have not been validated, and frameworks are difficult or marginal to 
parameterize and understand the output. 

FUTURE DIRECTIONS 

Many recently developed modeling frameworks incorporate linkages between habitats and 
populations at multiple scales and link those scales, while incorporating spatially explicit data.  
We suggest that developers of new frameworks should consider incorporating these components 
because the ecological concepts addressed provide a better understanding of wildlife-habitat 
relationships and management implications.  An emerging trend in wildlife habitat–relationships 
modeling is for frameworks to be components of larger landscape modeling systems.  Although 
we view this trend as potentially problematic for practitioners not involved in comprehensive 
landscape assessments, many contemporary frameworks still allow independent applications. 

Habitat suitability index models were originally developed to assist in quantifying and 
evaluating the effects of management actions on wildlife populations and their habitats (U.S. 
Fish and Wildlife Service 1981).  Since the development of HEP, many other habitat–
relationships modeling frameworks have also focused on evaluating land management actions on 
wildlife habitats.  For instance, some frameworks have been developed to evaluate prescriptions 
for harvesting timber on wildlife habitats (e.g., BOREAL [Puttock et al. 1998], LEEMATH [Li 
et al. 2000]), whereas others consider influences of a variety of perturbations and ecological and 
industrial issues in conjunction with wildlife habitats (e.g., ALCES [ALCES 2005], CompPATS 
[Ouachita National Forest 1988], LMS [Marzluff et al. 2002], SESI [Curnutt et al. 2000], 
SIMFOR [Seely et al. 2004]).  Future frameworks that focus on evaluations of management 
practices or perturbations on wildlife habitats will be more widely applied if they address a 
variety of management questions (e.g., energy development, transportation corridors). 

A current trend in framework development is to incorporate spatially explicit procedures 
when evaluating wildlife–habitat relationships.  We suggest that all future frameworks be 
developed to evaluate habitat conditions under explicit spatial contexts.  Spatially explicit habitat 
modeling frameworks provide practitioners with the ability to evaluate habitat in relation to 
conditions in adjoining parcels, according to configurations of resources, and, in relation to 
habitat features such as roads that may influence animal movements or other behaviors 
(McGarigal and Compton 2003). 
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Emerging frameworks that show promise for describing wildlife–habitat relationships 
and that may be considered by developers include Petri nets, which are mathematical tools that 
are useful for modeling concurrent, distributed, asynchronous behavior in a system (e.g., 
Gronewold and Sonnenschein 1998).  Also, qualitative modeling (e.g., loop analysis [Justus 
2006]) may be more practical as a framework than quantitative modeling, because qualitative 
models require fewer resources and less modeling experience. 

Developers of frameworks have consistently attained scientific credibility through 
published manuscripts describing the development or applications of models developed within 
their frameworks, but a major weakness for many frameworks continues to be a lack of 
validation (Raphael and Marcot 1986, Block et al. 1994, Roloff and Kernohan 1999).  Model 
validation is critical so that models developed within any framework can be used with 
confidence.  Therefore, we recommend that models be validated through independent field study 
or by reserving some data used in model development.  Of particular interest is the need to 
validate frameworks.  Although some frameworks have been validated (e.g., BIRDHAB [Kilgo 
et al. 2002], CWHR [Block et al. 1994], EAM [Sisk et al. 1997], SHM (Karl et al. 2000]), 
validation has typically been applied to individual species models developed within the structure 
of frameworks.  Both frameworks and models need validation—a framework may work well 
conceptually, while a specific habitat relationships model developed within the framework may 
not.  Although we focused on evaluating whether at least one species-specific model within a 
framework had been validated, we suggest that the need to validate frameworks is of even 
greater importance. 

We suggest developers of future frameworks carefully consider the capability of 
practitioners to develop and apply models.  Specifically, developers of new frameworks should 
consider using input data that are readily available in agency inventories, and develop 
frameworks with transparent structure and adequate documentation so that practitioners may 
clearly understand and apply the framework.  Although we suggest that new frameworks should 
focus on using data from agency databases, we remind practitioners that if available data are 
poor quality or fail to adequately describe variables critical to the habitat requirements of a 
species, then only poor quality outputs will result.  Thus, obtaining quality input data is 
paramount to producing high quality models.  A particularly important consideration for new 
frameworks is ensuring the availability of documentation, either online or printed user’s manuals 
that clearly describe application of models developed within the framework, present examples of 
model applications, offer other resources such as descriptions of input and output data, and 
provide schematic descriptions of framework structures to enhance understanding of the model 
applications by practitioners. 

As model frameworks become more sophisticated, users will increasingly face the issue 
of parameterizing complex models for species whose ecological relationships may not be well 
understood.  For instance, the current understanding of spatial relationships and even basic 
habitat associations is poor for many vertebrates (e.g., USDA Forest Service 2006).  Therefore, it 
will be important to retain the ability within potentially complicated frameworks to develop 
simple models that reflect the level of ecological understanding for particular species. 
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