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Abstract. Conserving a declining species that is facing many threats, including overlap of
its habitats with energy extraction activities, depends upon identifying and prioritizing the
value of the habitats that remain. In addition, habitat quality is often compromised when
source habitats are lost or fragmented due to anthropogenic development. Our objective was
to build an ecological model to classify and map habitat quality in terms of source or sink
dynamics for Greater Sage-Grouse (Centrocercus urophasianus) in the Atlantic Rim Project
Area (ARPA), a developing coalbed natural gas field in south-central Wyoming, USA. We
used occurrence and survival modeling to evaluate relationships between environmental and
anthropogenic variables at multiple spatial scales and for all female summer life stages,
including nesting, brood-rearing, and non-brooding females. For each life stage, we created
resource selection functions (RSFs). We weighted the RSFs and combined them to form a
female summer occurrence map. We modeled survival also as a function of spatial variables
for nest, brood, and adult female summer survival. Our survival models were mapped as
survival probability functions individually and then combined with fixed vital rates in a fitness
metric model that, when mapped, predicted habitat productivity (productivity map). Our
results demonstrate a suite of environmental and anthropogenic variables at multiple scales
that were predictive of occurrence and survival. We created a source–sink map by overlaying
our female summer occurrence map and productivity map to predict habitats contributing to
population surpluses (source habitats) or deficits (sink habitat) and low-occurrence habitats on
the landscape. The source–sink map predicted that of the Sage-Grouse habitat within the
ARPA, 30% was primary source, 29% was secondary source, 4% was primary sink, 6% was
secondary sink, and 31% was low occurrence. Our results provide evidence that energy
development and avoidance of energy infrastructure were probably reducing the amount of
source habitat within the ARPA landscape. Our source–sink map provides managers with a
means of prioritizing habitats for conservation planning based on source and sink dynamics.
The spatial identification of high value (i.e., primary source) as well as suboptimal (i.e.,
primary sink) habitats allows for informed energy development to minimize effects on local
wildlife populations.

Key words: Atlantic Rim Project Area; Centrocercus urophasianus; energy development; fitness;
Greater Sage-Grouse; habitat quality; productivity; resource selection functions; source–sink habitats; south-
central Wyoming, USA; survival functions; survival modeling.

INTRODUCTION

The presence of animals in human-altered landscapes

is often neither adaptive nor positively related to fitness

outcomes such as reproduction or survival (Van Horne

1983, Jones 2001, Schlaepfer et al. 2002, Aldridge and

Boyce 2007). Consequently, density or animal occur-

rence considered alone can be a misleading indicator of

population fitness in altered landscapes (Van Horne

1983, Aldridge and Boyce 2007, Chalfoun and Martin

2007). A primary goal of modeling wildlife–habitat

relationships should be to understand the suite of

habitat features that affect occurrence as well as fitness

of a species (Jones 2001, Morrison et al. 2006).

Therefore, a true measure of habitat quality, the ability

of the environment to provide conditions suitable for

individual and population persistence (Hall et al. 1997),

should be based on the combination of occurrence and

fitness measures. This information is especially impor-

tant when managing a species that is imperiled in much

of its current range and is expected to face ongoing

habitat alteration and loss due to anthropogenic
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development and other forms of habitat change, the

Greater Sage-Grouse (Centrocercus urophasianus; here-

after Sage-Grouse, see Plate 1).

Source–sink dynamics are predicated on the fact that

habitat quality is heterogeneous throughout a landscape

and that fitness parameters are often habitat specific

(Falcy and Danielson 2011). Local population persis-

tence depends on a balance between mortality and

fecundity in addition to demographic surpluses from

adjacent source habitats (Pearson and Fraterrigo 2011).

Source habitats are critical in a landscape being altered

by human activity (i.e., developing energy field) because

they act as population refugia (Pearson and Fraterrigo

2011). Source habitats are associated with high-quality

habitats that tend to yield a surplus of individuals (i.e.,

births exceed deaths; Pulliam and Danielson 1991). Sink

habitats are characteristically substandard habitats

where resources are scarce and, consequently, survival

is possible, but reproduction (although it may occur) is

usually poor (Pulliam and Danielson 1991). Ecological

traps can arise when anthropogenic or environmental

change act to uncouple the cues that individuals use to

assess perceived habitat quality from true quality

(Schlaepfer et al. 2002, Aldridge and Boyce 2007). The

finite population growth rate or lambda (k) is a vital

metric for judging local population ‘‘health’’ (Pulliam

1988, Nichols and Hines 2002). Although k fluctuates

over the short term, over the long term, healthy

populations are generally stationary, that is, neither

growing nor declining (k ¼ 1), or increasing (k . 1),

whereas unhealthy populations are declining (k , 1;

Gotelli 2008).

Research has demonstrated the importance of con-

sidering multiple scales when evaluating habitat selec-

tion (Thompson and McGarigal 2002, Lawler and

Edwards 2006, Chalfoun and Martin 2007, Aldridge et

al. 2012, Smith et al. 2014) and fitness (Robinson et al.

1995, Reid et al. 2006, Aldridge and Boyce 2008, Smith

et al. 2014). Further, habitat fragmentation may affect

productivity through different mechanisms at different

spatial scales (Diez and Giladi 2011). Sage-Grouse

studies incorporating geographic information systems

(GIS) and remote sensing have identified habitat

selection at several landscape scales (e.g., Homer et al.

1993, Wisdom et al. 2002, Doherty et al. 2008, Doherty

et al. 2010, Aldridge et al. 2012). Habitat quality can

also vary at different scales (Diez and Giladi 2011).

Accordingly, for landscape-scale species with large

ecological neighborhoods, such as Sage-Grouse (Con-

nelly et al. 2011), variables that are biologically relevant

to the particular species should be measured at multiple

scales (Johnson 1980, Morris 1987, Aldridge et al. 2012).

The first researchers to successfully assess and map

Sage-Grouse fitness relative to habitat use did so at a

single landscape scale, 1 km2 (Aldridge and Boyce 2007).

We built upon their research by exploring relationships

between occurrence and survival at multiple spatial

scales.

The global demand for energy has increased by .50%
in the last half-century and is expected to continue at

this rate through 2030 (National Petroleum Council

2007). Fossil fuels are expected to continue to account

for 83–87% of total world demand, with coal, natural

gas, and oil being the primary sources (American Gas

Association 2005). Anthropogenic development result-

ing in changes in land cover can alter abundance and

spatial patterns of habitat use and may have negative

consequences for population persistence (Lindenmayer

and Fischer 2006, Aldridge and Boyce 2007, Naugle et

al. 2011) as well as the distribution of source and sink

habitats (Pulliam 1988). The development and subse-

quent extraction of fossil fuels has been recognized as

one of the factors contributing to the decline of Sage-

Grouse throughout its range (Connelly et al. 2004,

Naugle et al. 2011). Research has demonstrated that

impacts of energy development on Sage-Grouse popu-

lations may result in lower male lek attendance and

reduced lek persistence (Walker et al. 2007, Harju et al.

2010, Hess and Beck 2012); lower yearling male

recruitment to disturbed leks (Holloran et al. 2010);

avoidance of critical seasonal habitats (Lyon and

Anderson 2003, Doherty et al. 2008, Smith et al.

2014); lower nest initiation rates (Lyon and Anderson

2003); reduced nest success (Dzialak et al. 2011); lower

annual adult female survival (Holloran 2005, Holloran

et al. 2010); and increased chick mortality (Aldridge and

Boyce 2007). Due to these impacts and an increased

demand for domestic fossil fuel production, innovative

resource management and extraction processes must be

implemented to maintain viable Sage-Grouse popula-

tions within the sagebrush biome.

Because habitat quality is a function of an occupied

habitat’s conduciveness to survival and production, our

primary research objective was to spatially quantify

Sage-Grouse habitat quality on the basis of occurrence

and fitness models dictated by landscape predictor

variables. This approach offered a means of prioritizing

habitat importance related to Sage-Grouse population

persistence. Our research focused on the Atlantic Rim

Project Area (ARPA), a coalbed natural gas (CBNG)

field in the early stages of development in south-central

Wyoming, USA. Previous attempts at identifying

habitat quality for Sage-Grouse have been based on

nesting and brood-rearing life stages (Aldridge and

Boyce 2007, Dzialak et al. 2011). By integrating female

summer survival and a fitness metric, our goal was to

estimate habitat quality more comprehensively and to

present this in terms of sink and source habitats. In

addition, by definition, source habitats should yield a

demographic surplus (Pulliam and Danielson 1991). To

reach our objective, we used female-based resource

selection functions (RSFs; Manly et al. 2002) and

survival probability functions (SPFs; Hosmer and

Lemeshow 1999), specific to each female Sage-Grouse

life stage during the reproductive period, to generate and

map spatially explicit estimates of habitat quality as a
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means of informing future development at a landscape

scale.

METHODS

Study area

The 1093-km2 ARPA lies in south-central Wyoming,

USA, immediately west of the Sierra Madre mountain

range. It includes 64.3% (701.9 km2) federal, 5.2% (57.0

km2) state, and 30.5% (334.1 km2) private lands. The

ARPA is within the semidesert grass–shrub zone in the

Cool Central Desertic Basin and Plateaus major land

resource area (NRCS 2006). The semidesert grass–shrub

zone is characterized by a vast sagebrush steppe with a

low average annual precipitation of 24 cm (NRCS

2006). Average daily temperatures in the ARPA range

between a low of �168C and a high of 0.58C in

midwinter and between 138C and 248C in midsummer

(BLM 2006, Kirol et al. 2012). The ARPA is character-

ized by drainage basins and rolling hills bisected by deep

drainages with prominent knolls, and escarpments.

Elevations within the study area range from 1982 to

2529 m. Wyoming big sagebrush (Artemisia tridentata

wyomingensis) communities at lower elevations and

mountain big sagebrush (A. t. vaseyanas) communities

at higher elevations dominate the majority of the ARPA

(BLM 2006). See Kirol et al. (2012) for a description of

common herbaceous species forming the big sagebrush

communities in the ARPA. The ARPA has supported a

substantial Sage-Grouse population, with one of the

highest lek densities in Wyoming (Fig. 1). Male Sage-

Grouse counted on individual leks ranged from 1 to 112

males in 2008 (WGFD 2012).

The BLM Record of Decision (ROD) for the Atlantic

Rim Natural Gas Field completed in 2007 described the

development of 2000 natural gas wells, including the

drilling of 1800 CBNG wells and 200 deep natural gas

wells at a down-spacing of 32.4 ha per well (BLM 2007).

Development and drilling began in 2007 and there were

FIG. 1. The Atlantic Rim study area in relation to current range-wide Greater Sage-Grouse (Centrocercus urophasianus)
distribution and occupied leks (WGFD 2012). The study area is located in south-central Wyoming, USA.
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;600 natural gas wells at the conclusion of our field

research in August 2009. Other land uses in the ARPA

included livestock grazing.

Radio-marking and monitoring

To obtain a random sample of the population (Manly

et al. 2002), we captured female Sage-Grouse from 14

leks situated throughout the ARPA in 2008 and 2009,

using established spot-lighting and hoop-netting tech-

niques (Giesen et al. 1982, Wakkinen et al. 1992). We

attached VHF radio transmitters (Model A4060; Ad-

vanced Telemetry Systems, Isanti, Minnesota, USA) to

females with a PVC-covered wire necklace. Transmitters

weighed 22 g (;1.4% of mean female Sage-Grouse body

mass); had a battery life expectancy of 789 d; and were

equipped with motion sensors (i.e., radio transmitter

pulse rate increased in response to inactivity after 8 h) to

aid in detecting mortalities. We classified Sage-Grouse

as yearlings (first breeding season) or adults (second

breeding season or older) based on the shape, condition,

and coloration of the outermost wing primaries (Eng

1955, Dalke et al. 1963). Female Sage-Grouse were

captured and handled according to University of

Wyoming Institutional Animal Care and Use Commit-

tee approved protocols (03032009) and Wyoming Game

and Fish Department Chapter 33 permits 572 and 699.

We located Sage-Grouse on the ground using hand-

held receivers and three-element Yagi antennas (Ad-

vanced Telemetry Systems, Isanti, Minnesota, USA).

We used ground telemetry to monitor radio-marked

females through nesting (May–June) and early and late

brood-rearing periods (June–August). Sage-Grouse lo-

cations were recorded in Universal Transverse Mercator

(UTM) coordinates using a handheld 12 channel Global

Positioning System (GPS; Garmin Etrex; Garmin

International, Olathe, Kansas, USA). To minimize

stress to the female, we recorded locations for newly

discovered nests by projecting the point with the GPS

from a distance of �20 m. We obtained locations of

radio-marked Sage-Grouse by circling the signal source

until the surveyor could either visually observe the bird

on a nest or with her brood, or isolate the female to a

few shrubs. After recording a nest location, we retreated

in a meandering or ‘‘zigzagging’’ pattern to prevent

predators from following human scent to the nest.

Nest monitoring.—We monitored Sage-Grouse nests

at a frequency of 6.21 6 0.16 days (mean 6 SE)

throughout the nesting season. After a nest was

recorded, we monitored the nest from long range (.50

m) until the conclusion of the nesting effort. The fate of

the nest (successful or unsuccessful) was determined by

the condition of the eggshells (eggshell cap) and shell

membranes (Wallestad and Pyrah 1974) directly follow-

ing a female leaving the nesting area. When the hatched

nest was undisturbed by scavengers, we counted eggshell

caps (initial pipping of the egg generally results in an

eggshell cap) to ascertain the number of eggs that

hatched. When nest fate could not be determined

conclusively by diagnostic evidence, we found the female

within �2 days after we determined she was off the nest

to ascertain if she was brooding chicks. Nests of females

not brooding chicks during this visit were assumed to

have failed. A nest was considered successful if one egg

hatched and the hatch date was estimated as the day

midway between consecutive visits, unless other diag-

nostic signs allowed for a better approximation. Nest

fates were recorded as successful, naturally abandoned,

abandoned due to researcher disturbance, eaten by a

predator, or unknown.

Brood monitoring.—We monitored females that suc-

cessfully hatched chicks at a frequency of 5.99 6 0.17

days (mean 6 SE) to assess brood-rearing habitat use

and brood fate through August 2008 and 2009. At each

visit, we determined if the female was still with her

brood by visually locating the chicks with binoculars or

by observing brooding behavior (e.g., distraction

displays, feigning injury, clucking, and hesitation to

flush). We considered the brood to be the experimental

unit, rather than individual chicks. Therefore, a brood

was considered to have survived if we observed �1 chick

at approximately 36 days post-hatch. Thirty-six day

post-hatch was used as a cutoff for brood-rearing

success because the majority of chick mortality has

already occurred by this age; consequently, chicks are

more likely to survive to breeding age after this date

(Hannon and Martin 2006, Gregg et al. 2007, Walker

2008). We estimated dates of brood loss at the midpoint

between the last date observed with a brood and the first

date without. Females thought to be no longer with

broods were checked twice after the initial determination

to confirm brood loss. We conducted back-to-back

nighttime spotlight counts (Walker 2008) at approxi-

mately days 35 and 36 post-hatch to establish final

brood fate. Dahlgren et al. (2010) estimated 100% chick

count accuracy using nighttime spotlight counts. We

considered the duration of the early brood-rearing

period to be from hatch to 14 days; the late brood-

rearing period was .14 days post-hatch to ;36 days.

(Thompson et al. 2006, Connelly et al. 2011).

Female monitoring.—We monitored female survival

by field observations and aerial telemetry flights from

early May through August 2008 and 2009. Aerial

telemetry flights were conducted approximately monthly

throughout the summer. In addition to nesting and

brooding females, we monitored non-brooding females

at a frequency of 10.01 6 0.21 days (mean 6 SE) post-

nest or brood loss, or after it was determined that they

did not initiate a nest. While monitoring, we consistently

scanned for mortality signals; if detected, we would

track that female as soon as possible. We did not include

females in the survival analysis for a period of two weeks

after radio-marking to account for trapping stress and

collar adjustment (Winterstein et al. 2001). A female was

considered to have survived the summer if she survived

to 110 days, corresponding to late August. During each

year, time was started at t¼ 0 upon the first monitoring
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of each female Sage-Grouse. Monitoring began for the

entire female sample in early May each year immediately

after an aerial telemetry flight. If the female did not

survive, dates of mortality were estimated at the

midpoint between the last date detected alive and the

first date detected dead. In some cases, date of mortality

was estimated more accurately on the basis of the first

documentation of the mortality signal or diagnostic

signs (e.g., fresh or decomposed body).

Spatial predictor variables

We developed anthropogenic and environmental

predictor variables for our analysis on the basis of a

priori information from previous Sage-Grouse research

(Homer et al. 1993, Lyon and Anderson 2003, Aldridge

and Boyce 2007, Walker et al. 2007, Doherty et al. 2008,

Carpenter et al. 2010, Doherty et al. 2010, Holloran et

al. 2010, Connelly et al. 2011) as well as hypothesized

predictors of ecological relationships. We processed

spatial data with ArcGIS 9.3.1 (Environmental Systems

Research Institute (ESRI), Redlands, California, USA),

and Geospatial Modeling Environment (Beyer 2010).

We calculated summary statistics for most of the

continuous predictor variables for each scale using

neighborhood statistics (hereafter referred to as a

moving window) in GIS.

Based on the biology of Sage-Grouse (Holloran and

Anderson 2005, Aldridge and Boyce 2007, Doherty et al.

2010), we evaluated explanatory variables at three spatial

scales: 0.282 km radii (0.25 km2), 0.564 km radii (1 km2),

and 1.260 km radii (5 km2). The radius for the largest

landscape scale, 1.260 km, was equal to the average

movement distance between successive locations for all

females within eachmonth, which was equal to themedian

of these monthly movement distances over the duration of

theMay–August 2008 and 2009 reproductive seasons. The

second landscape scale of 1 km2 (0.564 km radii) was based

on research conducted byAldridge and Boyce (2007), who

found a strong relationship between landscape features

and Sage-Grouse nesting and brood-rearing selection and

survival at this scale in southern Alberta, Canada. The

biological relevance of our patch scale, 0.25 km2 or 0.282

km radii, was supported by research conducted by

Holloran and Anderson (2005) on Sage-Grouse nest site

fidelity in Wyoming. They found that the median distance

between successful nests over consecutive years was 0.283

km.Moreover, a scale of radius 0.35 km proved predictive

of nest-site selection in the Powder River Basin, Wyoming

(Doherty et al. 2010). When appropriate, we explored

quadratic transformations because the quadratic form of a

variable can often identify nonlinear relationships that

would otherwise go undetected (Doherty et al. 2010,

Aldridge et al. 2012). We followed the convention that the

linear term was always included in the model with the

quadratic. Table 1 provides a description of the suite of

environmental and anthropogenic spatial predictor vari-

ables that we examined in occurrence and survival

modeling.

Environmental predictor variables.—Using remotely

sensed continuous-cover maps (30-m resolution) devel-

oped by Homer et al. (2012) for sagebrush habitats in

Wyoming, we assessed eight habitat characteristics:

percent cover of bare ground, herbaceous cover, and

litter; shrub height; and percent canopy cover of

sagebrush, big sagebrush, Wyoming big sagebrush, and

total shrub cover. These variables were summarized as

means within the different spatial scales examined. Litter

was defined as an estimate of detached plant and animal

organic matter as well as dead standing woody

vegetation (Homer et al. 2012). We calculated the

standard deviation (SD) of herbaceous, sagebrush, big

sagebrush, and Wyoming big sagebrush cover and shrub

height measures as a proxy for the amount of habitat

diversity or heterogeneity (Kastdalen et al. 2003,

Carpenter et al. 2010) at each scale examined.

We generated a normalized difference vegetation

index (NDVI) from the August 2009 National Agricul-

ture Imagery Program (NAIP) 1-m resolution color

aerial imagery (USDA 2009; see Enwright et al. 2011)

and rescaled this to 30-m resolution. NDVI is a measure

of surface greenness, generally correlating well with live

green vegetation and aboveground biomass. We derived

a categorical (0 or 1) mesic habitat variable from NDVI

by reclassifying into mesic or non-mesic, based on

ground-truthing and visual verification with NAIP

imagery. Mesic habitats represented riparian areas along

stream channels, ponds, and wet meadows containing

abundant herbaceous cover. Using NW ReGap data

(Lennartz 2007), we classified conifer stands to create a

categorical variable that we termed Forest. The variable

Forest was also visually verified using NAIP imagery.

Utah juniper (Juniperus osteosperma) was the dominant

conifer in our study area.

We compiled topographic variables including slope

(Slope), topographic wetness index (TWI; Theobald

2007), and vector roughness measure (VRM; Sapping-

ton et al. 2007) utilizing a 1/3 arc-second National

Elevation Dataset (NED; 10-m digital elevation model,

DEM). TWI is a form of compound topographic index

(CTI) that predicts surface water accumulation on the

basis of landscape concavity and hydrology (Theobald

2007). VRM uses the variation in slope and aspect to

create a single measure of terrain ruggedness (Sapping-

ton et al. 2007).

Anthropogenic predictor variables.—We quantified

anthropogenic variables independent of scale including

distances (km) to anthropogenic edge (Distedge;

mainly infrastructure sites and roads), nearest im-

proved gravel road (Disthaul), nearest unimproved

road (Two-trackdist), nearest fence (Distfence; BLM-

Rawlins Field Office data consisting of grazing

allotment boundary and cross fences), and nearest

energy well (Distwell). At each spatial scale, we

quantified total linear distances (km) of fences (Fence),

improved gravel roads (Haulrd), and unimproved

roads (Two-track), as well as counts of energy wells
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(Well), visual energy wells (Vwell), and the percentage
of total surface disturbance (Dstbarea2) within each

scale. We obtained energy well data, including type,
location, status, production, and spud date (date when
the drill bit from a rig penetrates the surface), from the

Wyoming Oil and Gas Conservation Commission
database (WOGCC 2010). We used 2009 NAIP
imagery to validate well and road locations. Variables

associated with energy development, including Dist-

edge, Disthaul, Distwell, Dstbarea2, Haulrd, Well, and
Vwell, were time-stamped based on the spud dates of

wells associated with these variables to accurately
characterize when they were established on the
landscape. We batched these time-stamped infrastruc-

ture data into monthly increments and based all spatial
analyses on monthly increments. The spatial analysis
for each month only included infrastructure and

associated well sites spudded prior to that month.

TABLE 1. Spatial predictor variables used for Sage-Grouse nest, brood, female occurrence, and survival modeling in south-central
Wyoming, USA.

Model category,
predictor variable Scale (km2) Description

Environmental

Baresoil 0.25, 1.0, 5.0 mean bare ground % cover (Homer et al. 2012); MW
Bsage� 0.25, 1.0, 5.0 mean big sagebrush (Artemisia tridentata) % cover (Homer et al. 2012); MW
BsageSD 0.25, 1.0, 5.0 SD big sagebrush (Artemisia tridentata) % cover (Homer et al. 2012); MW
Forestdist� distance (km) to nearest conifer stand from NW ReGap (Lennartz 2007), verified using

NAIP imagery (2009)
Herb� 0.25, 1.0, 5.0 mean herbaceous % cover (Homer et al. 2012); MW
HerbSD 0.25, 1.0, 5.0 SD herbaceous cover (%; Homer et al. 2012); MW
Litter 0.25, 1.0, 5.0 mean % litter (Homer et al. 2012); MW
Mesic 0.25, 1.0, 5.0 percentage of area that is mesic habitat derived from converting NAIP imagery (2009) to

NDVI and ground-truthed to determine value break (categorical [0,1])
Mesicdist� distance (km) to nearest mesic area derived from converting NAIP imagery (2009) to

NDVI ground-truthed to determine cell value break (categorical [0,1])
NDVI 0.25, 1.0, 5.0 mean NDVI values derived from NAIP imagery; MW
NDVISD 0.25, 1.0, 5.0 SD NDVI values; MW
Sage� 0.25, 1.0, 5.0 mean sagebrush (all Artemisia spp.) % cover (Homer et al. 2012); MW
SageSD 0.25, 1.0, 5.0 SD sagebrush (all Artemisia spp.) % cover (Homer et al. 2012); MW
Shrbhgt 0.25, 1.0, 5.0 mean shrub height, cm (Homer et al. 2012); MW
ShrbhgtSD 0.25, 1.0, 5.0 SD shrub height, cm (Homer et al. 2012); MW
Slope 0.25, 1.0, 5.0 mean slope (%); MW
TWI 0.25, 1.0, 5.0 mean topographic wetness index, TWI (high values ¼ increased soil moisture; Theobald

2007); MW
VRM�,� 0.25, 1.0, 5.0 mean topographic roughness (vector roughness measure, VRM; Sappington et al. 2007);

MW
Wysage� 0.25, 1.0, 5.0 mean Wyoming big sagebrush (Artemisia tridentata var. wyomingensis) % cover (Homer et

al. 2012); MW
WysageSD 0.25, 1.0, 5.0 SD Wyoming big sagebrush (Artemisia tridentata var. wyomingensis) % cover (Homer et

al. 2012); MW

Anthropogenic

Dstbarea� 0.25, 1.0, 5.0 surface disturbance 30-m cell count (bare ground resulting from vegetation removal):
combination of energy infrastructure (energy well sites§, improved gravel roads},
compressor sites}, and human dwellings digitized or confirmed using NAIP imagery

Edgedist distance (km) to nearest anthropogenic edge: combination of energy infrastructure
(energy well sites§, improved gravel roads}, compressor sites}, and human dwellings
digitized or confirmed using NAIP imagery

Fence 0.25, 1.0, 5.0 total linear distance (km) of fence (mainly grazing allotment fences) within analysis region
Fencedist� distance (km) to nearest fence (mainly barbwire grazing allotment fences)
Haulrd 0.25, 1.0, 5.0 total linear distance (km) of haul road} (improved gravel road) within analysis region,

verified using NAIP imagery
Hauldist� distance (km) to nearest haul road} (improved gravel road), verified using NAIP imagery
Two-track 0.25, 1.0, 5.0 total linear distance (km) of unimproved road (two-track road ) within analysis region
Two-trackdist� distance (km) to nearest unimproved road (two-track)
Vwell 0.25, 1.0, 5.0 count of visible energy wells§ within analysis region, verified using NAIP imagery
Well 0.25, 1.0, 5.0 count of energy wells§, within analysis region, verified using NAIP imagery
Welldist� distance (km) to nearest energy well site§, verified using NAIP imagery

Notes: Data are 30-m resolution and spatial scales are circular unless indicated otherwise. MW indicates calculation using a
moving window; NAIP is the USDA National Agriculture Imagery Program (USDA 2009); NDVI is the normalized differential
vegetation index.

� Quadratic transformations assessed.
� Square analysis regions.
§ Time-stamped on the basis of spud dates monthly and batched into monthly increments, thus enabling us to depict temporal

additions to infrastructure to prevent including infrastructure in the analysis until it actually exists on the ground.
}When constructed in concurrence with energy well sites, feature time-stamped monthly on the basis of corresponding well spud

date and batched into monthly increments thus enabling us to depict temporal additions to infrastructure to prevent including
infrastructure in the analysis until it actually exists on the ground.
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Research has found that visible wells can be

negatively associated with chick survival (Aldridge and

Boyce 2007). We determined wells visible from any

given location (Vwells) by using the ArcView Spatial

Analyst 9.3 Viewshed tool (ESRI, Redlands, California,

USA). We used 3 m as the standard well height for this

analysis because this is a conservative height for the

standard structure at most CBNG wells in the ARPA.

We calculated viewsheds from ground height. We

summed the number of visible wells for each spatial

scale.

We separated roads into haul roads (i.e., improved

gravel roads generally used for accessing energy

infrastructure) and unimproved roads (i.e., high-clear-

ance four-wheel drive or two-track). We quantified

percentage of surface disturbed by anthropogenic

activity, areas with complete vegetation removal result-

ing in bare ground, for each spatial scale. To accomplish

this, we created a disturbance layer that consisted of all

energy infrastructure, including well pads, compressor

sites, transfer stations, and haul roads, and non-energy-

related human structures. We digitized energy infra-

structure and dwellings using 2009 NAIP imagery and

buffered haul roads at 10 m, which represented the

average road width in the study area.

Experimental design and occurrence analysis

We employed a use vs. availability design (Manly et

al. 2002) with binary logistic regression (Boyce and

McDonald 1999) to estimate each resource selection

function (RSF). An RSF estimates the probability of a

habitat unit being selected relative to its availability

(Manly et al. 2002, Johnson et al. 2006). The RSFs took

the form

wðxÞ ¼ expðb1x1 þ b2x2 þ . . . . . .þ bk xkÞ ð1Þ

where w(x) was the RSF (relative probability of

selection; Lele et al. 2013) for each cell in the landscape

for the environmental and anthropogenic predictor

variables, x1 through xk. The bks are coefficient

estimates for each predictor variable. Herein we refer

to what is the relative probability of selection (see Lele et

al. 2013) as the relative probability of occurrence or

occurrence.

We incorporated a Type I habitat selection design in

which we pooled used locations across individual Sage-

Grouse and evaluated habitat availability for all Sage-

Grouse with pooled random locations to represent a

population-level response to habitat variables (Manly et

al. 2002, Thomas and Taylor 2006). We constrained

random locations within 100% minimum convex poly-

gons specific to each life stage (Manly et al. 2002) to

allow female Sage-Grouse use to determine availability

at the scale of the use data (Thomas and Taylor 2006).

We explored five distinct female life stages during the

May–August 2008 and 2009 reproductive periods. The

life stages included nesting, early brood-rearing, late

brood-rearing, early non-brooding, and late non-brood-

ing. Non-brooding females that were unsuccessful

nesters or lost their broods were modeled over the same

temporal period as early and late brood-rearing females

to assess whether they were using the same or different

habitats during the same temporal period. We employed

Wyoming sagebrush products (Homer et al. 2012) to

constrain the random locations to sagebrush habitats

(i.e., sagebrush habitats) and excluded habitats such as

exposed rock, open water, and conifer stands. We

generated random points at a ratio of five times the

number of used points (Aldridge and Boyce 2007,

Carpenter et al. 2010). To account for possible

overrepresentation bias of available units (i.e., random

locations greater in number than used locations) in our

logistic regression analyses, we down-weighted available

units to be proportional to used units (Hirzel et al. 2006,

Aldridge and Boyce 2007, Carpenter et al. 2010). This

resulted in a used to available ratio of 1:1.

We used a second-order Akaike’s information crite-

rion corrected for small sample sizes (AICc; Hurvich and

Tsai 1989) to assess model support. We modeled all

variables univariately and, for scale-dependent vari-

ables, we determined the scale that was most correlated

with occurrence by comparing AICc scores across

variable scales (Arnold 2010, Carpenter et al. 2010,

Doherty et al. 2010). We retained the scale with the

lowest AICc score, which corresponded to the greatest

predictive potential (Burnham and Anderson 2002).

Further, we screened unsupported predictor variables

that had an 85% confidence interval (CI) around

parameter estimates that included 0, thereby reducing

the likelihood of over-fitting models in our model

selection process (Hosmer and Lemeshow 2000, Burn-

ham and Anderson 2002, Arnold 2010).

We computed a Pearson’s correlation matrix to test

for multicollinearity among predictor variables and

omitted one of each correlated variable when correlation

coefficients (r) were �0.6. To assess multicollinearity

beyond variable pairs, we inspected variance inflation

factor (VIF) scores and tolerance (T ) values and

removed one of the correlated variables when t � 0.40

(Allison 2009). We checked for stability and consistency

of regression coefficient estimates when variables were

moderately correlated (0.3 � r � 0.6). Generally, if

variables were correlated, the variable with the lowest

AICc score was retained. On occasion, findings from

previous research informed the decision to retain a

variable (Aldridge and Boyce 2007, Doherty et al. 2010).

We did not permit correlated variables to compete in the

same model at any level of model selection.

Experimental design and survival analysis

We explored relationships between landscape-scale

predictor variables and Sage-Grouse survival or risk for

three distinct life stages: nest, brood, and adult

(including yearling) female summer survival. In general,

survival analyses are used for investigating time-to-event

data. Cox’s (1972) proportional hazards regression
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model (hereafter Cox model) is a robust survival model

that provides a method of estimating the effect of

variables on time to an event such as death. For

example, in this analysis ‘‘time’’ refers to the approxi-

mate date of nest initiation and the ‘‘event’’ is the

approximate date of nest failure. If the nest hatched

successfully, then it did not have an ‘‘event’’ and was

censored. The Cox model allows for incorporating time-

dependent variables or variables that change with time

and space, and right- and left-censored survival data

(Hosmer and Lemeshow 1999). Right- and left-censor-

ing allows for incorporating individuals into the model

that may not be observed for an entire period or those

whose event is unknown. We used the Cox model to fit

our nest survival, brood survival, and adult female

survival data to predictor variables (Hosmer and

Lemeshow 1999), which allowed us to explore those

habitat features that had the greatest impact on survival.

Furthermore, the Cox model produces a risk ratio that is

used to assess the effect of a predictor variable on

relative risk of the event while controlling for other

variables in the model (Hosmer and Lemeshow 1999).

The risk ratio was thus used to compare the influence of

a unit change in a variable on the risk of death

(Winterstein et al. 2001). The Cox model took the

following form in our analysis:

hðt j xtÞ ¼ h0ðtÞexpðb1xi1 þ b2xi2 þ . . . bik xikÞ ð2Þ

where bis are the regression coefficients for the xi
variables, and h0(t) is the baseline hazard at time t. The

baseline hazard is unspecified but the effects of the

variables are still estimated. Environmental and anthro-

pogenic predictor variable effects were interpreted as

hazard ratios (exp[bi]).
Our survival analysis periods (t) for nests, broods, and

summer females were t ¼ 28 days, t ¼ 36 days, and t ¼
110 days, respectively. Thus, female summer survival

overlapped the nest and brood survival periods. Left-

censoring of females was minimal because we began

monitoring the female sample at the same time (early

May) each year. For the brood and female survival

analyses, some right-censoring did occur for individuals

or broods of unknown status (i.e., disappeared during

summer monitoring). For the nest survival analysis, we

assessed fixed variables in the Cox model due to the fixed

location of the nest. However, time-dependent variables

were incorporated into the female and brood survival

models because they experienced exposure to different

habitat characteristics as they moved through the

landscape. To account for time dependence and

discontinuous intervals of risk in our female and brood

Cox models, a ‘‘counting-process’’ method was used that

allowed time-dependent variables to be distributed into

time intervals (Allison 2010). We assigned variable

information across intervals centered at the observation

time to the midway point of the next observation when

the variable information changed. This allowed us to

incorporate changing exposure to habitat features across

the survival period for each vital rate, which we termed

average cumulative exposure. That is, the variables that
correspond to an event in the Cox model were an

average of the variable exposure from t¼0 to the time of
the event. We believe that this is an important step

because it is more appropriate to assess risk based on
varying exposure to habitat features over time (cumu-

lative exposure), rather than based solely on the last
location were an individual was found dead or a female

was no longer with brood. For example, individual
chicks may be preyed on as they move through the

landscape, and not necessarily all at the same time.
Therefore, this approach accounted for possible errors

associated with determining the exact point of an event,
but also incorporated the point of the event in the

analysis.
We calculated survival estimates for each vital rate

with the Kaplan-Meier (K-M) product-limit estimator
(Kaplan and Meier 1958) modified for staggered entry

(Pollock et al. 1989). Following the fitting of the Cox
model and after calculating K-M survival estimates for

each vital rate, we estimated the baseline survivorship

function of the proportional hazards model (Hosmer
and Lemeshow 1999). The survival probability function

(SPF) took the form

Sðt; x; bÞ ¼ ½S0ðtÞ�expðx 0bÞ ð3Þ

where S0(t) was the K-M survival estimate at the end of
the survival period for that vital rate (nest, t¼ 28 days;

brood, t ¼ 36 days; female summer, t ¼ 110 days), and
x0b was the variable-adjusted coefficient from the Cox

model. The SPF allowed us to transform daily risk (e.g.,

daily risk of nest loss in terms of a hazard ratio) derived
from the Cox models to survival probabilities corre-

sponding to the entire demographic period and then
map these back on the ARPA landscape.

The Cox model assumes that hazards remain constant
over time; thus, a variable’s influence is proportional

over time (Le 1997, Hosmer and Lemeshow 1999).
Therefore, we tested the variables in our top survival

models independently and collectively (e.g., top models)
for proportionality at a ¼ 0.05 (Le 1997, Hosmer and

Lemeshow 1999). We assessed if a particular observa-
tion was disproportionately influential on a coefficient

estimate for each variable by testing for inflated
residuals and leverage (dfbetas; Hosmer and Lemeshow

1999, Allison 2010). No observations were removed as a
result of disproportionally high influence.

We used a derivation of the AIC technique adapted
specifically for survival modeling (AICSUR) to select the

best-supported survival models (Liang and Zou 2008).
In the same manner as our occurrence modeling effort,

we explored all variables univariately and, for scale-
dependent variables, compared the three spatial scales to

determine the scale that best explained survival by
comparing AICSUR scores (Arnold 2010, Carpenter et

al. 2010, Doherty et al. 2010) for scale-dependent
variables. We retained the variable scale with the lowest

June 2015 975SAGE-GROUSE SOURCE AND SINK HABITATS



AICSUR score. After selection of the appropriate

variable scale, we screened variables by removing

unsupported variables having parameter estimates with

an 85% CI that included 0 (Le 1997, Hosmer and

Lemeshow 1999, Arnold 2010). For the remaining

variables, we assessed multicollinearity with a Pearson’s

correlation matrix and variance inflation factor (VIF)

scores combined with tolerance (T ) values. We omitted

variables from correlated groups when r � 0.6 or t � 0.4

(Allison 2009). Finally, we checked for stability and

consistency of regression coefficient estimates when

variables were moderately correlated (0.3 � r � 0.6).

When variables were correlated, the variable with the

lowest AICSUR score was retained unless findings from

previous research informed our decision to retain a

certain variable (Aldridge and Boyce 2007). We did not

permit correlated variables to compete in the same

model at any level of model selection.

Model development

Our modeling objective was to use our sample of

female Sage-Grouse from the ARPA population to find

the best-supported predictor variables. Consequently,

we used the variables with the most predictive potential

to make population-level inference regarding occurrence

and survival (Boyce et al. 2002). We evaluated the

variable weights of predictor variables for occurrence

and survival within model subsets: anthropogenic and

environmental. We used a sequential modeling approach

(Arnold 2010) consisting of two steps to identify the

most effective predictors of occurrence and survival. In

the first level of model selection, environmental and

anthropogenic model subsets were modeled separately;

within these subsets we explored all variable combina-

tions (Burnham and Anderson 2002). At this stage, we

considered models with AICc or AICSUR scores in the

range of 2–7 units (Burnham and Anderson 2002) to be

competitive with the top model. Models with AICc

scores effectively equivalent (,2 AICc or AICSUR) to the

null model were not considered informative (Allison

2010, Doherty et al. 2010). To address model selection

uncertainty, we used additional metrics to determine

variable importance, because variables with poor

explanatory power may have support only because they

were added to an otherwise good model (Burnham and

Anderson 2002, Arnold 2010). We checked for models

with similar maximized log-likelihood values to assess if

the model was only competitive because of the addition

of a single uninformative variable (Burnham and

Anderson 2002). We also assessed variable importance

by summing Akaike model weights across models that

included the variable of interest (Arnold 2010). We

brought forward the variables with the greatest potential

as predictors of occurrence or survival within each

subset to the final level of model selection.

After determining the best-supported model(s) in each

variable subset (e.g., anthropogenic and environmental),

we allowed models to compete across subsets to see if

additional information produced a more parsimonious

model (Arnold 2010). For example, we explored whether

the final model(s) from the environmental subset had the

most support by itself, or if a combination of top models

from environmental plus anthropogenic subsets pro-

duced a model with greater support, as assessed through

a comparison of AICc or AICSUR scores. If the

combined model had greater support than the anthro-

pogenic and environmental models alone, we accepted

the combined model.

A large number of predictor variables fitted to too few

events in the Cox model can result in data that are too

sparse to accurately estimate parameters (Hosmer and

Lemeshow 2000). Our brood survival data contained the

lowest number of events. Consequently, we modified

selection of brood survival models by only fitting models

with three or fewer variables to maintain acceptable

model performance (Vittinghoff and McCulloch 2006)

at both levels of model selection. Within the nest

survival and female survival variable subsets and final

set, we did not exceed four variables per model, without

modification; because many uninformative predictor

variables were already removed through the screening

process (85% CI included 0).

Model evaluation

We assessed goodness of fit for our final occurrence

and survival models using the likelihood ratio v2 test

statistic (Hosmer and Lemeshow 1999, 2000). To test the

predictive accuracy of our final occurrence models, we

performed an area-adjusted five-fold cross-validation for

each life stage, in which we folded 20% of our data,

without replacement, across folds (Boyce et al. 2002).

For each of the five data folds (bins), the withheld set

was assessed against the model predictions of that

training data set, using Spearman rank correlations

between bin ranks of the RSF values. A high score

corresponded to good predictive performance (Boyce et

al. 2002). Because model accuracy is more complex when

censoring is involved, we used the overall C statistic (C

index), designed specifically for survival models, to

assess the discrimination ability of our survival models

(Pencina and D’Agostino 2004). Values of C . 0.7 have

acceptable discrimination, whereas values of C � 0.5

indicates that the model predicts the outcome no better

than chance (Hosmer and Lemeshow 2000). We

conducted all statistical analyses with SAS version 9.2

(SAS Institute 2009). We report all K-M survival

estimates as estimate 6 standard error (SE).

Mapping ecological models on the ARPA landscape

We had competitive models for all of our survival

periods (n¼ 3) and female life stages (n¼ 5). Therefore,

to produce more robust predictive surfaces for our final

RSFs and SPFs, in a GIS framework, we model-

averaged over the 90% confidence set (see Aldridge et

al. 2012). For each female life stage, the relative

probability of occurrence estimates specific to each
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model were scaled between 0 and 1, incorporating the

estimated b0. The weights for each model in the 90%
confidence set were recalculated within the set to sum to
1 and the recalculated weights were then applied to the

spatial predictions for each model. The weighted

predictions were summed to produce a final model-

averaged relative probability surface for each RSF
(Aldridge et al. 2012). We followed a similar process

to produce our SPFs; however, we first applied each Cox

model in the 90% confidence set to spatially predict daily
risk (Eq. 2) and then converted these to individual SPFs

(Eq. 3). Because the predicted relative survival proba-

bilities are inherently scaled between 0 and 1, we applied

the weights (recalculated within the 90% confidence set)
to each SPF. The weighted SPFs were summed to form a

final model-averaged relative survival probability sur-

face (SPF) for each demographic (e.g., nest survival,
brood survival, and female survival).

Because we were concerned with the importance of

habitats to population persistence, we weighted the RSF

layers for each life stage based on their influence on k
before summing them into a single female summer
occurrence layer. For this weighting exercise, we used

sensitivity values from Taylor et al. (2012) that reflect

the influence of female survival (1.70), chick survival
(1.20), and nest survival (0.95) on range-wide Sage-

Grouse population growth (i.e., k). Therefore, habitats
that influenced the survival of females and chicks (i.e.,

early-brooding and late-brooding RSFs) received a
weight of (1.70 þ 1.20 ¼ 2.90) and, consequently,

received the highest weight. Habitats that were only

influencing female survival (i.e., early non-brooding and
late non-brooding RSFs) received the lowest weight

(1.70). The weighted RSFs were then summed to form a

predictive surface that scored habitat importance per cell

on the basis of relative probabilities of female occur-
rence encompassing all summer life stages. For inter-

pretation, the final female occurrence map was rescaled

between 0 and 1, where 1 represented the highest and 0
represented the lowest predicted relative probability of

occurrence. All maps or layers were in a raster format

with 30-m cell resolution.

In following with our research objective to identify

habitats contributing to Sage-Grouse population persis-
tence in the ARPA, we formed a fitness metric (FM).

The FM was adjusted on the basis of productivity

correlated with habitat features (e.g., environmental and
anthropogenic predictor variables). In forming the FM,

we relied upon current knowledge of Sage-Grouse

population dynamics as well as matrix population

modeling (see Johnson and Braun 1999, Hagen 2003,
Holloran 2005). In the FM model, we integrated our

SPFs specific to nests, broods, and adult female summer

survival into the following equation:

Fitness metric ¼ ½ðnest initiation 3 nest survivalÞ
3ðbrood survival 3 /chickÞ�
þð/adult summer survivalÞ ð4Þ

where nest initiation was a fixed value from the mean of

our initiation rates from 2008 and 2009. A female was

assessed as initiating a nest if tracked consistently during

the pre-nesting season (e.g., 1 April to 15 May) and a

nest was documented. Nest survival was a dynamic

(varying) value from our nest SPF; brood survival was a

dynamic value from our brood SPF; /chick was a fixed

value of female chicks produced annually, derived from

a combination of the average brood size of 6.4 chicks

(7.5 eggs and 94.3% hatchability; Crawford et al. 2004,

Connelly et al. 2011), a brood sex ratio of 1:1 (Bush

2009), and a mean chick survival rate of 0.23 to 36 days,

approximated from a chick survival curve that account-

ed for lack of independence of chicks (frailty model)

within broods (see Aldridge and Boyce 2008); /adult

summer survival was a dynamic value from our female

summer SPF. For the vital rates that did not come

directly from our research (/chick), we were conserva-

tive in our estimation of the FM by using the lower

estimates available in the Sage-Grouse literature. How-

ever, estimates were within the breadth of values found

in other studies (Schroeder et al. 1999, Connelly et al.

2011). The value of the average brood size of 6.4 chicks

is also supported by our mean count of hatched eggs

(6.46 6 0.16 eggs; range 5–9 eggs). When calculated, the

FM model (Eq. 4) predictions fluctuated around 1. A

value at or above 1 suggests productive habitat; that is,

habitat where a female is more likely to replace herself

during the reproductive period (i.e., female chick

production offset or exceeded female mortality in the

summer). A value below 1 suggests less productive

habitat where female mortality is more likely to

exceeded female production (i.e., the female is less likely

to replace herself in these habitats; Table 2).

We mapped the FM estimates onto the ARPA

landscape with Eq. 4 and termed this a productivity

map. Therefore, each 30-m cell was adjusted per

changing FM values that were driven by the SPFs for

nest, brood, and female summer. The combination of

our female summer occurrence map and productivity

map formed our final ecological map, with a goal to

spatially predict sink and source habitat on the ARPA

landscape. The predictions were distributed into five

categories based on the FM threshold of 1, ranking

habitat productivity into high-productivity habitats

(female chick production offset or exceeded female

mortality) or low-productivity habitats (female mortal-

ity exceeded female chick production), and a three-

quantile partition of the relative probabilities of

occurrence predicted by our female summer occurrence

map. The relative probabilities were ranked into high,

moderate, and low occurrence (Table 2). The final

source–sink map included the following habitat classi-

fications: primary source, secondary source, primary

sink, secondary sink, and low occurrence. The predictive

surfaces were mapped on the 2009 landscape, thus

reflecting the landscape conditions at the end of the

study.
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To further assess the predictive ability of our final

ecological model and corresponding source–sink map,

we conducted a post hoc analysis by summarizing active

leks and peak-male lek counts with lek data gathered in

our study area from 2007 to 2011. We reasoned that if

our model was successfully predicting high-occurrence

areas with greater fitness outcomes, this should also be

reflected in lek placement (i.e., the 30-m cell that

contained the lek centroid) and corresponding peak-

male counts (Gibson 1996). For instance, we would

expect that Sage-Grouse leks and lekking numbers

should be disproportionately higher within areas iden-

tified as primary source than within secondary source.

RESULTS

In spring 2007 and 2008, we radio-marked 90 female

Sage-Grouse (Sage-Grouse were not monitored on the

ground in 2007) and we were able to consistently

monitor 76 of these in 2008. In 2009, we radio-marked

an additional 60 female Sage-Grouse and were able to

consistently monitor 70 radio-marked females. Our

occurrence models included 93 nests, 68 early brood-

rearing locations, 69 late brood-rearing locations, 134

early non-brooding locations, and 158 late non-brood-

ing locations. Of the females monitored each year, only

16 were monitored in both 2008 and 2009; of these, five

had the same status across years (e.g., hatched nest and

with brood for the early and late periods). To ensure

equal representation of individuals in our occurrence

models, subsamples per individual per year were equal.

For our early brood-rearing and early non-brooding

models, each individual contributed two observations.

Each individual contributed three observations for our

late brood-rearing models and each individual contrib-

uted two observations for our late non-brooding

models. All relocations were used in our survival

analyses. The average recorded nest initiation across

years was 59%. We recorded minimal nest abandonment

(n¼ 1 in 2008 and n¼ 5 in 2009). Eighty-three nests (47

events), 35 broods (11 events), and 129 females (17

events) had sufficient observation history (at least two

observations for broods and females) to assess in the

nest, brood, and adult female summer survival analyses.

Nest occurrence

The predictor variables that formed the best approx-

imating models and were model-averaged over the 90%
confidence set for nest occurrence represented three

spatial scales (Table 3). Model support increased with

the inclusion of the anthropogenic variables (environ-

mental plus anthropogenic model; Appendix: Table

A1). At the patch scale (0.25 km2, 0.282 km radius), big

sagebrush canopy cover (Bsage) and litter (Litter) were

positively correlated with nest occurrence; at the largest

landscape scale (5 km2), the likelihood of nest

occurrence decreased as the standard deviation in

NDVI (NDVISD) increased. At the 1-km2 scale, as

terrain roughness (VRM) increased, the likelihood of

nest occurrence decreased. The final model contained

the anthropogenic variable visible well count (Vwell) at

the 1-km2 scale. The addition of one visible well within

a 1-km2 area reduced the odds of nest occurrence by

;52%. Available locations averaged 0.29 6 0.04 visible

wells/km2 while nest locations averaged 0.06 6 0.03

visible wells per km2. The environmental and anthro-

pogenic predictor variables, Bsage_0.25, Litter_0.25,

NDVISD_5.0, and Vwell_1.0, formed the nest RSF

model. The likelihood ratio v2 test statistic suggested

that the full nest RSF model (i.e., model containing all

of the variables in the 90% confidence set) had good fit

(v2
4 ¼ 33.80, P , 0.001). Based on five-fold cross-

validation, the predictive ability of the full nest RSF

model was excellent (rS ¼ 0.96, P , 0.001, n ¼ 10).

Early brooding and early non-brooding occurrence

The best-supported models for early brood-rearing

females (early-brooding) and non-brooding females

(early non-brooding) during the same period (approx-

imately early June to early July) did not have any

environmental predictor variables in common. The

differences between these models suggest that brooding

and non-brooding females were selecting different

habitats during the same temporal period. Consequent-

ly, we formed RSF models specific to each of these life

stages.

The best-supported models, model-averaged over the

90% confidence set, for early-brooding female occur-

TABLE 2. Quantification of predicted source and sink habitats on the ARPA (Atlantic Rim
Project Area) coalbed natural gas field landscape, south-central Wyoming, USA.

Occurrence

Probability of
female summer

selection Fitness metric
Habitat

productivity Habitat categories

"" .66% �1 high primary source
" 33–66% �1 high secondary source
"" .66% ,1 low primary sink
" 33–66% ,1 low secondary sink
# ,33% low occurrence

Notes: The relative probability of female summer selection is based upon a three-quantile
classification of map predictions. In high-productivity habitat, female chick production offsets or
exceeds female mortality during the summer. In low-productivity habitat, female mortality in the
summer exceeds female chick production.

CHRISTOPHER P. KIROL ET AL.978 Ecological Applications
Vol. 25, No. 4



rence contained the quadratic form of percent sagebrush

canopy cover (Sage þ Sage2) and the variability in

herbaceous cover (HerbSD) from the 1-km2 landscape

scale (Appendix: Table A2). The variability in percent

herbaceous cover within a 1-km2 area (0.564 km radius)

was negatively correlated with selection during the early

brood-rearing period, suggesting selection for habitats

with more homogenous herbaceous cover. Unlike the

variable Bsage (big sagebrush species), predictive in the

nest occurrence model, the variable Sage included all

TABLE 3. Final resource selection function (RSF) models and associated spatial variables
predicting female Sage-Grouse nesting, early brood-rearing, early non-brooding, late brood-
rearing, and late non-brooding occurrence in south-central Wyoming, USA.

Model and variable
Scale
(km2) Coefficient

95% CI
Odds
ratio

Variable
weightLower Upper

Nest RSF

Environmental model

NDVISD� 5.0 �0.244 �0.370 �0.127 0.783 1.000
Bsage 0.25 0.197 0.098 0.3073 1.217 0.766
Litter 0.25 0.047 �0.034 0.129 1.048 0.407
VRM� 1.0 �0.218 �0.796 0.333 0.804 0.256

Anthropogenic model

Vwell 1.0 �0.656 �1.459 �0.081 0.519 0.852

Early-brooding RSF

Environmental model

HerbSD 1.0 �0.388 �0.661 �0.139 0.678 1.000
Sage 1.0 1.536 0.350 3.000 4.648 0.849
(Sage2) 1.0 �0.054 �0.107 �0.013 0.947 0.849

Anthropogenic model

Two-track 5.0 0.121 0.001 0.248 1.129 0.750
Vwell 1.0 �0.742 �2.001 0.062 0.476 0.658
Two-trackdist (km) �2.355 �5.360 0.483 0.095 0.606

Early non-brooding RSF

Environmental model

Litter 0.25 0.075 0.018 0.134 1.078 1.000
NDVISD� 1.0 �0.131 �0.206 �0.646 0.877 0.789
VRM� 1.0 �0.536 �1.087 �0.006 0.585 0.770
Wysage 1.0 0.057 �0.173 0.291 1.058 0.278

Anthropogenic model

Welldist (km) 0.106 �0.300 0.565 1.112 1.000
(Welldist2) (km) �0.034 �0.087 �0.004 0.966 1.000
Vwell 5.0 �1.055 �2.083 �0.303 0.348 1.000

Late-brooding RSF

Environmental model

Sage 1.0 2.453 0.656 4.751 11.627 1.000
(Sage2) 1.0 �0.097 �0.187 �0.029 0.907 1.000
HerbSD 5.0 �0.148 �0.375 0.071 0.863 0.423
ShrbhgtSD 0.25 0.071 �0.076 0.222 1.073 0.290

Anthropogenic model

Two-track 0.25 1.060 0.243 1.934 2.886 0.964
Hauldist (km) �0.385 �0.754 �0.034 0.681 0.532
Dstbarea� 5.0 2.19 0.201 4.360 8.935 0.359
(Dstbarea)2� 5.0 �0.008 �0.019 0.002 0.992 0.359

Late non-brooding RSF

Environmental model

Sage 0.25 0.090 0.025 0.161 1.095 1.000
Forestdist (km) �0.132 �0.291 0.021 0.877 0.691

Anthropogenic model

Two-trackdist (km) 1.266 �0.037 2.621 3.546 0.676
Vwell 5.0 �0.377 �0.984 0.119 0.686 0.576

Notes: Parameter coefficients, 95% confidence intervals (CI), and odds ratios come from the top
models (90% confidence set used to map our predictive surfaces) in which that variable first occurs.
Variable weights are derived from the 90% confidence set. The parameter coefficient and
corresponding CI are shown in italic when the 95% CI overlaps zero.

� For interpretation, estimates for a 100 unit change in variable.
� For interpretation, estimates for a 1000 unit change in variable.
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sagebrush regardless of the species or subspecies. The

quadratic form of Sage_1.0 suggested that the associa-

tion with sagebrush was positive, but the densest

sagebrush was avoided at this scale. The anthropogenic

model combined with the environmental model sub-

stantially increased model support (Appendix: Table

A2). The final anthropogenic model for early brooding

included Vwell at the 1-km2 scale, total linear distance of

unimproved road (Two-track_5.0) within 5 km2, and

distance (km) to nearest unimproved road (Two-

trackdist). Female early brood-rearing locations were

negatively correlated with the number of visible wells

within 0.564 km, with the model predicting a 47%
decrease in occurrence with the addition of one visible

well. Early brood-rearing locations were positively

associated with unimproved road density at the 5-km2

scale, and as the distance from the nearest unimproved

road (e.g., two-track) increased, the likelihood of

occurrence decreased (Table 3).

Female Sage-Grouse without broods early in the

season (early non-brooding) were selecting habitats with

greater litter within 0.282 km (Litter_0.25), less vari-

ability in NDVI values (NDVISD_1.0), higher Wyoming

sagebrush cover (Wysage_1.0), and lower terrain rough-

ness values (VRM_1.0) within 0.564 km. The inclusion

of the anthropogenic variables with the environmental

model produced a model with substantially more

support (Appendix: Table A3). In the 90% confidence

set, the variable Wysage_1.0 had the least support

(variable weight ¼ 0.28) and the 95% CI overlapped 0.

The quadratic form of distance to well (Welldist þ
Welldist2) were predictive of occurrence. But the 95% CI

for the linear term of the quadratic variable Welldist

also overlapped 0 (Table 3). In accordance with nesting

and early brood-rearing, visual well count (Vwell_5.0)

was negatively related to occurrence of females without

broods early in the season. The quadratic term for

distance to a well suggests that the relative probability of

early non-brooding female occurrence initially increased

as the distance from wells increased then started to

decrease as the distance from wells increased.

For the early brooding and early non-brooding full

RSF models, the v2 likelihood ratio indicated good

model fit: v2
6 ¼ 29.30, P , 0.001 and v2

6 ¼ 63.07, P ,

0.001, respectively. Predictive ability of the full models,

assessed by five-fold cross-validation, for the early

brood (rS ¼ 0.95, P , 0.001, n ¼ 10) and early non-

brood (rS ¼ 0.97, P , 0.001, n ¼ 10) was excellent.

Late brooding and late non-brooding occurrence

Similar to early brood-rearing and early non-brood-

ing female selection, we found that habitat selection by

late brood-rearing females and late non-brooding

females diverged; therefore, we formed RSF models

specific to each of these life stages. The duration of the

late brood-rearing period (.14 days post-hatch) over

the course of our research extended from early July to

late August.

The addition of the anthropogenic model only slightly

increased model support for late-brooding female

occurrence (Appendix: Table A4), but we believe that

the increase was sufficient to justify including these

anthropogenic variables in the final RSF model because,

individually, these variables had support (95% CIs;

Table 3) and the full model, which included the

anthropogenic variables, had excellent predictive ability.

Occurrence was negatively correlated with the variability

in percent herbaceous cover within 1.260 km

(HerbSD_5.0) and positively correlated with variability

in shrub heights at a smaller scale (0.25 km2).

ShrbhgtSD_0.25 was the least supported variable in the

90% confidence set (variable weight¼ 0.29) and the 95%
CI overlapped 0 (Table 3). As with early brood-rearing

selection, sagebrush cover was an important predictor of

occurrence in the quadratic form (Sage¼ 2.45þ Sage2¼
�0.10) at the 1.0-km2 scale. The anthropogenic variables

in the 90% confidence set included the quadratic form of

the percent surface disturbance area (Dstbarea_5.0), the

distance to the nearest haul road (Hauldist), and the

linear distance of unimproved road (Two-track_0.25).

Similar to early-brooding females, late-brooding females

were positively associated with unimproved road densi-

ty. The quadratic form of Dstbarea2 (Dstbarea¼ 0.02þ
Dstbarea2¼ 0.0001) suggests that at the 5-km2 scale, late

brood-rearing females were using habitats with some

surface disturbance (e.g., well pads and haul roads), but

as disturbance reached ;2%, the relationship gradually

became negative, suggesting reduced use beyond this

disturbance level. No late-brooding females in our

sample used habitats with disturbance that exceeded

8%. The association between late-brooding female

occurrence and haul roads suggests that as the distance

from haul roads increased, the probability of occurrence

decreased; thus, late brood-rearing females were using

habitats adjacent to haul roads. This relationship does

not necessarily indicate that habitats immediately

adjacent to haul roads were being selected because

late-brooding locations averaged 1.11 6 0.12 km vs.

available locations that averaged 1.38 6 0.06 km from

the nearest haul road.

Environmental predictor variables supported in our

late non-brooding modeling included Forestdist and

Sage_0.25. The percent sagebrush canopy cover was

positively correlated with female late non-brooding

occurrence at the patch scale, and as the distance to

forest edge decreased, the probability of selection by late

non-brooding females increased. The positive associa-

tion with forest edge was not supported in any of the

other models (nesting, early brood-rearing, early non-

brooding, and late brood-rearing), again suggesting

different habitat use for females without broods later

in the summer (Table 3). The inclusion of the final late

non-brooding anthropogenic model improved model fit

when compared with the environmental model alone

(Appendix: Table A5). The late non-brooding anthro-

pogenic model contained the variables Two-trackdist
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and Vwell_5.0. Vwell density was negatively correlated

with late non-brooding female occurrence at the largest

scale (5 km2). As the distance to the nearest unimproved

road (Two-trackdist) increased, late non-brooding

female occurrence increased (i.e., females later in the

summer without broods were selecting habitats farther

from two-track roads).

The likelihood ratio v2 test suggested that the full late-

brooding and late non-brooding models had good fit: v2
6

¼ 20.83, P , 0.002 and v2
4 ¼ 23.23, P , 0.001,

respectively. Predictive ability measured by five-fold

cross-validation for the full late-brooding RSF model (rS
¼ 0.93, P , 0.001, n ¼ 10) was excellent. Yet, five-fold

cross-validation for the full late non-brooding RSF

model (rS ¼ 0.70, P , 0.033, n ¼ 10) indicated only

moderate performance.

Nest survival

Nest survival was similar from year to year, with an

average K-M nest survival estimate over a 28-day

incubation period of 43.4% 6 5.4%. Nest survival

modeling identified three environmental variables at three

different scales that were correlated with 28-day nest

survival (Table 4). The predictive variables included

variability in shrub height at the 1-km2 scale

(ShrbhgtSD_1.0), terrain wetness index at the 0.25-km2

scale (TWI_0.25), and percent Wyoming big sagebrush

canopy cover at the 5-km2 scale (Wysage_5.0). Daily nest

survival increased with an increase in ShrbhgtSD_1.0.

Thus, habitats at the 1-km2 scale with less variability in

shrub heights were riskier habitats for nesting. A 5-cm

increase in the variability in shrub height corresponded to

about a 41% increase in the relative probability of daily

nest survival (mean 7.74 6 2.35 cm, range 3.91–13.83

cm). The percent Wysage_5.0 was positively correlated

with nest success. With a 1% increase in Wyoming big

sagebrush canopy cover within a 1.260 km radius

surrounding a nest, the likelihood of success increased

by ;26% (mean 9.57% 6 1.13%, range 5.67–12.58%). At

the patch scale, topographic wetness index (TWI) was

negatively related to nest success. None of the anthropo-

genic models in the model subset were better than the null

model (DAICSUR � 2). Thus, the 90% confidence set

contained only environmental predictor variables. The

full nest survival model provided a good fit to the data: v2
3

¼8.72, P , 0.033, with a C index value of 0.79, indicating

that the discrimination ability of the model was

acceptable.

Brood survival

The K-M brood survival estimated to 36 days post-

hatch was 76.2% 6 8.0%. Variables included in the

brood survival models represent average cumulative

exposure over the duration preceding a mortality event

or to approximately 36 days. Brood survival to 36 days

was correlated with both environmental and anthropo-

TABLE 4. Final models and associated spatial variables predictive of survival for nest, brood, and
adult female in south-central Wyoming, USA.

Model and variable
Scale
(km2) Coefficient

95% CI
Risk
ratio

Variable
weightLower Upper

Nest survival

Environmental model

TWI 0.25 0.257 0.109 0.406 1.294 0.774
Wysage 5.0 �0.311 �0.442 �0.179 0.733 0.552
ShrbhgtSD 1.0 �0.095 �0.163 �0.025 0.910 0.483

Brood survival�
Environmental model

ShrbhgtSD 1.0 �0.488 �0.707 �0.269 0.614 0.908
Herb 1.0 0.104 0.049 0.159 1.111 0.680

Anthropogenic model

Dstbarea 1.0 �0.118 �0.216 �0.019 0.889 0.606
(Dstbarea)2 1.0 0.002 0.001 0.003 1.002 0.606

Female summer survival�
Environmental model

ShrbhgtSD 1.0 �0.168 �0.293 �0.043 0.845 0.580
VRM� 5.0 0.312 �0.131 0.754 1.365 0.324

Anthropogenic model

Edgedist (km) 0.717 0.506 0.927 2.048 1.000

Notes: Parameter coefficients, 95% confidence intervals (CI), and risk ratios come from the top
models (90% confidence set used to map our predictive surfaces) in which that variable first occurs.
A risk ratio greater than 1 indicates increased risk with an increase in the variable. The variable
weights are derived from the 90% confidence set. The parameter coefficient and corresponding CI
are highlighted in italics when the 95% CI overlaps zero (for VRM).

� Contains time-dependent variables that represent average cumulative exposure to the
corresponding habitat characteristics over the entire survival time and specific to each individual.

� For interpretation, estimates for a 1000 unit change in variable.
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genic variables at the 1-km2 scale (Table 4). The

cumulative environmental variables relating to daily
brood survival included percent herbaceous cover

(Herb) and ShrbhgtSD. Greater herbaceous cover
within a 0.564 km radius of successive brood locations
was negatively related to daily brood survival. With a

1% increase in herbaceous cover, the odds of 36-day
brood survival decreased by ;11% (mean 11.34% 6

5.29%, range 5.01–24.11%). Average cumulative
ShrubhgtSD_1.0 was positively correlated with daily
brood survival. A 5-cm increase in the variability of

shrub height over successive brood locations corre-
sponded with an approximate 80% increase in the

relative probability of daily survival (mean 28.08 6 4.29
cm, range 18.07–41.98 cm). The combination of the

final anthropogenic model and final environmental
model improved model fit (Appendix: Table A6).
The top anthropogenic model included the quadratic

term for total surface disturbance area at the 1-km2 scale
(Dstbarea þ Dstbarea2). The quadratic term suggests

that cumulative exposure to Dstbarea2_1.0 initially had
little effect on 36-day brood survival, but at a threshold
of ;4% surface disturbance, the risk of daily brood loss

began to increase and increased more dramatically at 6%
disturbance (Fig. 2). For example, an increase in surface

disturbance from 6% to 7% equated to approximately a
29% increase in the relative probability of daily brood
loss (mean 0.61% 6 1.16%, range 0–7.96%). The full

brood survival model provided good fit to the data: v2
4¼

16.26, P , 0.003. However, the C index value of 0.68

indicated that the discrimination ability of the model
was poor, although it was close to the acceptable range

of �0.70.

Female survival

The K-M female summer survival estimate to 110
days was 93.0% 6 2.6% (2008–2009). Environmental

variables that were predictive of Sage-Grouse female

summer survival (t ¼ 110) included ShrbhgtSD_1.0 and

VRM_5.0. Like brood survival, variables represent

average cumulative exposure over the duration preced-

ing a mortality event or to 110 days if the female

survived. The variability in shrub height within a 0.564

km radius of successive female locations was positively

correlated with female survival. As terrain roughness

(VRM_5.0) increased, female risk increased.

Model support improved with the inclusion of the

anthropogenic variables when compared to the full

environmental model only (wi¼ 0.40 vs. wi¼ 0.18). The

full anthropogenic model included the distance to

nearest anthropogenic edge (Edgedist). Edgedist sug-

gested that as the distance from anthropogenic edge

increased, the relative probability of 110-day female

survival decreased. Over successive locations, predicted

daily female survival within 1 km of anthropogenic edge

was approximately double that of daily female survival

at a distance of 2 km from anthropogenic edge. Edgedist

for females that survived to 110 days was 1.04 6 0.03 km

vs. that of females that did not survive, 1.70 6 0.10 km.

The final female survival model provided a good fit to

the data: v2
3¼12.80, P , 0.005; the C index value of 0.74

indicated acceptable model discrimination ability.

Ecological maps and validation

The nesting, early brood-rearing, early non-brooding,

late brood-rearing, and late non-brooding maps (Ap-

pendix: Fig. A1) spatially demonstrated differences in

habitat selection across life stages, but also identified

habitats that were consistently important (high relative

probability of occurrence scores) across life stages. The

female summer occurrence map implicated the northern

ARPA as having the greatest amount of high relative

probabilities of occurrence habitat for females during

the summer and predicted lower relative probabilities of

occurrence around energy development areas (Fig. 3).

Similar to the occurrence maps, when mapped, the

relative probability of survival predictions for nest,

brood, and female survival show areas that consistently

had higher predicted survival across these vital rates

(Appendix: Fig. A2). The productivity map (Fig. 4)

predicted much of the northern ARPA as having high-

productivity habitat, and predicted that areas with the

greatest density of development (central ARPA), cen-

tered within high-productivity habitats, were lower-

productivity habitats. Our source–sink map implicated

;30% of the ARPA landscape as primary source, 29%
as secondary source, 4% as primary sink, 6% as

secondary sink, and 31% as low occurrence (Fig. 5).

Based on lek count data (WGFD 2012), 53% of n¼25

active leks (with �2 males observed during any lek count

between 2008 and 2011; Stiver et al. 2010) occurred in

primary source habitats (Fig. 1). Of active leks, 17% (n¼
16) were in habitats identified as secondary source, 10%
(n ¼ 3) were in primary sink, and 20% (n ¼ 6) were in

low-occurrence habitats. We summed all of the peak-

male counts in 2009 to see if there was a relationship

FIG. 2. Daily risk of brood loss over successive brood
locations as a function of the percentage of surface disturbance
at the 1-km2 scale, south-central Wyoming, USA. The solid line
represents mean brood loss risk ratio, and the dashed lines
define the 95% CI.
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between male numbers and predicted source habitats. Of

the total number of males counted in 2009 (n ¼ 678),

51% were lekking in primary source habitat and an

additional 26% were lekking in secondary source.

Further, one lek that contained another 15% of the

lekking males was located in low-occurrence habitat, but

was immediately adjacent to (74 m from) contiguous

primary source habitat. Therefore, 92% of all of the

males counted in 2009 were within or immediately

adjacent to predicted source habitat. Lek data suggest

that our source–sink designation corresponded well with

lek locations and lekking activity.

DISCUSSION

Successful management and conservation of wildlife

requires that habitat suitability as well as habitat

quality (demographic metrics of reproduction and

survival; Hall et al. 1997) be incorporated within

conservation prioritizations. Our predictions of land-

scape-level habitat use and fitness outcomes presented

in terms of source and sink habitat quantifications offer

a means of prioritizing Sage-Grouse habitat as it relates

to population-level dynamics at the scale of an energy

development project. Through the spatial identification

of high-value (i.e., primary source) as well as subop-

timal (i.e., primary sink) habitats, we can inform

energy infrastructure siting to minimize the effects of

energy development to Sage-Grouse on-site as well as

informing potential mitigation actions. Research on

Sage-Grouse and other avian species has also shown

variations in occurrence and fitness at multiple scales

(Robinson et al. 1995, Chalfoun and Martin 2007,

Doherty et al. 2010). We found predictive variables for

Sage-Grouse occurrence during the nesting, early and

late brood-rearing, and non-brooding life stages, as

well as demographic responses related to nest and

female survival, that spanned multiple spatial scales

(Tables 3 and 4).

Anthropogenic variables related to coalbed natural

gas (CBNG) development were ubiquitous in all of the

FIG. 3. Predicted relative probability of female Sage-Grouse occurrence throughout the summer (resource selection functions
for all life stages were weighted based on their importance to k, summed and rescaled; see Appendix: Fig. A1) in south-central
Wyoming, USA. The map displays the relative probability of occurrence by females with 1 (green) being the highest and 0 (brown)
being the lowest probability.
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final occurrence models; for each life stage, there was at

least one energy feature (e.g., visual wells or surface

disturbance) that was negatively associated with habitat

selection. Avoidance responses of Sage-Grouse and

other species to energy infrastructure have been

extensively documented (see Johnson et al. 2005, Sawyer

et al. 2006, Doherty et al. 2008, Gilbert and Chalfoun

2011, Smith et al. 2014). Visual well density was

negatively correlated with female Sage-Grouse occur-

rence during nesting and early brood-rearing as well as

early and late non-brooding. For example, the addition

of one visible well within 0.564 km of a nest decreased

the relative probability of occurrence by ;52%.

Researchers studying Sage-Grouse in other areas being

influenced by oil and gas development also have

identified negative relationships between well or visible

well densities and occurrence during different life stages

(Holloran 2005, Aldridge and Boyce 2007, Doherty et al.

2008, Carpenter et al. 2010). However, our results

suggested that anthropogenic features were not always

avoided and this depended on the female life stage. For

example, during the late brood-rearing period, brooding

females seemed to be tolerant of haul roads; however, on

average, they were using habitats ;1 km away.

Our source–sink map suggests that primary and

secondary source habitats in our study area, although

still relatively abundant (59% of the landscape), were

becoming low-occurrence areas because of female Sage-

Grouse avoidance of energy features and disturbance

across female summer life stages. Thus, avoidance

appears to be resulting in what has been described as

functional habitat loss (Aldridge and Boyce 2007). Our

results provide strong evidence that population-level

impacts to Sage-Grouse from energy development are at

least initially largely driven by avoidance or displace-

ment due to anthropogenic disturbance and not fitness

consequences. This is in contrast to other research

reporting that short-term consequences of human

development are driven more by infrastructure impacts

to demographics rather than distributions (Holloran

FIG. 4. Predicted habitat productivity based on variable adjusted survival probability functions specific to Sage-Grouse nest,
brood, and summer female (brooding or non-brooding) survival, as well as fixed vital rates incorporated into a fitness metric model,
in south-central Wyoming, USA. The map displays a continuum from the highest predicted productivity value (dark blue) to the
lowest (brown).
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2005, LeBeau et al. 2014) or studies finding that human

development can result in ecological traps for Sage-
Grouse (Aldridge and Boyce 2007). This dichotomy may
be due to differences in the amount of undisturbed

habitat available to the local population or to differ-
ences in the type of infrastructure and intensity of
development.

Similar to other landscape-scale research (Aldridge
and Boyce 2007, Doherty et al. 2010) as well as local-
scale research (Holloran et al. 2005, Hagen et al. 2007,

Doherty et al. 2010), nest occurrence in the ARPA was
strongly correlated with big sagebrush canopy cover. In

addition, sagebrush canopy cover, albeit in different
forms and at different scales, was present in our RSF
models throughout every summer female life stage, with

the exception of the early non-brooding females. During
nesting, Sage-Grouse in the ARPA appeared to be
selecting for high sagebrush cover and then selecting for

moderate sagebrush cover during early and late brood-
rearing. This is in contrast to other studies reporting that
at a landscape scale, Sage-Grouse select for moderate

sagebrush cover during nesting (Aldridge and Boyce

2007, Doherty et al. 2008). Further, our results suggest

that during nesting, selection for greater sagebrush
cover, specifically Wyoming sagebrush cover, resulted in
increased nest survival. This finding is supported by

other research showing that shrub cover has a positive
relationship to nest success (Kolada et al. 2009) and
reduces the likelihood that avian nest predators, such as

the Common Raven (Corvus corax), will locate nests
(Coates and Delehanty 2010).

Our findings suggest a positive association between

shrub height variability and survival throughout the
summer: the predictor, variability in shrub height at a 1-

km2 scale, was omnipresent in nest, brood, and adult
female SPFs. Thus, stands with homogenous vertical
cover of sagebrush and other shrub species appeared to

be riskier habitats for females in every summer life stage.
We are unaware of any other studies that have
specifically assessed variability in shrub heights and

survival at the landscape scale, although Aldridge and
Boyce (2007) found that nest survival greatly improved
in habitats containing a heterogeneous mix of sagebrush

cover.

FIG. 5. Predicted sink and source habitats for Sage-Grouse in south-central Wyoming, USA. The habitat categories are based
on the fitness metric threshold of 1 (ranking habitats into high and low productivity habitats) and a three-quantile partition of the
relative probabilities of occurrence predicted by our female summer occurrence map. The quantification of source–sink categories is
described in Table 2.
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Adult female summer survival was negatively corre-

lated with terrain roughness at the largest landscape

scale (5 km2). This finding suggests that habitats with

greater amounts of topographic relief were riskier

habitats for female Sage-Grouse during summer. In

the ARPA, this would include several prominent

drainage basins and ridgelines that may have provided

perching and nesting substrates for avian Sage-Grouse

predators such as Golden Eagles (Aquila chrysaetos).

Unexpectedly, we also found that habitats farther from

anthropogenic edge were riskier for adult females.

Dinkins et al. (2014) found a very similar relationship

for female survival (e.g., higher female survival with

greater haul road densities and lower terrain roughness)

and oil and gas development. We suspect that this

relationship is largely explained by the fact that energy

infrastructure and haul roads were disproportionately

located in less rugged topography (i.e., lower terrain

roughness with higher female survival) that is more

conducive to energy development.

With the exception of brood survival, anthropogenic

features did not broadly influence fitness throughout

female summer life stages. That is, our findings suggest

that avoidance of anthropogenic features by female

Sage-Grouse was the primary mechanism at work. This

makes sense because our survival findings are dictated

by the female’s habitat choices. Because energy devel-

opment habitats were primarily being avoided by female

Sage-Grouse, potential fitness outcomes related to

infrastructure probably were not realized. This is

reflected in our source–sink map suggesting that many

of the infrastructure areas fell in the low-occurrence

category but were surrounded by source habitat.

Further, our source–sink map predicted a minimal

amount of sink habitat (10%; Fig. 4), which has been

shown to be detrimental to Sage-Grouse and other avian

species in human-altered landscapes (Misenhelter and

Rotenberry 2000, Aldridge and Boyce 2007, Pearson

and Fraterrigo 2011). Yet, chick survival is a critical

parameter for Sage-Grouse population growth (Taylor

et al. 2012). Our results suggest that brood survival was

influenced by the level of surface disturbance associated

with energy development. To a point, surface distur-

bance in habitats being used by brooding females

PLATE 1. A female Sage-Grouse with chicks (the head of another chick is visible in the background) shown in the Atlantic Rim
study area, south-central Wyoming, USA, in mid-summer. Photo credit: C. P. Kirol.
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appeared to have little influence on brood survival;

however, once disturbance reached 4–5%, the risk of

brood loss began to increase. At the same spatial scale,

Aldridge and Boyce (2007) found that daily Sage-

Grouse chick survival (56 days) decreased with greater

well densities. Similar relationships have been found in

other species, such as the grizzly bear (Ursus arctos

horribilis), which showed an increase in survival risk

strongly correlated with anthropogenic habitats in

general (Johnson et al. 2004).

The predicted FM values (productivity map) and

corresponding source–sink predictions have limitations.

A principal limitation is that our sink and source

designations were based on vital rates estimated from

two years of data collected during the initial stages of

development on the ARPA. Although our demographic

rate estimates were consistent with the literature,

demographic rates may vary more on an annual basis

than we documented (see Connelly et al. 2011). Further,

effects on productivity and survival related to energy

development may lag behind additions of infrastructure

to the landscape (Harju et al. 2010), and extensive

energy infrastructure in the ARPA was fairly new to the

landscape (,5 years). Our study focused on identifying

immediate and direct effects of anthropogenic features

to use in predicting the importance of habitat that

remained. In an attempt to prevent overestimating

productivity and thus source habitats, we took a

conservative approach in our FM model by incorporat-

ing fixed demographics from the lower range of values

reported in the Sage-Grouse literature. Density depen-

dence could be a factor if functional habitats are being

avoided and this probably would manifest over a longer

period of time. Ideally, we would have monitored

nesting females daily; however, due to financial

restraints and the size of our study area, we did not

have the resources to maintain this relocation frequency.

Therefore, our relocation frequency (6.21 6 0.16 days)

may explain our low nest initiation rate (59%; see

Schroeder et al. 1999). Because this initiation rate is a

component of our FM model, the FM estimates

probably are also biased slightly low. Finally, we

acknowledge that as habitat conditions change due to

environmental and anthropogenic factors, source–sink

dynamics may change; thus, in the context of expanding

infrastructure, periodic updates to the model that

incorporate Sage-Grouse monitoring data may be

warranted.

Our research represents management-oriented science

that is especially important for conservation of the Sage-

Grouse because the majority of sagebrush habitats are

managed by public agencies with multiple-use mandates

(USFWS 2010). Thus, balancing land and resource use

with Sage-Grouse conservation is a complex challenge.

To date, leks have been the main focus of Sage-Grouse

conservation and management (Harju et al. 2010). Our

post hoc analysis of lekking activity in the ARPA and

our source–sink model provided greater confidence in

our approach because primary and secondary source

habitats correlated well with active leks and peak counts

of males on those leks. The correlation between lek

activity and primary and secondary source habitats is

suggestive of modeling or accurately designating habi-

tats that are a source of Sage-Grouse; it does not suggest

that protection at the scale of individual leks is sufficient

to conserve Sage-Grouse in an energy development field

(Naugle et al. 2011). Given the spatial juxtaposition of

source and low-occurrence habitats (see Fig. 5), future

energy development in the ARPA could potentially

further restrict source habitat by resulting in habitats

becoming low-occurrence habitats due to expanding

infrastructure. Our results suggest that there is an

increased likelihood of Sage-Grouse population persis-

tence if the identified primary and secondary source

habitats are left intact. Further, because local popula-

tion dynamics depend on a balance between mortality

and fecundity as well as demographic subsides from

adjacent sources (Pearson and Fraterrigo 2011), primary

source habitats may provide a surplus of dispersers to

recolonize development areas as oil and gas resources

are exhausted and energy fields are reclaimed. We

believe that the analytical framework we present

provides a means for wildlife conservation in areas

where species conservation and human energy demands

collide. Consequently, our approach to link occurrence

and fitness within a source–sink framework should be

useful to others developing conservation plans for

species that inhabit anthropogenic landscapes.
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